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Abstract. We construct a numerical scheme for the multi-dimensional Vlasov-Poisson-Fokker-Planck system based on a
combined finite volume (FV) method for the Poisson equation in spatial domain and the streamline diffusion (SD) and
discontinuous Galerkin (DG) finite element in time, phase-space variables for the Vlasov-Fokker-Planck equation.

Keywords: Vlasov-Poisson-Fokker-Planck system, finite volume method, streamline diffusion method, discontinuous Galerkin method.
PACS: 02.30.Jr, 02.70.Dh, 02.70Hm, 05.20Dd, 47.45.Ab, 51.10.+y.

INTRODUCTION

We study the approximate solution for the deterministic multi-dimensional Vlasov–Poisson–Fokker-Planck (VPFP)
system: given the parametersβ andσ and the initial dataf0(x,v), (x,v) ∈ Ω := Ωx×Ωv ⊂ Rd ×Rd, d = 1,2,3, find
the density functionf (x,v,t) in the Dirichlet initial-boundary value problem for the Vlasov-Fokker-Planck equation

(P1)







ft +v ·∇x f −∇xϕ ·∇v f −divv(βv f)−σ∆v f = S, in Ω× [0,T],
f (x,v,0) = f0(x,v), in Ωx×Ωv,
f (x,v,t) = 0, on Γ−

G × [0,T],
(1)

whereS is source,G := (v,−∇xϕ), Γ−
G := {(x,v) ∈ Γ := ∂Ω|G ·n < 0}, n is the outward unit normal, andϕ satisfies

(P2)

{

−∆xϕ =

∫

Ωv

f (x,v,t)dv, in Ωx× [0,T],

|∇xϕ(x,t)| = 0, (ϕ p.w. constant, orϕ = 0) on ∂Ωx× [0,T].
(2)

We solve (P2) replacingf by a given functiong, and insert the corresponding solutionϕg in (P1) to obtain an equation
for f . Thus, we linkf to the given datag as, say,f = Λ[g]. Hence, the solution for the VPFP system is a fixed point of
the operatorΛ, i.e. f = Λ[ f ]. We may study existence and uniqueness using a Schauder fixed point theorem. For the
discrete version this step can be repeated using a Brouwer type fixed point argument, see, e.g. [1] and [3].

Conventional numerical methods for the Vlasov-Poisson and related equations have been dominated by the particle
methods see, e.g. [5] and [11]. A 1-dimensional finite volume scheme for the Vlasov-Poisson is studied in [6].

To approximate (P2) we use a finite volume approach in 3d: Ωx ⊂ R3. As for (P1) we employ streamline-diffusion
and discontinuous Galerkin methods based on the studies in [8] and [4]. We shall only give sketch of the proofs.
Detailed proofs are obtained following the techniques in [10] for finite volume, and [1]- [2] and [8] for finite elements.

THE FINITE VOLUME METHOD FOR POISSON EQUATION IN 3D

The cell-center finite volume (FV) scheme for problem (P2), in standard domainΩx = (0,1)3, is given by

−∇2
xϕ = ρ , in Ωx = (0,1)× (0,1)× (0,1) |∇xϕ | = 0, on ∂Ωx, (3)

whereρ =
∫

Ωv
f dv. Existence uniqueness and regularity studies for (3) are extensions of two-dimensional results in

[7]: ρ ∈ H−1(Ωx) implies that∃! ϕ ∈ H1
0(Ωx), and forρ ∈ Hs(Ωx), with −1≤ s< 1, s 6= ±1/2, ϕ ∈ Hs+2(Ωx).

Theorem 1. The, respective, optimal FV error estimates for general non-uniform and quasi-uniform meshes are

‖ϕ −ϕh‖1,h ≤Chs|ϕ |Hs+1, and ‖ϕ −ϕh‖∞ ≤Chs| logh||ϕ |Hs+1, 1/2 < s≤ 2; (for ‖ · ‖1,h, see(7)). (4)
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The corresponding finite element estimates can be read from the theorem

Theorem 2. a) For the finite element solution of the problem (P2), with a quasiuniform triangulation, we have that:

‖ϕ −ϕh‖1,∞ ≤Chr | logh|×‖ϕ‖r+1,∞, r ≤ 2

b) ∀ε ∈ (0,1) small, ∃Cε such that‖ϕ −ϕh‖1,∞ ≥Cεhr−ε | logh|, cf [9].

To derive the finite volume formula we consider the Cartesian mesh

Ih
x : = {xi : i = 0,1, . . . , I ; x0 = 0, xi −xi−1 = hi ; xI = 1},

Ih
y : = {y j : j = 0,1, . . . ,J; y0 = 0, y j −y j−1 = k j ; yJ = 1},

I ℓ
z : = {zn : n = 0,1, . . . ,N; z0 = 0, zn−zn−1 = ℓn; zN = 1}.

With each(xi ,y j ,zn) we associate a finite volume box:

ωi jn = (xi−1/2,xi+1/2)× (y j−1/2,y j+1/2)× (zn−1/2,zn+1/2),

and choosecentral finite volume boxesinside each 27-points stencil element with the characteristic functions as:










xi−1/2 = xi −hi/2, xi+1/2 = xi −h(i+1)/2, h̄i =
hi+hi+1

2

y j−1/2 = y j −k j/2, y j+1/2 = y j −k( j+1)/2, k̄ j =
kj +kj+1

2 ,

zn−1/2 = zn− ℓn/2, zn+1/2 = zn− ℓ(n+1)/2, ℓ̄n =
ℓn+ℓn+1

2 ,

χi jn = Char
[(

−
hi+1

2
,
hi

2

)

×
(

−
k j+1

2
,
k j

2

)]

×
(

−
ℓn+1

2
,
ℓn

2

)]

∈ Hτ(R3), ∀τ < 1/2.

Let nowρ ∈ Hs(Ωx), s> −1/2, and extendρ to R3 preserving its Sobolev class. Thus, we may define

1
|ωi jn|

∫

∂ωi jn

∂ϕ
∂n

ds=
1

|ωi jn |

(

χi jn ∗ρ
)

(xi ,y j ,zn) (5)

using three dimensional convolutionsχi jn ∗ρ, which is continuous inR3. Recalling thatρ ∈ L1
loc(Ωx) we may write

1
|ωi jn |

∫

∂ωi jn

∂ϕ
∂n

ds=
1

h̄i k̄ j ℓ̄n

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zn+1/2

zn−1/2

ρ(x,y,z)dxdydz. (6)

Let Vh be the set of piecewise bilinear functions on the boxΩx induced byΩ̄h
x, i.e.V ◦

h = {F ∈ Vh

∣

∣

∣
F = 0 on ∂Ωx}.

Definition 1. The finite volume approximation of the solutionϕ for the Poisson equation:ϕh ∈ V ◦
h is defined

(implicitly) through the following algorithm:

−
1

h̄i k̄ j ℓ̄n

∫

∂ωi jn

∂ϕh

∂n
ds=

1

h̄i k̄ j ℓ̄n

(

χi jn ∗ρ
)

(xi ,y j ,zn), (xi ,y j ,zn) ∈ Ωh
x.

Stability and convergence of this method are generalizations of Süli’s [10] results in two dimensions for the Dirichlet
problem. For|∇xϕ | = 0 on∂Ωx with extendedϕ(∞) = 0 yield ϕ = 0 on∂Ωx. The first assertion in Theorem 1, may
be proved repeating the arguments in [10] (we skip) for the 3d case in discreteH1(Ωh

x) andL2(Ωh
x) norms:

‖ψ‖1,h =
(

‖ψ‖2 + |ψ |21,h

)1/2
, and ‖ψ‖ = (ψ ,ψ)1/2, (7)

where(φ ,ψ) = ∑I−1
i=1 ∑J−1

j=1 ∑N−1
n=1 h̄i k̄ j ℓ̄nφi jnψi jn, and|ψ |1,h =

(

||∆−
x ψ |]2x + ||∆−

y ψ |]2y + ||∆−
z ψ |]2z

)1/2
, with divided dif-

ferences∆−
x ψi jn = (ψi jn − ψi−1, j ,n)/h̄i , ∆−

y ψi jn = (ψi jn −ψi, j−1,n)/k̄ j and ∆−
z ψi jn = (ψi jn −ψi, j ,n−1)/ℓ̄n, and the,

one-sided discreteL2-norms:

||∆−
x ψ |]2x = (ψ ,ψ ]x, (φ ,ψ ]x =

I

∑
i=1

J−1

∑
j=1

N−1

∑
n=1

h̄i k̄ j ℓ̄nφi jnψi jn ,

with similar notations fory andzvariables. Our numerical results justify convergence of FV scheme.
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STREAMLINE DIFFUSION AND DISCONTINUOUS GALERKIN APPROACHE S

For a finite element scheme inΩT := [0,T]×Ω we use a subdivision ofΩ, into the product of tetrahedral elementsτx
andτv , asTh := {τ = τx×τv} combined with a partition of the time interval(0,T): 0= t0 < t1 < .. . < tM = T, and let
Im := (tm,tm+1); m= 0,1, . . . ,M−1. Then the corresponding partition ofΩT is given by theprism-type triangulation

Ch := {K|K := τ × Im, τ ∈ Th, h = max(diamτ)}.

We seek piecewise polynomial approximations for the solution of problem (1) in a finite dimensional space

Vh := { f ∈ H : f |K ∈ Pk(τ)×Pk(Im); ∀K = τ × Im∈ Ch},

with Vh being continuous inx andv, possibly discontinuous int across time levelstm andH := ∏M−1
m=0 H1(Ωm); Ωm =

Ω× Im. We shall also use the jumps[g] = g+−g− with g± = lims→0±g(x,v,t +s), and the standard notation

( f ,g)m = ( f ,g)Ωm =
∫

Ωm
f gdxdvdt, ‖g‖m = (g,g)

1/2
m , 〈 f ,g〉m =

∫

Ω f (·, ·,tm)g(·, ·,tm)dxdv,

|g|m =< g,g >
1/2
m , < f∓,g∓ >Γ±=

∫

Γ± f∓g∓|Gh ·n|dv, < f∓,g∓ >λ±=
∫

Im < f∓,g∓ >Γ± dt.

Using notation∇ f := (∇x f ,∇v f ) and G :=
(

v1, . . . ,vd,−∂φ/∂x1, . . . ,−∂φ/∂xd

)

, we get divG( f ) = 0. For finite

element procedure (both in the SD and the DG cases) we letF to be a certain (linear) function space,f̃ ∈ F an
approximation off andΠ f ∈ F a projection off into F , then to estimate the approximation error

f − f̃ = ( f −Π f )+ (Π f − f̃ ) ≡ η + ξ ; ξ ∈ F .

We use interpolation to estimate|||η |||, and establish|||ξ ||| ≤C|||η |||, (|||·||| := ‖ · ‖Ξ, Ξ=SD orΞ=DG, below).

Now we consider the streamline diffusion (SD) method for (P1) with test functions of the formu+δ
(

ut +G( f̃ )·∇u
)

with δ ∼ h, the mesh size. For convenience we use the notationDw := wt +G( fh) ·∇w and formulate the SD method
for problem (P1) as follows: givenf−h (·, ·,tm), find fh ∈Vh such that form= 0, . . . ,M−1,

(Pm) Bδ
m(G( fh); fh,u)−Jδ

m( fh,u) = Lδ
m(u), ∀u∈Vh. (8)

Bδ
m := (D fh,u+ δDu)m+ σ(∇v fh,∇vu)m+ 〈[ fh],u〉m− δσ(∆v fh,Du)m, (9)

Jδ
m := (∇v · (βv fh),u+ δDu)m, and Lδ

m := (S,u+ δDu)m+ 〈 f +,u+〉λ−
m

+ 〈 f−,u−〉λ +
m
. (10)

Pm is a linear system of equations leading to an implicit scheme and to solveP1 is equivalent to findfh ∈Vh such that

Bδ (G( fh); fh,u)−Jδ ( fh,u) = Lδ (u), ∀u∈Vh, Bδ :=
M−1

∑
m=0

Bδ
m, Jδ :=

M−1

∑
m=0

Jδ
m, Lδ :=

M−1

∑
m=0

Lδ
m. (11)

Stability and error estimates

Lemma 1. For the SD method we have the coercivity and stability estimates Bδ
(

G( f h);g,g
)

≥ 1
2||g||

2
SD, ∀g∈ H ,

||g||2SD =
1
2

[

2σ‖∇vg‖
2
ΩT

+ |g|2M + |g|20+
M−1

∑
m=1

|[g]|2m+2‖Dg‖2
ΩT

+

∫

Γ×I
g2|Gh ·n|

]

,

||g||2L2(ΩT ,SD) ≤
[ 1
C1

||Dg||2+
M−1

∑
m=1

|[g]|2m+

∫

∂Ω×I
g2|Gh ·n|

]

δeC1δ , ∀C1 ≥ 0.

Remark 1. In the discontinuous Galerkin case,||g||DG and ||g||L2(ΩT ,DG) are defined by replacing the
∫

-term, in the
SD case, by∑

∫

∂K−(G′′)[g]2|Gh ·n|ds where∂K−(G′′) = {(x,v,t) ∈ ∂K−(G′) : nt(x,v,t) = 0}.
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Theorem 3. Assume that there is a constant C such that||∇ f ||∞ + ||G( f )||∞ + ||∇η ||∞ ≤ C. Then, we have the
following error estimate for the streamline diffusion method for (P1):

‖ f − fSD‖SD≤Chk+1/2‖ f‖Hk+1(ΩT ).

Proof. (Sketchy) Letf̃ h be an interpolant off , split the error ase= f − fSD = f − f̃ h + f̃ h− fSD := η − ξ . Then,

1
2
||ξ ||2SD≤ B(G( f h);ξ ,ξ ) = B(G( f ); f ,ξ )−B(G( f h); f̃ h,ξ )+J( f h,ξ )−J( f ,ξ )

:= ∆B+ ∆J ≤
1
8
||ξ ||2SD+CB||η ||2SD+

1
8
||ξ ||2SD+CJ||η ||2SD,

where we have used the inverse estimate. The interpolation error||η ||2SD≤Cihk+1/2‖ f‖Hk+1(ΩT ), yields the result.

In the DG case, we assume also discontinuities inx andv over the interelement boundaries and use discrete spaces

Wh =
{

g∈ L2(QT) : g|K ∈ Pk(K) ∀K ∈ Ch

}

, Wd
h =

{

w∈ [L2(QT)]d : w|K ∈ [Pk(K)]d ∀K ∈ Ch

}

.

Theorem 4. Under the assumptions of Theorem 3 and for the exact solution f∈ Hk+1(ΩT)∩Wk+1,∞(ΩT), we have
that the discontinuous Galerkin approximation fDG ∈Wd

h for f in (P1) satisfies the error estimate

‖ f − fDG‖DG ≤Chk+1/2
(

‖ f‖Hk+1(ΩT ) +‖ f‖Wk+1,∞(ΩT )

)

.

Proof. (Sketchy) Here we demonstrate only the terms that are involved in estimations of the interelement jump terms,
which are additional to those in the SD-case. To this end, we introduceR: Wh →Wd, see [4], defined by

R(g)w = − ∑
τx×Im

∫

τx×Im
∑

e∈Ev

∫

e
[[g]]nv·(w)0 dν, ∀w∈Wd

h , (12)

Ev is the set of all interior edges ofTv
h . Define(χ)0 = χ+χext

2 and [[χ ]] = χ − χext, whereχext is the value ofχ in the
elementτext

v havinge∈ Ev common edge withτv. Let re be the restriction ofR to the elements sharing the edgee∈ Ev:

re(g)w = − ∑
τx×Im

∫

τx×Im

∫

e
[[g]]nv·(w)0 dν, ∀w∈Wd

h . (13)

Hence, we may easily verify that∑e⊂∂τv∩Ev re = R onτv =⇒ ‖R(g)‖2
K ≤ γ ∑e⊂∂τv∩Ev ‖re(g)‖2

K , whereτv corre-
sponds to the elementK andγ = γ(d) > 0 is a constant. Furthermore, since the support of eachre is the union of
elements sharing the edgee, ∑e∈Ev‖re(g)‖2 = ∑K∈C ∑e⊂∂τv∩Ev‖re(g)‖2

K . The DG method reads as: findfh ∈ Wh

such thatBDG(G( fh); fh,g) − K( fh,g) = L(g), ∀g ∈ Wh, (K f ,g) =
(

∇v(βv f),g + hDg
)

. Proving the coercivity:

BDGG( f h);g,g) ≥ α|||g|||2, ∀g∈Wh, (compared toBSD, contains also interelement jumps) yields the DG estimate.

NUMERICAL EXAMPLES FOR FVM

Our implementations are done, in 2d, in theR statistical package for:
Gaussian function: u1(x,y) = exp

(

−((cot(πx))2 +(cot(πy))2)
)

· χ(0,1)×(0,1)(x,y), with

∆u1(x,y) =
1
2

π2exp
(

−((cot(πx))2 +(cot(πy))2)
)

·

(

∑
τ=x,y

1+6cos(2πτ)+cos(4πτ)

sin6(πτ)

)

· χ(0,1)×(0,1)(x,y). (14)

Mollifier: u2(x,y) = exp
(

− 1
1−(4(y−0.5)2+4(x−0.5)2)

)

· χ(0,1)×(0,1)(x,y), with

∆u2(x,y) = exp
(

− 1
1−(4(y−0.5)2+4(x−0.5)2)

)

·







−
128

(

(y−0.5)2+(x−0.5)2
)

(1−(4(y−0.5)2+4(x−0.5)2))
3 +

+
64

(

(y−0.5)2+(x−0.5)2
)

(1−(4(y−0.5)2+4(x−0.5)2))
4 −

16

(1−(4(y−0.5)2+4(x−0.5)2))
2







· χ(0,1)×(0,1)(x,y).

(15)
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FIGURE 1. Left: error for Gaussianu1 function. Center : error for mollifieru2 function. Right : potentialu3 function. Top row:
L2 errors, bottom row relative errors (the relative errors for small meshes are not shown, as they were extremely high and also the
relative error was not evaluated if the value of the true function was less than 10−5).

The FVM performs reasonably well foru1 andu2. Errors, for different mesh sizes, and graphs are in Figs. 1 and 2.
Mollifier difference — potential: Let u2(x,y) denote the mollifier function defined in section Mollifier. To create a
potential we take a difference of two mollifiers, one shrunk to a smaller region.

u3(x,y) = 3 ·u2(x,y)−10·u2(
x
2 −

1
8, y

2 −
1
8) · χ( 1

4 , 3
4 )×( 1

4 , 3
4 )(x,y)

∆u3(x,y) = 3 ·∆u2(x,y)− 10
4 ·∆u2(

x
2 −

1
8, y

2 −
1
8) · χ( 1

4 , 3
4 )×( 1

4 , 3
4 )(x,y)

(16)

Note that the characteristic function in the definition ofu3 does not cause any problems for the derivatives as the
mollifier goes smoothly to 0.
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FIGURE 2. Top left : true Gaussian function, top right : FVM approximation of Gaussian function, center left : true mollifier
function, center right : FVM approximation of mollifier function, bottom left : true potential function, bottom right : FVM
approximation of potential function. The FVM was calculated on a random grid of 50 internal nodes in each dimension. The
points were the same in both dimensions. The graphs are done (bywireframe() function) on a random grid (different from the
FVM one) of 100 internal nodes in each dimension. The points are the same in both dimensions.
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