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Abstract

Neurodenerative processes associated with ageing or retarded normal 
neurodevelopment compromise several domains of health, well-being and the functional 
capacity of individuals, particularly those of advanced age. Physical exercise has 
provided a plethora of improvements in functional capacity, neurocognitive ability, 
neuroaffective status and brain plasticity. Despite all these achievements, further effort 
requires to be invested in order to challenge one current conviction that there exist 
no effective treatments, or even a paucity, of intervention, e.g. exercise, available to 
retard or hinder or reverse the Neurodegeneration processes afflicting the diseased 
brain.

INTRODUCTION
The regular practice of physical exercise, whether engaged 

upon for the maintenance of accustomed health condition 
or acceded to under pressures of an unhealthy or diseased 
condition, invariably advances well-being and structural and 
functional integrity through: the advancement of functional 
and biomarker manifestations during ageing and cellular 
senescence, the amelioration of cognitive performance 
deficits by optimal augmentation of cerebral plasticity and 
the enrichment of individuals’ proclivities for advantageous 
ontogenetic and epigenetic dispositions. The notion of 
‘organismal robustness’, through which ‘dormant’, or otherwise, 
genetic predispositions will translate into disease in individuals 
with decreased organismal robustness [1], offers a growing, 
as yet underestimated, preventional/interventional aspect 
of decelerating ageing-related debilities and is bolstered by the 
concomitant aspect of ‘organismal resilience’; regular exercise/
activity has been shown to offer consistent benefit for maximizing 
organismal resilience against a broad range of extrinsic and 
intrinsic stressors, such as infections, injury/surgery, wound-
healing, toxicants, genetic predispositions and frailty [2]. The 
benefits of exercise for specific neurodegeneration-related 
disorders are consistently documented: In Parkinson’s disease 
patients exercise programs generally increase quality-of-life 
and fitness condition [3,4] and motor performance [5,6] but 
not always in restoring the loss of dopamine (DA) innervation 
[7]. Nevertheless Shi et al. [8], have demonstrated that physical 
exercise induced neuroprotective-restorative effects by reducing 
the degeneration of the nigrostriatal DA system and curtailing 
the abnormal neuronal spike firing in parkinsonian striatum. 

Furthermore, exercise interventions in PD increased both trophic 
factors and functional capacity, e.g. brain-derived neurotrophic 
factor (BDNF), and neuroplasticity of DA neurons [9-12]. Under 
conditions of both normal ageing, Alzheimer’s disease (AD) and 
other types of dementia, physical exercise improves physical 
health and capacity, quality-of-life, brain plasticity, increasing 
cognition and reducing the risk of cognitive decline and dementia 
in later life, as well as greater integrity at different levels of 
neuronal and brain regional organization [13-16]. The overall 
purpose of the present treatise is to outline several domains 
of physical exercise intervention may induce improvements in 
motor performance and daily activity capacity, neurocognitive 
functioning and biomarkers of functional and healthy ageing.

Lifestyle and non-invasive, e.g. exercise and dietary 
considerations, interventions are employed with increasing 
frequency and efficacy in the facilitation of healthy neurocognitive 
and biological aging [17-20], particularly since the avoidance 
of a sedentary existence bears with it essential ingredients for 
health promotion, necessarily brain health, and prevention of 
lifestyle-related diseases [21]. Exercise interventions have been 
shown to be neurorestorative: In MPTP-treated mice showing 
procedural and working memory impairments and dopamine 
D2 receptor hypersensitivity, horizontal treadmill running over 
six weeks ameliorated these deficits [22]. The range of adaptive 
response to regular physical exercise incorporates several 
neuroprotection, anti-neurodegenerative and neurorestorative 
manifestations pertaining to function and biomarker integrity 
[23-27]; these benefits include also the up-regulation of the 
enzymatic antioxidant systems and modulation of oxidative 
damage [28]. For example, among individuals presenting cerebral 
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palsy, whether as children, adolescents or younger/older adults, 
the recommendation for activity and reduction of sedentary 
behavior are a burgeoning necessity [29]. Exercise, through 
the modulation of intensity-dependent metabolism and/or 
directly-activated reactive oxygen species-generating enzymes, 
coordinates the cellular redox state of the ageing/degenerating 
brain. Reactive oxygen species contribute towards the self-
renewing, proliferating and differentiating aspects of neuronal 
stem cells as well as exercise-mediated neurogenesis and 
neurorestorative effects [30]. The promotion and maintenance 
of physical exercise habits among older people demands greater 
consideration and diligence regarding ”activeness” as an ’health-
attitude’ and present-day lifestyle within a workable social 
context, this requires initiatives that galvanize a broader range 
activity habits rather than the limitations of discrete activities 
[31,32].

Physical exercise forestalls both cellular senescence and 
immunosenescence with active elderly individuals at lower risk 
for deterioration through a multitude of malignancies including 
cancer forms, e.g. prostate and colon, osteoporosis, depression 
and dementia [33], in many cases extending life-expectancy by 
several years and patients’ quality-of-life [34,35], and metabolic 
processes [36,37]. Activity programs induce major effects on 
the neuroimmune system functioning and alter dramatically 
cytokine production, particularly IL-6, IL-1, TNF-α, IL-18 and IFN 
gamma, which are involved actively in the modulation of synaptic 
plasticity and neurogenesis [38]. These cytokines may contribute 
also to reactive oxygen species production through which 
alterations affect the availability of lipids, proteins, and DNA 
and regulate directly brain function and integrity [30]. Zimmer 
et al. [39], have described the influence of physical activity upon 
objective and subjective cancer-related cognitive impairments in 
19 studies involving both humans and laboratory rodents. They 
observed patient/rodent improvements in both types of studies 
and posited the general conclusion that the activity-exercise 
programs reduced inflammation and provided partial benefits 
for cancer-related cognitive performances. Among chronic 
diabetic patients, prevention programs are imperative for 
minimizing the risk of onset of neurodegenerative diseases since 
a single bout of exercise was found to be efficacious in obese, 
glucose-intolerant laboratory rodents [40]. Cerebrovascular 
complications, caused by inflammatory, oxidative, and metabolic 
changes expressed in diabetes type II patients may induce blood-
brain-barrier breakdown may allow peripherally-located pro-
inflammatory molecules, e.g. ceramides, to infiltrate thereby 
activating stress pathways with subsequent promotion of 
several neuropathological features of dementia including brain 
insulin resistance, mitochondrial dysfunction, and accumulation 
of neurotoxic beta-amyloid oligomers, with consequential 
and subsequent synaptic loss, neuronal dysfunction, and cell 
death [41]. Physical exercise augmented antioxidative capacity, 
reduced oxidative stress, and induced anti-inflammatory effects 
buttressing endothelial function with accompanying elevations of 
brain capillarization and angiogenesis. Exercise also counteracted 
dyslipidemia and reduced the increased levels of ceramide and 
enhanced beta-amyloid clearance through up-regulation of beta-
amyloid transporters, elevated basal testosterone, reduced in 
diabetes II, and promoted neurogenesis. 

The influences of physical exercise parameters, such as 
whether endurance, i.e. aerobic, or resistance, intensity, duration, 
frequency, type of muscular contraction, extent of exertion and 
solicited energetic metabolism upon neuroprotective expressions 
over a range of neurodegenerative disorders has been 
explored to a limited extent. Applying mouse models of spinal 
muscular atrophy, high intensity swimming and low intensity 
running activities have provided behavioural, biochemical 
and cellular markers of ameliorative manifestations [42,43]. 
Spinal muscular atrophy presents a collection of autosomal 
recessive neurodegenerative diseases that differ with regard 
to clinical outcome, characterized by the specific loss of spinal 
motor neurons, caused by insufficient level of expression of the 
protein survival of motor neuron. Chali et al. [44], have shown 
that both types of exercise, swimming and running, enhanced 
markedly motor neuron integrity and survival, independent of 
disorder expression, thereby promulgating the maintenance 
of neuromuscular junctions and skeletal muscle phenotypes, 
with particular regard to the soleus, plantaris and tibialis of 
the exercised mice. Critically, both types of exercises improved 
dramatically the properties of neuromuscular excitability. 
Additionally, all of the exercise-activity engender benefits were 
both quantitatively and qualitatively associated with the specific 
characteristics of each type of exercise, which implies that the 
correspondent neuroprotective effects were strongly dependent 
on the specific activation of certain motor neuron subpopulations. 
Normal aging, accompanied by energy process dysregulation, 
directs microglia towards a pro-inflammatory phenotype with 
subsequent release of IL-1β and IL-6 [45-47], whereas exercise 
exerts an anti-inflammatory effect [48-51]. Littlefield et al. [50], 
observed that voluntary running wheel exercise bolstered the 
induction of a neuroprotective microglia phenotype against pro-
inhlammatory reductions in hippocampal neurogenesis in aged 
rat brains.

Neuroprotective effects have been disclosed repeatedly 
among ageing individual as most generally obtained in 
laboratory studies. Due to the induction of neuroprotective 
mechanisms, e.g. neurotrophic factors and angiogenesis, 
exercise exerts a neuroprotective effect upon the progression 
of manifest dementia [52,53]. In aged rats (27 month-old), 
swimming exercise combined with diselenide-supplemented 
diet rendered marked neuroprotective effects as displayed by 
reduction of apoptosis and glial cell activation [54]. Within the 
context of traumatic brain injuries, such as stroke, Otsuka et al. 
[55] have demonstrated that preconditioning exercise schedules 
enhanced the levels of expression of midkine, brain-derived 
neurotrophic factor, glial fibrillary acidic protein, modulating 
cell communication and regulating the blood-brain barrier, 
and platelet endothelial cell adhesion molecule, involved in 
leucocyte transmigration and angiogenesis, in the Exercised 
group compared with the expression levels in the Non-exercised 
group following brain ischemia. In contrast, the expression 
levels of activated caspase 3 and NT were reduced in the area 
surrounding the necrotic lesion thereby reducing neuronal 
apoptosis and oxidative stress. Physical exercise antagonized 
abnormal activations of the RhoA/Rho kinase pathway, involved 
in neuroinflammatory and pro-oxidative responses, axonal 
retraction, and apoptosis; the pathway is linked to aging-related 
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neurodegenerative mechanisms, thereby providing a marked 
extent of neuroprotection in aged rats [56]. In this context, 
the issue of whether or not an extended exercise regime offers 
long-lasting resistance, i.e. neuroprotective alterations, to beta-
amyloid-induced network dysfunction in hippocampal cell 
population activity poses a relevant question. Isla et al. [57], 
observed that hippocampal cell populations’ activity that was 
recorded in slices obtained from voluntarily-exercised mice 
that were provided with free access to a running wheel over a 
period of 21 days displayed greater power and faster frequency 
composition than those hippocampal slices obtained from 
sedentary animals. Hippocampal networks from exercising 
mice that were rendered insensitive to beta-amyloid-induced 
inhibition of spontaneous population activity prompting the 
conclusion that voluntary exercise produced a long-lasting 
neuroprotective influence upon the hippocampal tissue. Trivino-
Paredes et al. [58], have provided a comprehensive description of 
the interactive influences of gonadal hormones, stress hormones 
and metabolic hormones upon hippocampal structural plasticity 
with regard to the mediatory role of physical exercise parameters, 
frequency, duration and intensity and training regimes. 

One hallmark of the pathophysiological progression of 
Alzheimer’s disease and dementia conditions is observed in 
the severe hippocampal atrophy brought about by inexorable 
neuronal loss. Long-term physical exrcise diminished 
hippocampal CA1 neuron loss linked with the complete 
abolishment of spatial memory deficits [59]. These influences 
of exercise upon the integrity of hippocampal and other brain 
regions involved in higher levels of functioning underline the 
multidomain importance of exercise interventions for prevention 
of cognitive decline and somatic concomitants of deterioration 
[60]. It is increasingly evident that globally structured exercise 
programs/schedules ought to be designed to alleviate different 
aspects of psychophysiological function in elderly populations 
with the chosen activity regimes varying with ‘training-
volume’ in relation to age, gender, exercise background [61]. 
According to the notions of Laitman and John [62] age-related 
cognitive decline is driven by CNS structural and functional 
deterioration, neurovascular decline and pro-inflammatory 
(microglia) reactivity; in this context, physical exercise, through 
reduction of systemic inflammation, promotion of angiogenesis 
and neurogenesis, provides both neuroprotective and 
neurorestorative manifestations. Lancioni et al. [63], observed 
that patients’ improved commitment and indications of positive 
personal affected strongly their applicability and potential 
benefits of the program in daily contexts. Similarly, exercise 
interventions effectively minimized the decline in activities of 
daily living in patients diagnosed with dementia [64].

Future considerations need to appraise more systematically 
the relationships between functional decline and the 
neurorestorative properties of different types of exercise 
interventions. Critically, efforts must be made to challenge one 
current conviction that there exist no effective treatments, or 
even a paucity, of intervention, e.g. exercise, available to retard 
or hinder or reverse the neurodegeneration processes afflicting 
the diseased brain.
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