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Abstract

In this paper we present an Alife-platform named Urdar
aimed at investigating dynamics of ecosystems where species
engage in cross-feeding, i.e. where metabolites are passed
from one species to the next in a process of sequential degra-
dation. This type of interactions are commonly found in
microbial ecosystems such as bacterial consortia degrading
complex compounds. We have studied this phenomenon from
an abstract point of view by considering artificial organisms
which metabolise binary strings from a shared environment.
The organisms are represented as simple cellular automaton
rules and the analogue of energy in the system is an approxi-
mation of the Shannon entropy of the binary strings. Only or-
ganisms which increase the entropy of the transformed strings
are allowed to replicate. We find that the system exhibits a
large degree of biodiversity and a non-stationary species dis-
tribution, especially during low rates of energy inflow, and
that the time spent in each species configuration exhibits
power-law statistics. Investigating the interaction between
different species in the system by invasion experiments we
observe that co-existence is a common feature and that some
triplets of species exhibit intransitive, i.e. rock-paper-scissors
like, interactions.

Introduction
The origin and maintenance of biodiversity has been a long
standing question among ecologists (Hutchinson, 1959).
One of the simplest ecological system where biodiversity
emerges, and is stably maintained, is in populations of E.
coli growing in a homogeneous environment limited by a
single resource, usually glucose. The diversity is facilitated
by cross-feeding (syntrophy), where one strain partially de-
grades the limiting resource into a secondary metabolite
which is then utilised by a second strain. This phenomenon
was first observed by Helling et al. (1987) and has since been
reported to occur in other systems such as methanogenic en-
vironments (Stams, 1994), bacteria engaging in nitrification
(Costa et al., 2006) and degradation of xenobiotic compunds
(Dejonghe et al., 2003; Katsuyama et al., 2009).

The evolution of cross-feeding has been investigated
by Pfeiffer and Bonhoeffer (2004) using a theoretical
model, and their results showed that cross-feeding naturally

emerges under the assumption that ATP production is max-
imised while the total concentrations of enzymes and inter-
mediates are minimised. Further they showed that the evo-
lution of cross-feeding depends on the dilution rate in the
chemostat, and that a stable polymorphism is more likely to
emerge at low dilution rates.

A different approach was taken by Doebeli (2002) who
investigated the emergence of cross-feeding in the frame-
work of adaptive dynamics. In this case the conditions for
evolutionary branching and the appearance of cross-feeding
are that there is a trade-off between uptake efficiency of the
primary and seconday metabolites, and that this trade-off
function has a positive curvature. The model also makes
the correct prediction that cross-feeding is less likely to oc-
cur in serial batch culture, in which the primary resource is
not replenished (Rozen and Lenski, 2000). This highlights
the necessity of the secondary metabolite being present for
an extended period of time for cross-feeding to evolve.

In this study we present a recent Alife-platform (Gerlee
and Lundh, 2010) aimed at investigating the evolution of
cross-feeding, but not in the context of a specific biolog-
ical system, but instead we extract and analyse the gen-
eral principles governing systems where cross-feeding might
emerge. In its abstract nature the model will be more akin to
an artificial chemistry (Dittrich et al., 2001), but with the
difference that we make a distinction between the agents
subject to an evolutionary process and resources which they
consume for reproduction. The aim of this paper is to de-
scribe the new platform, present some new results, and dis-
cuss future investigations and possible extensions of the sys-
tem.

The Model
To explain the motivation behind the plaform Urdar, let us
consider the following thought experiment: a population of
different species of bacteria inhabit a petri dish continually
supplied with a given nutrient. The bacteria only partially
metabolise the nutrient, which is added at a certain rate, so
other bacteria might extract energy from the “left-overs” of
this successive degradation. Assume that this experiment is



carried out for a long period of time, so that species that do
well will increase their share of the total population. Since
we can imagine that different strains of bacteria have vari-
ations to their metabolism, we have that if a single species
dominates the population, a certain type of left-overs will be
abundant in the free pool of metabolites. Hence that would
lead to higher number of offsprings of a species that is spe-
cialised on extracting energy from that kind of left-overs.

Please note that the model we will present is not specific
to bacteria, but could represent any ecosystem where
resources are consecutively degraded by several species,
creating a network of interdependence. We set up such
an experiment using artificial organisms or agents that
are capable of successive degradation (transformation)
of metabolites from which they extract energy used for
self-maintenance and reproduction.

In our model we will use binary strings as the “foodstuff”,
and we will view the metabolic process as the degradation of
ordered strings into strings with a higher degree of disorder.
More specifically, let R be a pool of resources (or metabo-
lites) {ri} where each ri is a binary string of length L, as
for example ri = 00101 . . . 01110. Let A be the population
{aj} of agents (or organisms), where each agent aj is repre-
sented by a function that transforms binary strings into new
binary strings, aj : R → R. We can view this mapping as a
“metabolic digestion” of the string being transformed. More
precisely the agents inA transforms resource strings fromR
in the following way

rnew
i = aj(rold

i ).

Let now a positive function E on the binary strings in R
represent the “energy state” of such a string. If the agent
aj is able to extract energy from the resource string ri, we
have that E(rnew

i ) < E(rold
i ), and the amount of energy

extracted is given by

∆Ej = E(rold
i )− E(rnew

i ).

The evolutionary dynamics are then introduced by a
possible replication of the agent aj to a daughter agent
whenever ∆Ej > 0. Replication in the current model is
asexual and offsprings have just a single parent organism.
The offspring is mutated with probability µ, and replaces
another agent in the population, thus keeping the population
size constant. The constant population size can be thought
of as either being imposed by a space constraint, or by
the carrying capacity of an additional nutrient required for
biomass synthesis (assuming that the evolutionary dynamics
related to this trait occurs on a much slower time-scale). The
probability for a reproduction to take place is an increasing
function of ∆Ej with zero probability if ∆Ej ≤ 0. Hence a
successful type of agent, is one which is able to effectively
extract energy from the binary resource strings in R, and the

aj

ri

r'i

ΔEj

ak

r''i

ΔEk

aj

ak

P(ΔEj)

P(ΔEk)

γ

γ

γ

Figure 1: A schematic view of the model. The agents
in the model digest binary strings by applying CA-rules,
transforming r to r′. To each such metabolic step we can
associate a difference in energy ∆E (visualised with dot-
ted lines). The reproduction of each agent depends on how
much it can decrease the energy of the binary string and oc-
curs with probability P (∆E) (represented by the arrows on
the left hand side). The binary strings exist in a common
pool which they enter (and leave) at a rate γ, as shown by
the arrows on the right hand side.

content of R in turn depends on which agents constitute the
population. In order to feed the system with energy, strings
in the resource pool R are continually being replaced with
new high-energetic strings at a rate γ, representing a flow
of energy into the system. A schematic of the modelling
framework is shown in fig. 1, which illustrates how binary
strings are metabolised by the organisms and flow through
the system.

The frame-work described so far is quite general, and we
will in the following describe the particular choices we have
made in the current study. Firstly, the agents aj are chosen
to be nearest-neighbour one-dimensional elementary cellu-
lar automata (CA), one of the simplest notions of digital al-
gorithms. The reason for that particular choice in Urdar is
that such functions are well studied in the literature starting
from the work of Wolfram (1983). They are simple, but still
shows a surprisingly wide range of complexity. The second
choice we made was using an approximated Shannon En-
tropy as the energy function E, which gives an estimate of
the amount of disorder a binary string contains (Shannon,
1948), associating a low entropy (low level of disorder) with
a high “energy” state of the string, i.e. we set E = 1− s. To
motivate such a choice, one can see organismal metabolism
as degradation of ordered structures into less ordered con-
figurations. Entropy is a measure of such disorder. This



viewpoint is both common and well established:

“Thus the device by which an agent maintains station-
ary at a fairly high level of orderliness ( = fairly low
level of entropy) really consists in continually sucking
orderliness from its environment.” (Schrödinger, 1944)

One could of course make use of a more sophisticated
“artificial chemistry” by assigning higher energy, and hence
fitness, if an organism is able to transform strings into certain
patterns, instead of just increasing the entropy; but in our
effort for simplicity and a more open-ended fitness function
we have chosen the current set up.

Finally, the probability for agent aj to reproduce, as a
function of the energy it extracts from a binary string, is
given by

P (∆E) =

{
1−exp(−∆E/β)

1−exp(−β) , if ∆E > 0
0, if ∆E ≤ 0.

(1)

where β is a positive parameter indicating the level of com-
petitive pressure among the agents. When β tends to zero,
selection is weak as any ∆E > 0 gives a probability of re-
production very close to unity, while for larger β selection is
stronger as the magnitude of ∆E is more important for de-
termining the value of P (∆E) and hence the reproductive
success of the organisms.

An example of applying CA-rules to binary strings is
shown in fig. 2, where three rules, i.e. three different
species, digest a string with a low entropy to binary strings
with successively increasing entropy. This is the type of in-
teractions we can expect in the model, in particular at low
γ when the strings are replenished at a low rate. This figure
also illustrates the fact that the CA-rules in general make
small changes to the food string during digestion. In fact
there is no CA-rule which can, in a single metabolic step, in-
crease the entropy of a fairly ordered string to the maximum
attainable entropy. This is similar to individual metabolic
reactions in real organisms which generally only change the
free energy of the metabolites a small amount, while the
metabolism as a whole is responsible for the major differ-
ence in free energy between the nutrients taken up by the
organism and the waste products being excreted. This fact
also suggests that Urdar can be viewed as a model of the
early stages of life on earth when the metabolic repertoire of
organisms was much smaller and cross-feeding was possibly
more prominent.

Note that in the current set up, the mapping between the
genotype and phenotype of the agents is one-to-one, where
the genotype corresponds to the integer value representing
the rule (ranging from 0 to 255), and the phenotype simply
is the action of the rule on the strings which are metabolised.
All organisms implementing the same CA-rule are conse-
quently referred to as belonging to the same species. In
the current set up, we have chosen not to explicitly model

self-replication in order to keep things simple. In future ex-
tensions of the model both sex and self-replication can be
included.

The implementation of the model
To conclude the model description, let us sum up the main
features of the model1. The dynamics, depicted schemati-
cally in fig. 1, in the model during one update can be de-
scribed in the following way:

1. Each agent in the population picks randomly a resource
string rj from the well mixed resource pool R and trans-
form it accordingly to its CA-rule and then puts the trans-
formed string back into the resource pool.

2. The efficiency of the “metabolic process” just occurred
is evaluated by measuring the energy difference ∆E of
the string before and after the ”digestion/transformation”.
This is done by drawing a random number x uniformly
between 0 and 1, and ifP (∆E) > x the agent reproduces.

3. With probability µ the offspring will be mutated uni-
formly to another CA-rule.

4. In order to keep energy flowing into the system, after all
agents have been updated, a fraction γ of the strings are
replaced with high energy binary strings.

The replacement rate γ can be seen as a flow rate of en-
ergy into the system. If that rate is high, there will be less
interaction through cross-feeding among the agents in A, as
strings are flushed out at high rate, but if on the other hand
γ is set to zero, the whole process will slow down to a halt.
The strings introduced into the system are random binary
strings, however with a low entropy (high degree of order).
The new strings are constructed by at each position adding a
1 with probability p0 and a 0 with the complementary prob-
ability 1− p0. The Shannon entropy of such strings is given
by

E0 = p0 log2

1
p0

+ (1− p0) log2

1
1− p0

, (2)

where log2 is the logarithm with base 2, i.e. 2log2 x = x.
By setting p0 close to unity we can create strings which,
although being random, have a low entropy. In order not
to bias the resource pool to strings which are dominated by
ones, at an equal rate we add strings which have the proba-
bilities reversed, i.e. are dominated by zeros instead.

The parameters
We here briefly recapitulate the main parameters of the sys-
tem and their significance.

1An online version of the platform is available at:
http://www.math.chalmers.se/∼torbjrn/Urdar/urdar.html

http://www.math.chalmers.se/~torbjrn/Urdar/urdar.html
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Figure 2: The transformation of binary food strings by three CA-rules. Only transformations that increase the entropy are
shown and they have been truncated at a metabolic depth of four. The number of possible transformations is greater for the
three rules together than for a single isolated rule suggesting the possible advantage of cross-feeding among the species in the
model.

γ is the inflow rate of new high energetic binary resource
strings into the pool R. After each update, i.e. after all
agents have digested a resource string, the probability for
each resource string in the pool to be replaced by a new
fresh one, keeping the total number of resource strings
constant, is γ. Here we will typically set γ ∈ [0.003, 0.3].

µ is the mutation probability during reproduction, where an
agent is uniformly changed to another of the 256 CA-
rules. We will use µ = 0.01 as a default value of the
mutation rate.

β is the level of selective pressure, as it determines the
importance of ∆E in calculating the reproductive rate,
see eq. (1). The default value of in the current study is
β = 0.1.

The population size is set to NA = 1024, and the number
of binary strings in the resource pool isNR = 5NA = 5120.
The size of the binary strings is set to L = 100, and level of
order in the inflowing strings is p0 = 0.95, which gives,
through eq. (2), an initial energy of E0 = 1− s0 ≈ 0.8. The
initial condition of each simulation is a uniform distribution
of species, i.e. 1024/256 = 4 organisms of each species, and
a resource pool consisting of strings with the initial energy
E0.

Results
All ecosystem on earth are driven by energy entering the sys-
tem either in the form of sunlight or in some chemical form
such as glucose or ironsulphide. Similarly the dynamics in
Urdar are driven by the flow of food strings with a high en-
ergy into the system, and if γ is set to zero the dynamics
will eventually grind to a halt when all possible energy has

been extracted from the resource pool , i.e. no new agents
will be generated. The rate of energy supply is known to be
of great importance to real ecosystems (Waide et al., 1999),
and it is therefore of interest to analyse how the dynamics in
our system depend on the flow rate of energy γ. This rela-
tion is investigated in detail in Gerlee and Lundh (2010)
and we will here focus on ecosystem stability and species
interactions.

The most straight forward way of characterising the dy-
namics is to look at the time evolution of the species distri-
bution. This is shown in fig. 3 for two different values of the
flow rate, in (a) γ = 0.003 while in (b) γ = 0.3. The striking
difference between these two simulations implies the inter-
esting statement that the number of co-existing species in
the low flow case is considerably higher. Hence one might
say that a relative supply shortage encourages species di-
versification and cooperation.

Ecosystem stability

These plots also show that at low flow rates the species dis-
tribution does not settle in a steady state but seems to fluc-
tuate with different species dominating the ecosystem at dif-
ferent times. This shows that the dynamics of the system
does not converge to a fixed-point, but instead obeys oscil-
latory or even chaotic dynamics. If the mutation rate is set
to zero similar dynamics are observed, although with a
lower level of species diversity.

The dynamics of the system can be visualised more easily
if instead of viewing the frequency of all species in a 2-d plot
as in fig. 3, pick a reference state F0 = (f0

0 , f
0
1 , ...., f

0
255),

and plot the L1-distance from the reference state as a func-
tion of time, i.e.
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Figure 3: The time evolution of the species distribution for
(a) γ = 0.3 and (b) γ = 0.003.

∆F (t) =
255∑
i=0

|f0
i − fi(t)|, (3)

where fi(t) is the fraction of the agents belonging to
species i (i.e. performing the elementary CA-rule i) at
time t. An example of such a plot is shown in fig. 4, which
illustrates the same simulation as in fig. 3b, where the ref-
erence state was picked as the final state of the system at
t = 2 × 104. From this point of view we can clearly see
how the system exhibits long periods of stasis and seems
to jump between different states corresponding to specific
species configurations; as in so called punctuated equilib-
ria introduced in Eldregde and Gould (1972). This can
be compared to different epochs in the history of the ecosys-
tem, and is thus comparable to paleontological data, which
we will return to in the discussion. The time spent in these
states seems to vary heavily and in order to quantify this we
measured the waiting time distribution, i.e. the probability
of the species distribution remaining in the same state a time
T . The mutations present in the system, together with the
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Figure 4: The species distribution shown in fig. 3b projected
down to a one-dimensional state using (3). The dotted hori-
zontal lines indicates the bins used for calculating the wait-
ing times shown in fig. 5 below. The reference state F0

was picked as the final state of the system at t = 2× 104.

relatively small population size, introduces fluctuations into
the system, and in order to avoid these the projected time
series ∆F (t) was binned into 20 equal sized bins (as shown
in fig. 4).

From this discretised data we calculated the cumulative
probability P (x > T ) of finding the system in the same
bin for at least T time steps. This was calculated from 50
different simulations each lasting tmax = 2 × 104 times
steps for γ = 0.3, 0.03 and 0.003. The result is shown in
fig. 5, where the curves corresponding to the lower flow
rates appear approximately as straight lines in a loglog-plot.
This suggests that the waiting time scales as a power-law,
and a linear regression showed that P (T ) ∼ T−α, where
α ≈ 2.6 and 3.5 for γ = 0.03 and 0.003 respectively. On
the other hand, the curve corresponding to γ = 0.3 is closer
to a straight line in semilog-plot (see inset), and from this
we found that P (T ) ∼ e−εT , where ε ≈ 0.04. The exact
slope of the curves naturally depends on the number of bins
(a smaller bin size gives steeper curves), but the difference
between the functional forms of the curves is robust. Please
note that the waiting time for a random walk is exponential,
which gives an indication of the difference in dynamics
between the high and low flow rate.

Pair-wise species interactions
A natural question that arises is what kind of underlying dy-
namics gives rise to these transition patterns. If there existed
for a fixed flow rate a single dominant species among the
256 possible then we would expect the evolutionary dynam-
ics to converge to a species distribution and remain there.
This is clearly not the case, at least not for the lower flow



100 101 102
10 4

10 3

10 2

10 1

100

 

 
0.003
0.03
0.3

log waiting time T

lo
g 

P(
x 

> 
T)

0 20 40 60 80 100
10 3

10 2

10 1

100

T

lo
g 

P(
x 

> 
T) ! = 0.3

Figure 5: The cumulative distribution of waiting times plot-
ted in a loglog-diagram for three different values of γ. For
low flow rates the waiting times appear to scale as a power-
law, while for high flow it seems to follow an exponential
distribution as indicated in the inset where the graph fol-
lows approximately a straight line over a long period in
the semilog-diagram.

rates, which suggests that more complicated dynamics than
simply the selection for the best metaboliser occurs in the
system.

This is in fact obvious if we return to the schematic of
the model and also realise that different species have vary-
ing capacity to metabolise different strings. The fitness of
a species depends on its ability to extract energy from the
strings in the resource pool, but the composition of the re-
source pool in turn depends on what species are present in
the ecosystem. This means that the fitness of a species de-
pends on state of the entire ecosystem and will therefore
change as the system evolves.

The simplest possible way to analyse the species interac-
tions is to simulate the dynamics when only a pair of species
are present and the mutation rate is set to zero. This of
course neglects higher-order interactions, between conglom-
erates of species, which might influence the dynamics, but
at least it represents a starting point for a deeper understand-
ing of the system. We probed these species interactions by
initialising the system with a 9:1 ratio in the abundance of
a pair of species and then ran the simulation (without mu-
tations) for 1000 time steps or until only one of the species
remains. At the end of the simulation we recorded the abun-
dance of the species and stored the frequency of the initially
abundant species in a matrix C. Element cij thus holds the
equilibrium frequency of species i when the initial ratio be-
tween i : j was 1 : 9. This experiment was carried out for all
possible pairs of species in the range 90-164 of which there
are 74 × 74 = 5476, and an excerpt of the resulting matrix
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Figure 6: Excerpt of the matrix C describing the pair-wise
species interactions in the system. White and black cor-
respond to complete dominance, while any shade of grey
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is shown in fig. 6. Here white and black correspond to com-
plete dominance, while any shade in between signifies stable
co-existence between the species.

A striking feature is that co-existence seems to be a com-
mon mode of interaction. This emphasises what was dis-
cussed before, namely that the replication rate of species de-
pends on the totality of species present (including itself) in
the ecosystem. In the case of co-existing species, the in-
crease in abundance is balanced by a reduction in repro-
duction rate, a phenomenon known as negative frequency-
dependent selection (Huisman and Weissing, 1999), and
when the replication rate of both species is balanced a
steady-state is attained.

The interaction matrix in most cases satisfies cij + cji =
1, which means that the equilibrium concentration of the
species is independent of the initial condition, but there are
some interesting exceptions from this rule. Firstly we have
the anti-diagonal of the matrix where cij + cji ≈ 2, and
this is due to the underlying symmetry of the cellular au-
tomaton rules. The pairs on the anti-diagonal are in fact
rules that are inverses of each other when viewed in binary
representation. For example rule 145 = 100100012 and its
anti-diagonal partner is rule 255− 145 = 110 = 011011102.
When these rules are applied to a generic binary string the
output strings they yield are inverses of each other, which by
symmetry of the entropy function imply that they have the
same entropy. This means that the two rules, when compet-
ing in isolation, are neutral and the only evolutionary force
acting on the system is random drift. The consequence of
this is that the initially dominant rule is more likely to win
and therefore we observe cij ≈ cji ≈ 1 (or visually a white



line) on the anti-diagonal. Note that this does not imply that
the two species are identical in their competition with other
rules, and this has some important consequences for the dy-
namics of the model.

Secondly we have the cases where 1 < cij + cji < 2,
which indicates that the initial condition in fact influences
the equilibrium concentration. Upon further inspection
we found that the dynamics of these pair-wise interactions
contain two stable fixed-points, as opposed to one which
is the case in all other interactions. Typically the only
fixed-point lies either, in the case of co-existence, in the
interior of the phase space at (i, j) = (c, 1 − c), for the
equilibrium concentration c, which satisfies 0 < c < 1, or
in the case of dominance at (0,1). In the above mentioned
cases both an interior and a boundary fixed-point are
present, and this implies that the dynamics can converge
either to co-existence or dominance depending on the initial
frequencies of the species.

Rock-Paper-Scissors
The presence of co-existence in the pair-wise experiments
gives a reasonable explanation of the large degree of co-
existence in the full simulation (cf. fig. 3), but it does not
explain why the species configuration never settles into a
steady state. The lack of stability must be an inherent in the
species configuration itself, and one possible explanation is
that the property of being able to invade another species is
not transitive. By this we mean that if ai invades aj , and aj
invades ak, then it is not necessarily so that ai invades ak.
If on the contrary ak invades ai we have what is called an
intransitive cycle, similar to the Rock-Paper-Scissors game.

In order to investigate this possibility we searched the
matrix C for species triplets which satisfy the above con-
dition, and found 59 unique triplets (containing 44 dif-
ferent species) which satisfied the condition of intran-
sitivity. A suitable way to illustrate this is with a net-
work where the species are represented as nodes and a
directed link connects node A and B if species A can in-
vade species B. This is shown in fig. 7, and in this fig-
ure the intransitive relations appear as directed triangles
of which there are plenty. For clarity we have only in-
cluded species involved in at least one intransitive inter-
action. The network consists of 4 connected components
suggesting a certain degree of modularity, which could
allow for independent competition occurring simultane-
ously in the well-stirred environment. Further analysis
showed that all except two triplets exhibited the double
fixed-point property discussed above, and thus exhibit a
weaker form of intransitivity. The two fully intransitive
triplets where given by (120,145,158) and (120,131,158)
and are highlighted in fig. 7. Mathematical analysis has
suggested that RPS-dynamics can give rise to oscillatory
behaviour due to the cyclic replacement of the species
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Figure 7: Network illustrating the intransitive species inter-
actions. An edge points from node a to b if species a wins
over b in a pair-wise invasion experiment, i.e. Cab > 0.75.
Intransitive triples are seen as cyclic triangles in the network.
The species involved in fully intransitive competition (not
involving multiple fixed-points) are highlighted.

(Laird and Schamp, 2009). We investigated this possi-
bility by performing experiments where the 3 members
of an intransitive cycle were present in equal proportion
in the initial population and the system was run without
any mutations. We did however now observe oscillatory
behaviour, but instead the dynamics converged on either
a pair of species co-existing (and one species going ex-
tinct) or one single species dominating the system. This
discrepancy from the analytical result is most likely due
to a difference in the rates of replacement of the species,
which in the analytical treatment is set to be equal for all
interactions, and has also been observed in a bacterial
system exhibiting RPS-dynamics (Kerr et al., 2002).

Discussion
In this paper we have presented an Alife-platform Urdar,
based on the mechanism of cross-feeding, which is observed
in many microbial ecologies. The components of the plat-
form are fairly simple consisting of elementary CA rules that
transform binary strings. Similar systems have been anal-
ysed by for example Dittrich et al. (2001) and Ikegami
and Hashimoto (1995). The former considered a ma-
trix multiplication chemistry, where binary strings could
act both as agents and substrate, and in which stable
autocatalytic cycles emerged. In the latter a different
formalism was applied, where agents defined as Turing
Machines acted on tapes represented as binary strings.
What these systems did not include was a notion of en-
ergy necessary for replication, which is a central feature



in Urdar.
Energy is obtained by increasing the entropy (disorder)

of these strings. Despite of its simplicity the system exhibits
surprising features such as a high degree of species diversity,
non-stationary dynamics, and periods of stasis with broad
distribution of waiting times.

The latter have also been observed in other evolutionary
models such as Bak and Sneppen (1993) and Sole and Man-
rubia (1996), and relates to the punctuated equilibrium hy-
pothesis put forward by Eldregde and Gould (1972). In the
original conception of the hypothesis it was believed that
geographic separation was a necessary condition. Our re-
sults show that long periods of stasis of stasis can appear in
cross-feeding ecosystem that lacks any spatial component,
and where the dynamics are driven by the mutual depen-
dence between the species.

The above mentioned features are all driven by the cross-
feeding interactions between the species and are more pro-
nounced at low flow rates of high energy strings into the
system. One way to study these interactions is to perform
pair-wise invasion experiments captured in the matrixC (see
fig. 6), which reveal that co-existence is quite common in
the system. Studying this matrix we also found intransitive
relations between three different species similar to the Rock-
Paper-Scissors game. This type of interactions are com-
monly found in real ecosystems, and are know to promote
biodiversity (Kerr et al., 2002; Laird and Schamp, 2009),
suggesting a source of the observed non-stationarity in our
system.

However, preliminary results indicate that removing the
44 species involved in intransitive relations from the ecosys-
tem (and prohibiting mutations to them) does not reduce
species diversity nor increases ecosystem stability. This sug-
gest that higher-order interactions not captured by the pair-
wise invasion experiments are responsible for the inherent
instability of Urdar.

Future work
The experiments presented in this article only scratch the
surface of this surprisingly complex ecosystem, and whole
host of interesting questions remain to study. One obvious
question that remains unanswered regards the underlying
mechanism driving the above mentioned non-stationarity.
One should also investigate the dynamics from a different
point of view by making use of the metabolic history of all
food strings (i.e. the list of species each string has been
metabolised by). This makes it possible to map out which
species engage in cross-feeding, and from this information
generate a network of ecological interactions. Another pos-
sibility is to examine to which extent the process of evolution
maximises productivity from an ecosystem point of view,
i.e. how well does the evolved species composition do com-
pared to an optimal species composition which maximises
productivity (for a given flow rate). Further, the model could

also be extended to include features present in real biologi-
cal systems, such as a distinction between the genotype and
phenotype of the organisms and a spatial dimension which
would impact the nature of the species interactions.
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