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Cross-feeding interactions are a common feature of many microbial systems, such as colonies of Escherichia coli grown on a

single limiting resource, and microbial consortia cooperatively degrading complex compounds. We have studied this phenomenon

from an abstract point of view by considering artificial organisms that metabolize binary strings from a shared environment. The

organisms are represented as simple cellular automaton rules and the analog of energy in the system is an approximation of

the Shannon entropy of the binary strings. Only organisms that increase the entropy of the transformed strings are allowed to

replicate. This system exhibits a large degree of species diversity, which increases when the flow of binary strings into the system

is reduced. Investigating the relation between ecosystem productivity and diversity we find that diversity is negatively correlated

with biomass production and energy uptake, while it correlates positively with energy-uptake efficiency. By performing invasion

experiments, we show that the source of diversity is negative frequency-dependent selection acting among the different species,

and that some of these interactions are intransitive, another mechanism known to promote diversity.
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The origin of biodiversity has been a long standing problem in

ecology (Hutchinson 1959), and the evolution and maintenance

of diversity was long difficult to account for, especially in the

light of the proposed competitive exclusion principle that states

that several species competing for the same resources cannot co-

exist. However recent advances have revealed several ways in

which diversity can be maintained, for example it can be pro-

moted by ecological mechanisms, such as competition (Tilman

1982; Czaran et al. 2002), mutualism (Bronstein 1994), and niche

partitioning (Schluter 2000), and also by genetic mechanisms

such as fitness trade-offs (Rainey et al. 2000) and adaptive decay

(Ostrowski et al. 2007).

Related to these issues is the question of how species di-

versity influences ecosystem productivity (Waide et al. 1999).

Several experiments and theoretical models have been devised

to resolve this issue, but many of the results have been incon-

clusive and even contradictory. Some models have predicted that

diversity should peak at intermediate productivity (Kassen et al.

2000), and that this can occur either by spatial niche formation

or frequency-dependent selection (Chow et al. 2004), whereas in

other experiments diversity was observed to increase as a function

of the productivity (Travisano and Rainey 2000). Yet another hy-

pothesis states that species diversity might increase at low resource

levels (Valentine 1971) and there is some support for this sugges-

tion in aquatic ecosystems (Hessler and Sanders 1967; Fryer and

Iles 1969).

These differing observations most likely follow from the

fact that the relation between biodiversity and productivity is
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dependent on the system under consideration and emerges as a

results of the system-specific species interactions in the ecosys-

tem. The relation also seems to depend on which scale it is studied;

at continental scales, the general trend is a positive correlation,

whereas the unimodal patterns seems to dominate studies per-

formed on smaller scale (Waide et al. 1999). Another source

of discrepancy stems from the definition of ecosystem produc-

tivity. Some researchers have taken it to be the rate of energy

flow through the system (Chow et al. 2004), whereas others have

equated it with the rate of primary production in the system (or

some suitable proxy such as rainfall) (Odum 1959) or the amount

of nutrients available for the organisms (Kassen et al. 2000).

One of the simplest ecological system in which diversity

emerges, and is stably maintained, is in populations of Escherichia

coli growing in a homogeneous environment limited by a single

resource, usually glucose. The diversity is facilitated by cross-

feeding (syntrophy), where one strain partially degrades the lim-

iting resource into a secondary metabolite that is then used by

a second strain. This phenomenon was first observed by Helling

et al. (1987) and has since been reported to occur in other sys-

tems such as methanogenic environments (Stams 1994), bacteria

engaging in nitrification (Costa et al. 2006), and degradation of

xenobiotic compounds (Dejonghe et al. 2003; Katsuyama et al.

2009). In the case of E. coli grown on glucose, the second strain

is clearly subject to frequency-dependent selection (as it would

starve in the absence of the primary degrader), however it has

also been hypothesized that the first strain is dependent on the

second one, as the secondary metabolite could be toxic at high

concentrations (Pelz et al. 1999). This raises the question why

cross-feeding emerges in the first place, and why a single strain

that completely degrades the nutrient is not evolutionary superior.

This question has been investigated by Pfeiffer and

Bonhoeffer (2004) using a theoretical model, and their results

showed that cross-feeding naturally emerges under the assump-

tion that ATP production is maximized whereas the total con-

centrations of enzymes and intermediates are minimized. Further

they showed that the evolution of cross-feeding depends on the

dilution rate in the chemostat, and that a stable polymorphism is

more likely to emerge at low dilution rates.

A different approach was taken by Doebeli (2002) who in-

vestigated the emergence of cross-feeding in the framework of

adaptive dynamics. In this case, the conditions for evolutionary

branching and the appearance of cross-feeding are that there is

a trade-off between uptake efficiency of the primary and sec-

ondary metabolites, and that this trade-off function has a positive

curvature. The model also makes the correct prediction that cross-

feeding is less likely to occur in serial batch culture, in which the

primary resource is not replenished (Rozen and Lenski 2000).

This highlights the necessity of the secondary metabolite being

present for an extended period of time for cross-feeding to evolve.

In this article, we present a more general model of the evo-

lution of cross-feeding, which is not aimed at modeling a specific

biological system, but rather extracts and models the general prin-

ciples governing systems in which cross-feeding might emerge.

This type of modeling approach is typically labeled as “artificial

life” (Adami 1998), an interdisciplinary field that through simu-

lation and emulation of living systems tries to extract the general

principles governing living systems. A special class of artificial

life systems, which have been used extensively in biological re-

search (Adami 2006), are those which use self-replicating code as

a means of in silico imitating the in vivo evolutionary process by

considering an evolving population of digital organisms, which

replicate and perform simple computational tasks. The pioneer-

ing system of this kind was Tierra, developed by T. Ray (1992),

and today the most widely used platform is Avida, developed by

researchers at Caltech (Wilke and Adami 2002).

The Avida system does not try to mimic the precise details

of living organisms and evolution, but has nevertheless been very

useful for understanding various aspects of biology and evolution,

such as evolution of genetic architecture (Gerlee and Lundh 2008)

and metabolic pathways (Gerlee et al. 2009), genetic interactions

(Lenski et al. 1999), and the evolutionary origin of complex fea-

tures (Lenski et al. 2003). One study in particular dealt with the

relation between productivity and diversity in a microcosm of

evolving digital organism (Chow et al. 2004), and concluded that

diversity peaks at intermediate productivity and that this occurs

due to frequency-dependent selection promoted by the influx of

mixed resources into the system.

A general drawback of the above-mentioned system is that

the fitness function, which influences the replication rate of the

digital organisms, consists of a list of computational tasks, which

is a priori decided. Further, the interactions between the organ-

isms are weak and only by explicitly implementing flow between

computational resources do the interactions resemble those ob-

served in real ecosystems (Yedid et al. 2009). To ameliorate this

situation, we have devised a novel Artificial Life system, named

Urdar (Urðarbrunnr is one of the three wells that lie beneath the

world tree Yggdrasil in Norse mythology. The name means well

of fate.) in which the fitness of an organisms is defined in a more

general sense and where interactions between organisms are at

the core of the model. The fitness of the organisms in this model

is directly related to their ability to extract energy from a common

environment, and is more closely connected to the fundamental

concept of energy that drives many ecological interactions. On

the other hand, this system does not take self-replication directly

into account and can therefore be seen as a complement to for ex-

ample Avida that explicitly handles self-replication of the digital

organisms.

The Urdar platform is more of an analogy than a classical

model, because there are no existing group of organisms being
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realistically modeled, but on the other hand—it realizes an evo-

lutionary process similar to the one occurring in nature. What

can then be learned from such a system? We hope that this plat-

form will be like a sand box, where concrete experiments can

be carried out, investigating the evolution and dynamics of cross-

feeding populations and also for analyzing more general questions

about evolution. In this first investigation of Urdar, we have fo-

cused on how the resource supply of the ecosystem influences

species diversity and productivity. The main conclusion is that

low resource levels tend to increase the diversity, by implicitly

increasing the variety of the food supply and thus opening up

new niches in the environment. Although the efficiency of the

ecosystem at harvesting energy increases at low resource levels,

the overall productivity decreases, which demonstrates that effi-

ciency and productivity are two distinct features of an ecosystem.

Further we show, by performing invasion experiments, that the di-

versity in the system is caused by negative frequency-dependent

selection and intransitive competition.

The Model
To motivate the suggested platform Urdar, let us imagine a situa-

tion in which a population of different strains of bacteria inhabit a

petri dish continually supplied with a given nutrient. The bacteria

only partially metabolize the nutrient, which is added at a certain

rate, so other bacteria might extract energy from the “leftovers”

of this successive degradation. Assume that this experiment is

carried out for a long period of time, so that strains that do well

will increase their share of the total population. Because we can

imagine that different strains of bacteria have variations to their

metabolism, we have that if a single species dominates the popu-

lation, a certain type of leftovers will be abundant in the free pool

of metabolites. Hence that would lead to higher number of off-

springs of a species that is specialized on extracting energy from

that kind of leftovers. Please note that the model we will present is

not specific to bacteria, but could represent any ecosystem where

resources are consecutively degraded by several species, creating

a network of interdependence. The general structure of these in-

teractions are the main goal of our study, and how they relate to

ecosystem properties such as productivity.

We set up such an experiment using artificial organisms or

agents that are capable of successive degradation (transforma-

tion) of metabolites from which they extract energy used for self-

maintenance and reproduction. More specifically, let R be a pool

of resources (or metabolites) {r i} where each r i is a binary string

of length L, as for example ri = 00101, . . . , 01110. Let A be the

population {aj} of agents (or organisms), where each agent aj

is represented by a function that transforms binary strings into

new binary strings, aj : R → R. We can view this mapping as a

“metabolic digestion” of the string being transformed. More pre-

cisely the agents in A transforms resource strings from R in the

following way:

rnew
i = a j

(
rold

i

)
.

Let now a positive function E on the binary strings in R

represent the “energy state” of such a string. If the agent aj is

able to extract energy from the resource string ri, we have that

E(rnew
i ) < E(rold

i ), and the amount of energy extracted is given by

�E j = E(rold
i ) − E

(
rnew

i

)
.

The evolutionary dynamics are then introduced by a possible

replication of the agent aj to a daughter agent whenever �Ej > 0.

Replication in the current model is asexual and offsprings have just

a single parent organism. The offspring is mutated with probability

μ, and replaces another agent in the population, thus keeping

the population size constant. The constant population size can be

thought of as either being imposed by a space constraint, or by the

carrying capacity of an additional nutrient required for biomass

synthesis (assuming that the evolutionary dynamics related to

this trait occurs on a much slower timescale). The probability

for a reproduction to take place is an increasing function of �Ej

with zero probability if �Ej ≤ 0. Hence a successful type of

agent, is one which is able to effectively extract energy from the

binary resource strings in R, and the content of R in turn depends

on which agents constitute the population. To feed the system

with energy, strings in the resource pool R are continually being

replaced with new high-energetic strings at a rate γ, representing

a flow of energy into the system. A schematic of the modeling

framework is shown in Figure 1, which illustrates how binary

strings are metabolized by the organisms and flow through the

system.

The framework described so far is quite general, and we will

in the following describe the particular choices we have made in

the current study. First, the agents aj are chosen to be elementary

cellular automata (CA), one of the simplest notions of digital algo-

rithms (see Appendix A and Fig. A1 for an example). The reason

for that particular choice in Urdar is that such functions are well

studied in the literature starting from the work of Wolfram (1983).

They are simple, but when applied in a sequence show a surpris-

ingly wide range of complexity. The second choice we made was

using an approximated Shannon Entropy as the energy function

E, which gives an estimate of the amount of disorder a binary

string contains (see Appendix B), associating a low entropy (low

level of disorder) with a high “energy” state of the string, that is,

we set E = 1 − s. To motivate such a choice, one can see or-

ganismal metabolism as extraction of energy (usually in the form

of ATP molecules) through the successive degradation of chem-

ical compounds, but one other fundamental feature of metabolic
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Figure 1. A schematic view of the model. The agents a in the

model digest binary strings r by applying CA-rules, transforming

r to r′. To each such metabolic step, we can associate a difference

in energy �E (visualized with dotted lines). The reproduction of

each agent depends on how much it can decrease the energy of

the binary string and occurs with probability P (�E ) (represented

by the arrows on the left-hand side). The binary strings exist in a

common pool which they enter (and leave) at a rate γ, as shown

by the arrows on the right-hand side.

processes is that organisms maintain their degree of internal or-

der by increasing the disorder (entropy) of the compounds being

metabolized; or in the words of White et al. (1973):

“Thus the order of the foodstuffs is altered through oxidation,
to maintain the high degree of order of the cell. The sum of
such processes in the organism may be presumed to comprise
a major fraction of the basal metabolic rate. If the supply of
food or oxygen ceases, the tendency toward equilibrium is not
counterbalanced, and the expected equilibria attained.”

This viewpoint is both common and well established.

“Thus the device by which an agent maintains stationary at a
fairly high level of orderliness (=fairly low level of entropy)
really consists in continually sucking orderliness from its en-
vironment.” (Schrödinger 1944)

One could of course make use of a more sophisticated “arti-

ficial chemistry” by assigning higher energy, and hence fitness, to

an organism that is able to transform strings into certain patterns,

instead of just increasing the entropy; but in our effort for sim-

plicity and a more open-ended fitness function, we have chosen

the current setup.

The probability for agent aj to reproduce, as a function of the

energy it extracts from a binary string, is set to

P(�E) =

⎧⎪⎨
⎪⎩

1 − exp(−�E/β)

1 − exp(−β)
, if �E > 0

0, if �E ≤ 0,

(1)

where β is a positive parameter indicating the level of competitive

pressure among the agents. In the limit of β → 0 selection is weak

as any �E > 0 gives a probability of reproduction very close to

unity, whereas for larger β selection is stronger as the magnitude

of �E is more important for determining the value of P(�E) and

hence the reproductive success of the organisms.

An example of applying CA-rules to binary strings is shown

in Figure 2, where three rules are allowed to digest a string with

a low entropy to binary strings with successively increasing en-

tropy. This is the type of interactions we can expect in the model,

in particular at low γ when the strings are replenished at a low rate.

This figure also illustrates the fact that the CA-rules in general

make small changes to the food string during digestion. In fact

there is no CA-rule that can, in a single metabolic step, increase

the entropy of a fairly ordered string to the maximum attain-

able entropy. This is similar to individual metabolic reactions in
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Figure 2. The transformation of binary food strings by three CA-rules. Only transformations that increase the entropy are shown and

they have been truncated at a metabolic depth of four. The number of possible transformations is greater for the three rules together

than for a single isolated rule suggesting the possible advantage of cross-feeding among the species in the model.
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real organisms that generally only change the free energy of the

metabolites a small amount, whereas the metabolism as a whole

is responsible for the major difference in free energy between the

nutrients taken up by the organism and the waste products being

excreted. This fact also suggests that Urdar can be viewed as

a model of the early stages of life on earth when the metabolic

repertoire of organisms was much smaller and cross-feeding was

possibly more prominent.

Note that in the current setup, the mapping between the geno-

type and phenotype of the agents is one-to-one, where the geno-

type corresponds to the integer value representing the rule (rang-

ing from 0 to 255), and the phenotype simply is the action of the

rule on the strings that are metabolized. All organisms implement-

ing the same CA-rule are consequently referred to as belonging to

the same species. Furthermore, there is no speciation occurring in

the model because all the 256 different species already exist—it is

just their frequencies that vary. In the current setup, we have cho-

sen not to explicitly model self-replication, to keep things simple.

In future extensions of the model both sex and self-replication can

be included. However, the first planned amendment is to introduce

a genome to add a separation between genotype and phenotype,

which will introduce a more realistic fitness landscape with for

example frequent neutral mutations.

IMPLEMENTATION

To conclude the model description, (an online version of the

platform is available at: http://www.math.chalmers.se/∼torbjrn/

Urdar/urdar.html) let us sum up its main features. The dynamics,

depicted schematically in Figure 1, during one update can be de-

scribed in the following way: (1) Each agent in the population

picks randomly a resource string r j from the resource pool R and

transform it accordingly to its CA-rule and then puts the trans-

formed string back into the resource pool; (2) The efficiency of

the “metabolic process” just occurred is evaluated by measuring

the energy difference �E of the string before and after the “diges-

tion/transformation.” This is done by drawing a random number

x uniformly between 0 and 1, and if P(�E) > x the agent repro-

duces, replacing a randomly picked agent with a copy of itself;

(3) With probability μ the offspring will be mutated uniformly to

another CA-rule; and (4) To keep energy flowing into the system,

after all agents have been updated, a fraction γ of the strings is

replaced with high energy binary strings.

The replacement rate γ can be seen as a flow rate of energy

into the system. If that rate is high, there will be less interac-

tion through cross-feeding among the agents in A, as strings are

flushed out at a high rate, but if, on the other hand, γ is set to zero,

the whole process will slow down to a halt. The strings introduced

into the system are random binary strings, however with a low en-

tropy (high degree of order). The new strings are constructed by,

at each position, adding a 1 with probability p0 and a 0 with the

complementary probability 1 − p0. The Shannon entropy of such

strings is given by

s0 = p0 log2
1

p0
+ (1 − p0) log2

1

1 − p0
, (2)

where log2 is the logarithm with base 2, that is, 2log2 x = x . By

setting p0 close to unity, we can create strings that, although being

random, have a low entropy. In order not to bias the resource pool

with strings dominated by ones, at an equal rate we add strings

that have the probabilities reversed, that is, are dominated by zeros

instead. To ensure that the wide variety of strings flowing into the

system does not bias the results, we also performed simulations

in which a single fixed string with approximately the same s0

was supplied as energy source, and these simulations showed

qualitatively the same behavior, in particular a sustained species

diversity. We also simulated the system with an inflow of strings

based on a 01 and 011-patterns, with random bits flipped, and the

results again showed similar dynamics and ecosystem properties

to the case examined in this article.

THE PARAMETERS

One of the goals of this study is to monitor how the whole system

behaves with respect to the various parameters introduced. For the

sake of convenience for the reader, let us list the main parameters

in the model.

γ is the inflow rate of new high energetic binary resource

strings into the pool R. After each update, that is, after all

agents have digested a resource string, the probability for

each resource string in the pool to be replaced by a new fresh

one, keeping the total number of resource strings constant,

is γ. Here, we will typically set γ ∈ [0.003, 0.3].

μ is the mutation probability in the reproduction, where an

agent is uniformly changed to another of the 256 CA-rules.

We will use μ = 0.01 as a default value of the mutation

rate.

β is the level of selective pressure, as it determines the im-

portance of �E in calculating the reproductive rate, see

equation (1). The default value of in the current study is β =
0.1, giving an intermediate selection pressure.

The population size is set to NA = 1024, and the number of

binary strings in the resource pool is NR = 5NA = 5120. The size

of the binary strings is set to L = 100, and level of order in the

inflowing strings is p0 = 0.95, which gives, through equation (2),

an initial energy of E0 = 1 − s0 ≈ 0.8. The initial condition

of each simulation is a uniform distribution of species, that is,

1024/256 = 4 organisms of each species, and a resource pool

consisting of strings with the initial energy E0.

EVOLUTION 2010 5



P. GERLEE AND T. LUNDH

Results
The dynamics in Urdar are driven by the addition of new high-

energy strings to the system. Without this flow, no organismal

divisions can occur and the dynamics are frozen. The parameter

γ, which controls the flow rate, thus corresponds to the rate of

energy flow into the ecosystem. To investigate how the artificial

ecology behaves in different resource regimes, we have therefore

systematically varied γ over 2 orders of magnitude and measured

several properties related to diversity, productivity, and species

interactions.

SPECIES DIVERSITY

Figure 3 shows the species distribution as a function of the num-

ber of time steps for (A) high flow rate (γ = 0.3) and (B) low flow

rate (γ = 0.003), in two typical simulations. These plots reveal

a qualitative difference in the dynamics at different flow rates,

where the species distribution in the high flow regime is domi-

nated by a single species, whereas at low flow rates the species

diversity is larger. This difference can be quantified by looking at

the Shannon index of the species distributions, defined as

H (t) =
255∑
i=0

fi (t) ln
1

fi (t)
,

where fi(t) is the fraction of species i at time t in the population.

The Shannon index of the two simulations above are shown in

Figure 3C and D. In both cases, the Shannon index starts at H (0) =
ln 256 ≈ 5.5, as all species are equally abundant in the beginning

of the simulation. Rapidly however the diversity drops due to

Figure 3. A time evolution of the species distribution in the ecosystem for (A) γ = 0.3 and (B) γ = 0.003. The two lower panels (C) and

(D) show the time evolution of the Shannon diversity index for the simulations in (A) and (B), respectively.
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Figure 4. The Shannon diversity index of the species distribution

as a function of the flow rate γ. Each datapoint was averaged

over 20 simulations and the error bars represent one standard

deviation.

selection among the species, and fluctuates around a mean value

of 0.27 in the high flow case and 1.65 in the low flow regime,

showing that the species diversity is significantly influenced by

the flow rate (one-tailed binomial-test N = 100; P < 10−31). In

the low flow case, the system never settles in a steady state with

regard to the species distribution, but it seems rather as the species

are continually being replaced, a feature we will analyze in detail

in the section on species interactions. On the other hand, in the

high flow case the fluctuations in the Shannon index are due to

mutations that spawn new species (in the available range 0–255),

which are unable to coexist with, or outcompete the dominant

species 92.

These results indicate that the diversity increases as the re-

source level in the system drops, and this trend was investigated

systematically by measuring the time average of the Shannon in-

dex (excluding the first 20 time steps) for several values of γ in

the range 0.003–0.3. The results are shown in Figure 4 and reveals

that the diversity is a decreasing function of the flow and exhibits

an approximately linear decrease with the flow rate γ, except for

a saturation for high values of γ. The diversity in the system is

also maintained, although at a slightly lower value, even if the

mutation rate is set to zero during a simulation (data not shown).

This shows that at low flow rates the artificial ecosystem will

tend to contain a higher number of species (at appreciable levels).

This can partly be explained by the fact that at lower flow rates

each food string stays in the system for a longer period of time;

at γ = 0.3 the average number of successful metabolic reactions

each strings has been through is approximately 1, whereas for

γ = 0.003 it is approximately 6. This is in contrast with the

average number of updates a string spends in the resource pool,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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 = 0.3
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#
 s

tr
in

g
s
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Figure 5. A histogram of the food string energy sampled at three

different flow rates. E 0 corresponds to the mean energy of the

inflowing strings.

which is given by 1/γ ≈ 3 and 300, considerably larger than

the corresponding depth. The increase in metabolic depth leads

to a larger diversity among the resources at lower flow rates, as

illustrated in Figure 5, a histogram of the food string energy for

three different flow rates. At high flow (γ = 0.3), the energy

distribution is centered close to E0 ≈ 0.2, the initial energy of the

strings, whereas for lower flow rates the distribution is skewed

toward lower energies and is less peaked.

The organisms in the system interact with each other through

the reuse of food strings. These interactions will be analyzed more

closely in the section on species interactions, but first we will turn

to the productivity in the ecosystem and investigate how it relates

to the flow of energy in the system.

ECOSYSTEM PRODUCTIVITY

The productivity of an ecosystem can be defined in several ways

and we will in this section investigate how the different mea-

sures apply to our artificial ecology. The most common measure

is the rate of primary production by autotrophs usually measured

in [g yr−1 m−2] (Waide et al. 1999). In our system, the amount

of biomass (the number of organisms) is constant, but the rate

of production can be compared to the reproduction rate ρ, de-

fined as the number of divisions/update. Another way to look at

productivity is to measure how much of the energy available to

the ecosystem (sun light, chemical energy etc.) is being trans-

formed into biomass. The equivalent in the artificial ecology is

the difference in energy between the strings flowing into the sys-

tem and the strings being removed, as this reflects the amount of

energy that has been “transformed” into biomass. More precisely,
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we calculate the total difference in energy between the strings

being removed from the system and the strings being introduced

in each update,

E =
∑

k

(
E0 − E

(
rout

k

))
, (3)

where the sum runs over all strings being replaced (on average

γNR number of strings), and E0 ≈ 0.8 is the energy of the input

strings. This measure, in the units of bits/update, we term the

rate of energy uptake in the ecosystem, because it, in our analogy,

corresponds to the amount of energy extracted per unit time by the

population from its environment. The efficiency of this process is

defined as

η = E
γNR E0

, (4)

where γNR is the average number of strings being replaced each

update. Because the energy of a completely degraded string equals

zero, the maximum energy difference for each replaced string

equals E0. Hence, the maximum value of E is γNR E0. From

this follows that the efficiency lies between 0 and 1, and is a

dimensionless quantity.

The influence of the flow rate γ on these measures related

to productivity was analyzed for γ in the range 0.003 to 0.3 and

the results can be seen in Figure 6. Figure 6A shows that the

reproduction rate ρ increases linearly with log γ, meaning that

increasing the flow with a factor 100 only increases the repro-

duction rate by a factor 4. The energy uptake rate E also shows

a similar dependence on γ. When γ is increased from 0.003 to

0.3, E increases from 5 to 35 bits/update. On the other hand, the

efficiency η exhibits an inverse relationship with γ compared to

the other measures, instead decreasing linearly with log γ.

The similar behavior in reproduction rate and energy up-

take rate is to be expected, as what drives organismal division

is precisely decrease in string energy. For each successful string

manipulation, the probability of division is given by equation (1),

which is an increasing function of the energy change. This means

that we are lead to the conclusion that productivity increases as a

function of the flow. These facts taken together with the observa-

tion that the diversity is a decreasing function of the flow (H ≈
−1.4γ + 0.3 for 0.02 < γ < 0.18, see Fig. 4) means that the cor-

relation between productivity and diversity in Urdar is negative.

The energy-uptake efficiency on the other hand decreases with the

flow rate. Although the flow of resources is increased by a factor

100, the reproduction rate is only increased by a factor 4, which

shows that the ecosystem as a whole uses the common resource

25 times more efficiently in the low-flow regime.

The flow of energy into the system does not only depend on

the flow rate, but also on the energy E0 of the strings flowing into

the system. The total energy flux is in fact given by the product

Figure 6. Three different measures related to productivity in the

system. (A) the reproduction rate ρ, that is, the number of divisions

per update, which corresponds to biomass growth, (B) The energy

uptake rate E, that is, the energy difference between outflow and

inflow, and (C) the efficiency of the energy uptake η.
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of γ and the amount of available energy in each string, which on

average, is E0. A systematic study of how the diversity and the

ecosystem properties previously introduced depend on the total

energy flux showed that the diversity, productivity, and energy

uptake are essentially constant along curves of constant energy

flux. This means that if we vary the flow rate γ we can compensate

for this by setting the initial energy equal to E0 = K/γ for some

constant K. The ecosystem efficiency, on the other hand, shows a

maximum at low flow rates and high available energy.

The choice of E0 also affects the amount of energy ex-

tractable from each string, and peaks at E0 ≈ 0.5. This is due

to the fact that a certain degree of disorder facilitates the func-

tioning of the CA-rules in increasing the entropy (i.e., extracting

energy) of the strings and is therefore specific to our choice of

CA-rules as organisms. This effect is similar for all species, im-

plying that for a given E0 the species are affected in a similar

way, which means that the influence on the ecosystem dynamics

is small (except in an altered reproduction rate for all species).

It is also worth mentioning that because we have used disor-

der as a proxy for energy we have a conservation of the amount of

order/disorder in the system, in analogy with energy conservation

in real-world systems. This occurs because at the same time as a

string transformation increases the entropy of the resource pool,

the subsequent organismal reproduction reduces the entropy of

the agent population. In a sense, we can view this as a transfer of

order from the resource pool to the population. This hypothesis

can most easily be tested by, during a simulation, dumping the

entire resource pool and agent population into separate data files,

and measure the rate of compression that can be achieved with

the standard zip algorithm (Ornstein and Weiss 1993). What this

shows is that over a range of flow rates the compression ratio

(compressed/original size) of the resource pool CR and of the

population of agents CA are approximately equal, CR ≈ CA (data

not shown). Now, a low value of CR corresponds to a low entropy

resource pool from which large amounts of order can be extracted,

and we therefore define the amount of available order as �R =
1 − CR. We can now describe the conservation of order in the

entire system as �R + CA ≈ 1. Or in other words, the amount of

available order present in the resource pool plus the amount of

disorder in the population is approximately constant.

SPECIES INTERACTIONS

As we have seen so far both the species composition and the

ecosystem productivity are affected by the flow of energy into

the system. What also has become clear is that species interac-

tions play an important part in the dynamics of the system. The

species composition that emerges at low flow rates in the ecosys-

tem is more efficient at extracting energy from its environment

suggesting a high degree of cooperativity in interactions between

the species.

One of the advantages of a artificial ecology is that we can

with ease manipulate the initial conditions and parameters of the

model. We have made use of this flexibility to analyze species

interactions with invasion experiments (Rainey and Travisano

1998). These experiments probe the reproduction rate of a species

in the presence of only one other competing species, and can re-

veal if the two species can coexist or if one drives the other to

extinction. The initial condition for each experiment was a 9:1

ratio in abundance between the two species (total population size

was as before NA = 1024) and the mutation rate was set to μ = 0

throughout the entire experiment. An example of such a simula-

tion can be seen in Figure 7, which shows the species abundance

as a function of time when species 129 is paired of against species

145. The insets show the pattern the respective rules give rise to

when iteratively applied to a string with an isolated zero and the

rest ones (i.e., an illustration of the phenotypes of the species).

These two species can clearly coexist, and do so in a 1:4 ratio

(as opposed to the 9:1 initial condition). This balance is main-

tained by negative frequency-dependent selection, where the two

species are better at extracting energy from strings that have pre-

viously been metabolized by the other species than the species

itself.

These pairwise competition experiments were systematically

performed for all 256 × 256 = 65,536 possible pairs (under

flow rate γ = 0.03) and each simulation lasted 2000 updates

or until only one species remained, and the abundance of both

species was recorded. From these data, we can define a matrix C,

where entry cij = the frequency of species i when the initial ratio

between i:j was 9:1. An excerpt of this matrix (row/column 90–

166) is visualized in Figure 8, where black and white correspond

to complete extinction of species i and j, respectively, and any

shade in between signifies coexistence. Note that on the diagonal

we have that cii = 1. This figure reveals that coexistence is a

rather frequent feature of the interactions between the species in

the model, and throws some light on the previously described high

degree of diversity observed in the system. The species that can

coexists are precisely those who are better at extracting energy

from the strings that previously have been metabolized by the

other species, than they are at recycling their own metabolites.

The relative efficiency of these two processes then determines the

equilibrium frequency between the species.

The interaction matrix in most cases satisfies cij + cji = 1,

which means that the equilibrium concentration of the species is

independent of the initial condition, but there are some interest-

ing exceptions from this rule. First we have the anti-diagonal of

the matrix where cij + cji ≈ 2, and this is due to the underlying

symmetry of the cellular automaton rules. The pairs on the antidi-

agonal are in fact rules that are inverses of each other when viewed

in a binary representation. For example rule 145 = 100100012 and

its antidiagonal partner is rule 255 − 145 = 110 = 011011102.
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Figure 7. Pairwise competition experiment between species 129 and 145. At the beginning of the simulation specie 129 dominates at a

ratio 9:1, but almost instantly it declines in abundance and almost goes extinct. At this low abundance, it has a selective advantage and

increases to a frequency that is maintained throughout the simulation.

Figure 8. An excerpt of the interaction matrix constructed by pairwise competition experiments where cij = the frequency of species i

when the initial ratio was 9:1 between i:j. For example the outcome of the experiment depicted in Figure 7 can be seen at row 129 and

column 145, where the matrix entry equals 0.2.
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When these rules are applied to a generic binary string the output

strings they yield are inverses of each other, which by symmetry

of the entropy function imply that they have the same entropy.

This means that the two rules, when competing in isolation, are

neutral and the only evolutionary force acting on the system is

random drift. The consequence of this is that the dominant rule

is more likely to win and therefore we observe cij ≈ cji ≈ 1 (or

visually a white line) on the antidiagonal. Note that this does not

imply that the two species are identical in their competition with

other rules, and this has some important consequences for the

dynamics of the model.

Second we have the cases in which 1 < cij + cji < 2, which in-

dicates that the initial condition in fact influences the equilibrium

concentration. Upon further inspection, we found that the dynam-

ics of these pairwise interactions contains two stable fixed-points,

as opposed to one that is the case in all other interactions. Typ-

ically the only fixed-point lies either, in the case of coexistence,

in the interior of the phase space at (c, 1 − c), for the equilib-

rium concentration c, which satisfies 0 < c < 1, or in the case of

dominance at (0,1). In the above-mentioned cases both an inte-

rior and a boundary fixed-point are present, and this implies that

the dynamics can converge either to coexistence or dominance

depending on the initial frequencies of the species.

For the species interactions that conform to one fixed-point

dynamics, it is useful to introduce the notion of a dominating

species, by which we mean that species i dominates j if the equi-

librium concentration of i is greater than j in a pairwise competi-

tion experiment independent of the initial condition. This implies

that cij > 0.5 and cji < 0.5, and we denote this by i � j . This

definition allows us to compare the interactions between different

pairs of species and see how they relate. For example, consider

the neutral pair (114,141). These two are neutral in competition

with each other, however, in competition with species 118, we

have that 118 �114 and 141 � 118. Essentially, this means that

there is no hierarchical way to order these three species. This is

even clearer in certain triples that do not contain any neutral pairs,

as for example (126,134,141). For these species, we have 141�
126, 126 � 134, and 134 � 141, which means that they form an

intransitive chain similar to the Rock–Paper–Scissors game (R �
S, S � P , and P � R). These type of species interactions are also

found in nature and are known to promote species diversity (Kerr

et al. 2002; Laird and Schamp 2009).

To analyze how well the invasion matrix can describe the

dynamics of the full model, we quantified the coexistence and

invasion patterns in the following way: first the time-dependent

species distribution was transformed into a binary form by con-

sidering a species to be “present” if its frequency was at least

10%. From these data, we calculated how likely a species A is

to coexist with another species B as the conditional probability

Pr (B|A) of finding species B given that A is present. This mea-

sure can however be misleading as a rare species is more likely

to show a large degree of coexistence, and we therefore formed a

symmetric coexistence measure by taking the geometric average

of Pr(B|A) and Pr (A|B). This measure is defined for any two

pairs of species, which means that the result can be summarized

in a matrix, and when we compare this coexistence matrix, cal-

culated from 100 simulations, with the invasion matrix, we see

that most cases of coexistence in the full model are explained by

the fact that the two species equilibrate at nonzero frequencies in

the invasion experiment. There are a few interesting cases that de-

viate from this tendency, for example, rule pair (109,150) shows

considerable coexistence, but c(150, 109) = 1 suggesting com-

plete dominance. To explain this observation one needs to invoke

higher order interactions that are not captured by the pairwise

invasion experiment.

The invasion patterns in the full model were quantified by

observing the species configuration preceding the emergence of

a given species A, and comparing it with the species composition

during the time the species was present in the ecosystem. The

species that existed prior to the emergence, but not at the later time,

we label as having been invaded by species A. For each species, we

calculated the probability that it is invaded by any other species in

the model, and this shows that the invasion dynamics in the model

can be well accounted for by the invasion experiments, although

we again find a few exceptional cases that are due to higher order

interactions. For example species 109 was found to be likely to

invade 105, but in the pairwise invasion experiments we on the

contrary found that species 105 outcompetes 109.

Discussion
The interactions occurring in a real ecosystem are enormously

more complex than the rules that govern the interactions in the

artificial ecosystem Urdar, yet the system exhibits a wide range

of dynamical behavior. Most notable is the emergence of co-

existence, maintained through negative frequency-dependent se-

lection, which in turn is facilitated by cross-feeding among the

species in the ecosystem. This is reminiscent of the dynamics

observed in microbial communities (Helling et al. 1987; Rozen

and Lenski 2000) and suggests that the model is able to cap-

ture the general principles governing these systems. The impor-

tance of cross-feeding increases when the inflow γ of new strings

to the system is reduced. This occurs because each food string

remains in the system longer and thus has a larger chance of

being metabolized by several organisms. This makes the inter-

actions between the organisms in the ecosystem stronger and

consequently increases the importance of cross-feeding relations.

The species compositions that emerge during starved growth

conditions are therefore those which have strong mutualistic

interactions.
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The fact that at low flow rates give rise to a more diverse

ecosystem might seem contradictory, but is actually in accor-

dance with the results of Pfeiffer and Bonhoeffer (2004). Their

model of the evolution of cross-feeding predicts that a second

bacterial strain is more likely to emerge if the dilution rate in the

chemostat is low. Only then does the intermediate metabolite ex-

ists in sufficiently high concentration to sustain a second bacterial

strain. Although we do not speak of concentration of metabolites

in Urdar, this corresponds to the fact that when, at low flow rates,

the metabolites remain in the system longer, the resource pool R is

more diverse (Fig. 5) and therefore can support a larger diversity

of species, in the agent pool A.

In other words, the correlation between metabolic depth, or

alternatively the diversity of the resource pool, and the num-

ber of species present in the artificial ecology suggests that the

competitive-exclusion principle (Hardin 1960) also to some ex-

tent applies in Urdar. What we mean by this is that when γ is

small, the system contains a larger number of distinct resources

and it can therefore sustain a larger number of species, compared

to a high flow rate when essentially only one type of resource

exists and this only sustains a single dominating species.

Another factor that might influence the diversity is the fact

that the system is subject to different levels of perturbations at dif-

ferent flow rates. At high flow rates, the system is less sensitive

to the actions of a single organism, whereas at low flow the trans-

formation of a single string will have a larger effect as it remains

longer in the system. It has been hypothesized that intermediate

perturbations can promote diversity (Grime 1973), however dis-

entangling this effect from the stronger influence of cross-feeding

in Urdar requires further investigation and is beyond the scope of

this article.

The most salient feature of the model is the large degree

of diversity it exhibits without a priori implementing frequency-

dependent selection or specific niches that the species occupy.

Instead these features emerge through the species interactions

themselves. The artificial organisms and the binary food strings

both inhabit a well-stirred environment, which means that the

niches are formed not as physical locations, but rather as a given

composition of resources. The diversity observed in these ho-

mogeneous growth conditions are in contrast with results from

experiments performed with P. flourescens (Kassen et al. 2000),

where only heterogenous (nonstirred) environment gave rise to

microbial diversity. This difference is most likely due to the fact

that the above experimental system does not allow for cross-

feeding and instead relies on selection of specialized types and

niche competition as a means of generating diversity. On the other

hand, it was shown in a recent paper by Saxer et al. (2009) that

spatial homogeneity also can have a positive impact on diversity.

In particular, they showed that populations of E. coli exhibited

higher diversity in a well-mixed unstructured environment com-

pared to structured growth conditions, and hypothesize that the

responsible mechanism is diffusion of nutrients between differ-

ent sublcones, which is increased in the well-stirred environment.

This points to the importance of system-specific interactions when

determining the relation between different ecosystem properties,

and the variety of mechanisms that can promote diversity in real

ecosystems.

Most of the cases of coexistence and patterns of invasion are

attributable to the first-order interactions captured by the inva-

sion matrix calculated from pairwise invasion experiments. The

coexistence is explained by negative frequency-dependent selec-

tion, whereas the invasion patterns are caused by neutral and

intransitive competition between the species. Intransitive interac-

tions are known to give rise to oscillatory or even chaotic behavior

(Huisman and Weissing 1999), and allows for a larger number of

species to coexist on a fixed number of limiting resources. The

intermittent dynamics (apart from the dominating species) ob-

served in the low flow (Fig. 3B) are due to this, as intransitive

competition among species can lead to sequential (and some-

times cyclic) replacement of species, instead of dominance by the

most fit species. This suggests that we have, at least, three mech-

anisms in Urdar, which promote species diversity, frequency-

dependent selection, neutral competition, and intransitive inter-

actions, all being facilitated by the cross-feeding the organisms

engage in.

The results obtained from comparing productivity and

species diversity in Urdar show that the reproduction rate ρ and

the energy uptake E both correlate negatively with biodiversity.

At low flow rates, we observe a high species diversity and a low

productivity, whereas a high flow rate gives a low diversity and

a high productivity. This observation deviates from the dominant

view that the two are bimodally related, but agrees for example

with the hypothesis stated in (Valentine 1971) and the studies

by Fryer and Iles (1969) and Hessler and Sanders (1967). The

energy-uptake efficiency η on the other hand is highest at low

flow rates, showing that the ecosystem as a whole uses the com-

mon resources most efficiently when the flow rate is small. This

coincides with a high species diversity suggesting a connection

between ecosystem efficiency and biodiversity.

When comparing our results with productivity measures that

have been used in the literature, we found that there are three ways

to define productivity in Urdar and coincide with measures from

the literature. The total reproduction rate ρ, defined as the num-

ber of divisions per update, can be compared to biomass growth

in real ecosystems, which is a common measure of productiv-

ity (Waide et al. 1999). The amount of available nutrients in an

ecosystem, a productivity measure used by Kassen et al. (2000),

corresponds to the average energy of the food strings. This quan-

tity is given by
∑

i (E0 − Ei ) which approximately equals E (as

the strings being removed from the system are chosen randomly).
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Chow et al. (2004) used the rate of energy flow into the ecosystem

as a measure of productivity and this corresponds in Urdar (for a

fixed E0) to the flow rate γ. These quantities clearly measure dif-

ferent properties of the system, still they all correlate negatively

with the diversity, suggesting a certain degree of coherence to

them.

Outlook
Even though the model presented in this article is a gross simpli-

fication of a real ecosystem, one can argue that it is too complex

and therefore loses much of its explanatory power. We would

like to argue that to study the complexity of a phenomena, such

as species diversity and its relation to ecosystem properties, one

needs to devise a model that allows for such complexity. An ob-

jection to such an approach could be that the dynamics of the

model are so complicated that nothing is actually learnt from

studying it. In one sense this is true, but with a artificial system

one has the possibility to investigate any observed phenomenon

in absolute detail. The dynamics can be broken down into finest

level of detail and from there the phenomenon can be explained.

There are so to speak no hidden variables or unknown influences

in the system. The biological insights gained from studying other

Artificial Life-platforms such as Avida is evidence of the success

of such a complex modeling approach.

The experiments presented in this article opens up for many

new questions and ideas that are beyond the scope of this article.

One question is for example to what degree the entries of the com-

petition matrix can explain the dynamics of the full model, that

is, how well can the dynamics of the model be approximated by a

system of differential equations, which takes its parameters from

the competition matrix C. This would show how well pairwise

species interactions can explain the observed diversity, or if one

needs to use higher order interactions (triplets, quadruplets etc.)

to explain the dynamics, as was suggested by the observed dis-

crepancy between the invasion experiments and the full-fledged

simulations. One could also investigate the dynamics from an-

other point of view by making use of the metabolic history of

all food strings (i.e., the list of species each string has been me-

tabolized by). This makes it possible to map out which species

engage in cross-feeding, and from this information generate a net-

work of ecological interactions. Another possibility is to examine

to which extent the process of evolution maximizes productivity

from an ecosystem point of view, that is, how well does the evolved

species composition do compared to an optimal species compo-

sition, which maximizes productivity (for a given flow rate). Fur-

ther, the model could also be extended to include features present

in real biological systems, such as a distinction between the geno-

type and phenotype of the organisms and a spatial dimension that

would impact the nature of the species interactions.
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Appendix A
CELLULAR AUTOMATA

Cellular automata (CA) are a versatile tool in the field of Artifi-

cial Life and in biological modeling in general, mostly used for

modeling spatiotemporal phenomena such as pattern formation

(Deutsch and Dormann 2005) and interacting particle systems,

for example, artificial chemistries (Adami 1998). We aim to take

advantage of this common knowledge of CA in the proposed

platform.

The history of CA goes back to the work of Ulam (1962)

and von Neumann and Burks (1966), and in the 70s, Conway’s

Game of Life (Gardner 1970) which gave rise to much activity

as it with simple rules could display life-like behavior such as

self-reproduction and propagation. The study of CA was further

extended by Wolfram (1983), who analyzed and classified the

behavior of the simplest type of CA, namely one-dimensional,

two-state, nearest neighbor rules. The main conclusion of that

endeavor was that simple local rules of these CA can give rise

to large-scale complex behavior. These are the type CA-rules we

have employed in Urdar.

Cellular automaton are dynamical systems discrete in both

time and space. In the case of one-dimensional elementary CA,

we can think of them as rules for changing the states of cells in

a one-dimensional array having two possible states (typically 1

and 0). Each cell in such a configuration is updated in parallel

as a function of its own current state and its two neighboring

cells on the left and right (Fig. A1). This means that the CA-rule

determines the state of each cell at time t + 1 as a function of

triplets of cells at t. As we have two states per cell, this means

that there are 23 = 8 different triplets (Fig. A1), and each of

these can map the middle cell to either 1 or 0, giving a total of

28 = 256 different elementary CA-rules. Each of these are present

in the simulation, and represent a species with a unique way of

manipulating/metabolizing the binary food strings.

Appendix B
ENTROPY

The degree of disorder is best characterized by the information-

theoretic entropy introduced by Shannon (1948). On a side note,

it is said that von Neumann not only invented CAs, but at a sem-

inar suggested to Shannon that he should call his new measure

entropy because “no one really understands [its meaning], by us-

ing this word you will have an advantage over your adversary in

any debate” (p. 105, Lestienne 1998). This entropy measures the

degree of irregularity in a given structure, and does so by compar-

ing the frequency of different substructures. In our case of binary

strings, this is done by measuring the frequency of substrings of

different lengths, and by then calculating how information about
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Figure A1. Rule table and realization of elementary CA-rule 130. The rule table shows how the CA-rule transforms the binary string by

specifying the value of each bit at t + 1 as a function of triplets of bits at time t. The bottom panel shows multiple iterations of rule 30,

when the initial condition (top row) consists of a single 1 surrounded by 0’s. This would be the outcome of a single agent of species 30

repeatedly digesting the same binary string.

the content of the string increases as longer substrings are taken

into account. In a fully regular string with alternating 1’s and 0’s

(r1= . . . 0101010101 . . .) no information is gained when looking

at substrings longer than 2, that is, the structure is completely

regular above this length scale, and this implies that the Shan-

non entropy of the string is s = 0 bits. On the other hand, for

a completely random string, where each element is 1 or 0 with

probability 1/2, no predictions about the structure can be made no

matter how long substrings we consider, and this implies that the

entropy is maximal and equal to s = log2 2 = 1 bit. The Shannon

entropy can also be interpreted as the minimal average bits per

symbol needed to transmit the “message” contained in the string.

More formally the Shannon entropy s is measured by calcu-

lating the block entropy of size m

Sm =
∑
σm

p(σm) log2
1

p(σm)
, (A1)

where the sum is over all possible substrings σm of length m, and

p the probability of finding the substring σm in the string. By then

taking the difference �Sm = Sm+1 − Sm, the Shannon entropy is

defined as the limit

s = lim
m→∞ �Sm . (A2)

This definition is not applicable in practice as it requires in-

finitely long strings, and therefore one has to approximate the true

entropy with �Sm for some m. We have for computational reasons

chosen m = 2, which still gives a reasonable approximation of

the disorder in the binary strings. We are also using limited sized

blocks for the entropy, not only for computational convenience,

but also to avoid the well-known fact that when the block size m

goes to infinity, no simple CA can increase the entropy of such an

infinite binary string (Lindgren 2003).
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