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We introduce the preventive maintenance scheduling problem with interval costs (PMSPIC), which is to
schedule preventive maintenance (PM) of the components of a system over a finite and discretized time
horizon, given a common set-up cost and component costs dependent on the lengths of the maintenance
intervals. We present a 0-1 integer linear programming (0-1 ILP) model for the PMSPIC; the model is
identical to that presented by Joneja (1990) for the joint replenishment problem within inventory man-
agement. We study this model from a polyhedral and exact solutions’ point of view, as opposed to pre-
viously studied heuristics (e.g. Boctor, Laporte, & Renaud, 2004; Federgruen & Tzur, 1994; Levi, Roundy, &
Shmoys, 2006; Joneja, 1990). We show that most of the integrality constraints can be relaxed and that the
linear inequality constraints define facets of the convex hull of the feasible set. We further relate the
PMSPIC to the opportunistic replacement problem, for which detailed polyhedral studies were performed
by Almgren et al. (2012a). The PMSPIC can be used as a building block to model several types of main-
tenance planning problems possessing deterioration costs. By a careful modeling of these costs, a poly-
hedrally sound 0-1 ILP model is used to find optimal solutions to realistic-sized multi-component
maintenance planning problems. The PMSPIC is thus easily extended by side-constraints or to multiple
tiers, which is demonstrated through three applications; these are chosen to span several levels of
unmodeled randomness requiring fundamentally different maintenance policies, which are all handled
by variations of our basic model.

Our first application considers rail grinding. Rail cracks increase with increasing intervals between
grinding occasions, implying that more grinding passes must be performed—thus generating higher costs.
We optimize the grinding schedule for a set of track sections presuming a deterministic model for crack
growth; hence, no corrective maintenance (CM) will occur between the grinding occasions scheduled.
The second application concerns two approaches for scheduling component replacements in aircraft
engines. The first approach is bi-objective, simultaneously minimizing the cost for the scheduled PM
and the probability of unexpected stops. In the second approach the sum of costs for PM and expected
CM—without rescheduling—is minimized. When rescheduling is allowed, the 0-1 ILP model is used as
a policy by re-optimizing the schedule at a component failure, which then constitutes an opportunity
for PM. The policy manages the trade-off between costs for PM and unplanned CM and is evaluated in
a simulation of the engine. The third application considers components’ replacement in wind mills in a
wind farm, extending the PMSPIC to comprise multiple tiers with joint set-up costs. Due to the large
number of components unexpected stops occur frequently, thus calling for a dynamic rescheduling,
which is evaluated through a simulation of the system. In each of the three applications, the use of the
0-1 ILP model is compared with age or constant-interval policies; the maintenance costs are reduced
by up to 16% as compared with the respective best simple policy. The results are strongest for the first
two applications, possessing low levels of unmodeled randomness.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

To ensure that a system stays operational, or to restore a failed
system to an operational state, requires maintenance; different
system states call for different types of maintenance activities.
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Maintenance optimization means deciding which maintenance
activities to perform, and when, such that one or several objectives
are optimized. Maintenance optimization models of systems com-
prising one or several components, and including repairs and
replacements of components, as well as inspections and condition
monitoring, are extensively studied in the literature; see the sur-
veys (Dekker, Wildeman, & van der Duyn Schouten, 1997; Nicolai
& Dekker, 2008; Wang, 2002). Of particular interest to this article
are two types of maintenance activities, often denoted preventive
maintenance (PM)—performed in order to avoid failure—and correc-
tive maintenance (CM)—performed after failure in order to restore
the system into an operational state.

This article considers the scheduling of PM activities for a multi-
component system using a dynamic finite horizon model. That is,
the system to be maintained consists of several components as-
sumed to possess a positive economic dependence such that any
maintenance activity generates common set-up costs shared by
the components. The model is dynamic in order to incorporate
unexpected events, i.e., CM activities. In the sequel, we denote by
maintenance occasion that maintenance occurs for at least one
component in the system. Further, replacement will denote a gen-
eric maintenance activity for a single component, even though in
our case studies a PM action is not always an actual replacement.

A common approach to maintenance scheduling—or mainte-
nance decision making—is to use a simple policy, which often con-
tains a number of parameters whose values are optimized either
numerically or analytically. The following policies are of interest
for the problems studied in this article and will be compared with
the optimization model developed. (i) The constant-interval policy
(CI) (e.g. Tian, Jin, Wu, & Ding, 2011) is to replace all components
after a predefined period (the parameter of the policy). (ii) The
age policy, in which a component is replaced when it reaches a
predefined age or at failure, was originally developed for single-
component systems. For multi-component systems we consider
an age policy with ‘soft’ and ‘hard’ component lives (constituting
the parameters of the policy), as described by Crocker and Kumar
(2000) and summarized as follows: ‘‘A maintenance occasion is
enforced if the age of any component reaches its hard life or if a
component failure occurs. At a maintenance occasion, additionally
failed components and components having surpassed their soft life
are replaced.’’ That is, the ‘hard’ life parameter sets a hard limit on
the interval between replacements of a component in the system;
the ‘soft’ life is the age parameter after which a component is
replaced if the set-up cost has been triggered by some other com-
ponent. (iii) A policy based on target built life (TBL) with hard lives
(the TBL and the hard lives constituting the policy parameters) is
then considered, as described by Crocker and Sheng (2008): ‘‘A
maintenance occasion is enforced if the age of any component
reaches its hard life or if any component fails. Given a maintenance
occasion, components are replaced until the expected number of
component failures before the TBL is reached is below one.’’ Note
that the constant-interval policy corresponds to a fixed schedule,
while the age and TBL policies do not.

The scheduling problem considered in this article is an exten-
sion of the opportunistic replacement problem (ORP) studied by
Almgren et al. (2012a) and described as follows: ‘‘The system con-
sists of a set of components. The time between two consecutive
replacements of a component may not exceed its assigned maxi-
mum replacement interval. To each time point in the planning per-
iod corresponds a fixed maintenance set-up cost and replacement
costs for each component. The problem is to schedule the compo-
nent replacements over a finite set of time points in order to min-
imize the total maintenance cost.’’ Systems consisting of safety
critical components should be maintained according to this princi-
ple. For each component in such a system the maximum replace-
ment interval corresponds to a technical life which is assigned
based on safety criteria. For other types of systems, however, a fail-
ure might be a mere inconvenience. Further, a failure may corre-
spond to a signal from a condition monitoring system indicating
that a threshold value is surpassed, and that a repair or replace-
ment action is necessary for the system to stay in operation. In
Almgren et al. (2012a), a 0-1 integer linear programming (0-1
ILP) model yields significant reductions of the maintenance costs
as compared with simpler policies of the types (i)–(iii). Patriksson,
Strömberg, and Wojciechowski (2014) consider the stochastic ORP,
which extends the ORP to allow for uncertain maximum replace-
ment intervals and—given a failure of one component—to decide
whether additional components should be replaced, by using a
two-stage stochastic programming model. That setting, however,
presumes identical costs for unexpected and scheduled mainte-
nance stops. In this article PM is scheduled, but instead of enforc-
ing a maximum replacement interval, a deterioration cost is
assigned to the length of the time interval between scheduled
PM actions. We will demonstrate by means of case studies that this
provides a rich and promising framework for PM scheduling.

The idea of assigning a deterioration cost to a maintenance
interval is not new. The standard indirect grouping model for PM, re-
viewed by Dekker et al. (1997), is also based on this idea and con-
tains a fixed maintenance occasion cost, a preventive maintenance
cost, and a deterioration cost function for each component. A main-
tenance stop occurs every T time units and component i is replaced
every kiT time units. A closed form expression of the average main-
tenance cost is obtained and values for the parameters T 2 Rþ and
ki 2 N are chosen by numerical optimization. Since the average
cost is minimized, a static infinite horizon model is obtained.

As discussed in Dekker (1995), varying the form of the deterio-
ration cost function yields a large variety of maintenance problems
including optimal block replacement, minimal repair, and standard
inspection, as well as inventory problems, such as the joint replen-
ishment problem (JRP). The JRP has been studied under indirect
grouping strategies as well as over a finite horizon (Khouja &
Goyal, 2008)—then denoted the dynamic JRP (DJRP); it is closely
connected to the preventive maintenance scheduling problem with
interval costs (PMSPIC) considered in this article. Our 0-1 ILP model
was introduced by Joneja (1990) for the DJRP (see Section 2 for an
in-depth discussion).

Grigoriev, Van De Klundert, and Spieksma (2006) consider the
periodic maintenance problem (PMP), which includes deterioration
costs. The PMP is periodic in that, at the end of the time horizon
the maintenance schedule starts over. Since the deterioration cost
is deterministic, no rescheduling is needed and the solution ob-
tained is static. The system consists of a set of machines among
which at most one at a time may be maintained. Hence, the main-
tenance occasions typically are spread out over time in contrast to
the PMSPIC, for which the component replacements typically are
coordinated at fewer time points. Grigoriev et al. also presents a
0-1 ILP model for the PMP, based on a network flow formulation,
which resembles our basic model for the PMSPIC (see Section 2.2).
Since periodicity may simplify the integration of maintenance and
staff planning, periodic maintenance is often desired as output
from maintenance policies; we show in this article how periodicity
can be incorporated in the PMSPIC through side-constraints.

The remainder of this article is organized as follows. In Section 2
we define the PMSPIC, present a 0-1 ILP model based on a multi-
commodity flow formulation, and establish some important prop-
erties of the model. Sections 3–5 present three industrial applica-
tions of the model. Section 3 considers the grinding of railway
tracks, presuming a deterministic model of crack growth. Section 4
considers preventive component replacements in an aircraft en-
gine module using two approaches: (a) the bi-objective minimiza-
tion of the cost for the scheduled PM and the probability of an
unexpected stop and (b) the minimization of the sum of the costs
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for the scheduled PM and the expected CM costs, which are as-
signed as the deterioration costs. Section 5 presents an extension
of the model for component replacement decisions in a wind
farm—again assigning the expected CM cost as the deterioration
cost. In Section 6 we draw conclusions and present suggestions
for future research.

All computational tests are performed on an Intel 2.80 GHz dual
core Linux PC with 4 GB RAM. The mathematical optimization
models are implemented in AMPL (version 12.1) and solved using
CPLEX (version 12.1).

2. The problem definition and the 0-1 ILP model

We first provide a formal description of the PMSPIC and show
that it generalizes the DJRP—defined by Boctor et al. (2004)—and
the ORP—defined by Almgren et al. (2012a). We then present a
0-1 ILP model of the PMSPIC (which was introduced for the DJRP
by Joneja, 1990) and discuss its relation to models of the DJRP
and the ORP. We show that the integrality restrictions on a major-
ity of the variables can be relaxed, and that the inequality con-
straints define facets of the convex hull of the set of feasible
solutions. The most important consequence of these properties is
that the models are—relatively speaking—easy to solve. We then
introduce a representation of time-independent costs—to be em-
ployed in the case studies—and model periodicity constraints, such
that solutions conform to the class of standard indirect grouping
strategies.

2.1. The PMSPIC

The preventive maintenance scheduling problem with interval
costs (PMSPIC) is defined as follows.

Definition 1 (PMSPIC). Consider a system with a set N :¼
f1; . . . ;ng of components and a set T :¼ f1; . . . ; Tg of time steps
at which maintenance can be performed, T defining the planning
horizon. A PM schedule consists of a set of scheduled replacement
times in T for each component. All n components are assumed to
obtain PM at the times 0 and T þ 1. A maintenance occasion
(defined by the PM of at least one component) at time t 2 T

generates the set-up/maintenance occasion cost dt . If PM of
component i 2 N is scheduled at the times s 2 T [ f0g and
t 2 fsþ 1; . . . ; T þ 1g, but not in the (possibly empty) time interval
fsþ 1; . . . ; t � 1g, then the maintenance interval, denoted ðs; tÞ,
generates the interval cost ci

st . Find a PM schedule which minimizes
the sum of maintenance occasion and interval costs. h

Definition 1 assumes that PM is performed at times 0 and T þ 1.
This is a valid assumption if the system is new at time 0 and
scrapped at the end of the planning horizon. A component i pos-
sessing a history without PM at time 0 can be included in the
PMSPIC by modifying the interval costs ci

0t ; t 2 T [ fT þ 1g. Simi-
larly, a discount on the interval costs ci

s;Tþ1; s 2 T [ f0g, can ac-
count for components obtaining PM near the end of the planning
horizon and which can thus continue operating without mainte-
nance beyond it. Note that we consider maintenance to be instan-
taneous, i.e., if maintenance is planned at time t then—besides
unexpected failures and planned maintenance—the system is as-
sumed to be operational at times t � 1 and t þ 1.

We next show that a special case of the PMSPIC coincides with
the inventory problem DJRP (Boctor et al., 2004; Khouja & Goyal,
2008). Consider the replenishment of n products. Let St be a fixed
cost for ordering products at time t 2 T ; sit the individual ordering
cost (independent of the number of units ordered) of item i 2 N at
time t 2 T ; hit the unit inventory holding cost for item of type i at

time t, and bdit the demand of item i at time t. The DJRP is to
schedule the replenishment of items such that the sum of ordering
and inventory costs are minimized and no shortage arises. As ob-
served by Boctor et al. (2004), an optimal schedule exists such that
a replenishment of item i at the times u and v, and not in-between

these time points, implies that
Pv�1

t¼u
bdit units of item i are ordered

at the time u. Consider an instance of the PMSPIC such that the set-
up cost corresponds to the joint ordering cost of the DJRP instance,
and the interval cost of the PMSPIC corresponds to single-item
ordering and inventory holding costs of the DJRP. That is, ci

uv :¼
siu þ

Pv�1
t¼uþ1

Pt�1
r¼uhir

� �bdit , u 2 T [ f0g, v 2 fuþ 1; . . . ; T þ 1g, and

dt :¼ St ; t 2 T . Solving the corresponding instance of the PMSPIC
yields a solution to the DJRP. Since the DJRP is NP-hard (Arkin,
Joneja, & Roundy, 1989) this implies that also the PMSPIC is NP-
hard. That the PMSPIC is a strict generalization of the DJRP follows
by dimensionality: not every set ci

uv
� �

of costs can be realized as
the image of a set fsiu;hirg of ordering and inventory costs under
the above correspondence.

Another problem arising as a special case of the PMSPIC is the
ORP (see Section 1), which models PM of components for a mul-
ti-component system with a set-up cost dt at each time t 2 T . To
each component i 2 N is assigned a maximum replacement inter-
val Ti and a replacement cost cit at time t. The ORP is to find a min-
imum cost replacement schedule over the time interval defined by
the set T . Consider an instance of the PMSPIC defined by the set-up
costs dt , and the interval costs ci

st :¼ cit when t � s 6 Ti, and
ci

st :¼ T maxu2T fdug þ n �maxj2N ; u2T fcjug
� �

þ 1 when t � s P
Ti þ 1. (The schedule defined by the replacement of all the compo-
nents at each time step then possesses a lower cost than any sche-
dule that includes a maintenance interval longer than Ti for any
component i.) Any optimal solution to this PMSPIC instance is thus
optimal to the ORP, which is an NP-hard problem (Almgren et al.,
2012a). Note that the maximum replacement interval Ti corre-
sponds to a maximum inventory capacity for the DJRP; hence,
capacitated versions of the DJRP are special cases of the PMSPIC.

2.2. The 0-1 ILP model

We present a 0-1 ILP model for the PMSPIC and discuss its rela-
tion to other models in the literature. We define the set
I :¼ fðs; tÞj0 6 s < t 6 T þ 1; s; t 2 Zg of replacement intervals
and introduce the variables

xi
st ¼

1; if component i receives PM at the times s and t;

and not in-between; i 2N ;

0; otherwise; ðs; tÞ 2 I ;

8><>:
and

zt ¼
1; if maintenance occurs at time t;

0; otherwise;

�
t 2 T :

The PMSPIC is now modeled as the problem to

minimize
X
t2T

dtzt þ
X
i2N

X
ðs;tÞ2I

ci
stx

i
st ; ð1aÞ

subject to
Xt�1

s¼0

xi
st 6 zt ; i 2 N ; t 2 T ; ð1bÞ

Xt�1

s¼0

xi
st ¼

XTþ1

r¼tþ1

xi
tr; i 2 N ; t 2 T ; ð1cÞ

XTþ1

t¼1

xi
0t ¼ 1; i 2 N ; ð1dÞ

xi
st 2 f0;1g; i 2 N ; ðs; tÞ 2 I ; ð1eÞ

zt 2 f0;1g; t 2 T : ð1fÞ
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The model (1) is based on a model for the uncapacitated
fixed-charge multi-commodity network design problem (e.g.
Balakrishnan, Magnanti, & Wong, 1989), each component i corre-
sponding to a commodity and the set T [ f0; T þ 1g corresponding
to the set of nodes in a directed graph with the arcs ðs; tÞ 2 I direc-
ted ‘‘forward in time’’. The fixed charges are assigned to the nodes.
For each component i, one unit of flow is to be sent from node 0 to
node T þ 1. A maintenance occasion at time t corresponds to
opening all the arcs in the set fðs; tÞjs 2 f0; . . . ; t � 1gg. The objective
(1a) is to minimize the sum of all set-up and interval costs. The con-
straints (1b) ensure that if a maintenance interval for component i
ends at time t, then maintenance occurs at time t. For each compo-
nent i, the constraints (1c) ensure that the same number of mainte-
nance intervals end and start at time t. The constraints (1d) ensure
that a maintenance interval of component i starts at time t ¼ 0.

Already Fulkerson (1966) presented a flow model for optimal
replacement decisions in a single-component system. For jN j ¼ 1
the model (1) reduces to that presented by Fulkerson (1966).

The model (1) was presented in Joneja (1990) for the DJRP (with
ordering costs equivalent to ci

st in Definition 1). Only its continuous
relaxation was solved—to obtain a lower bound for the evaluation of
the heuristics which constitute the main focus of the article. The
model is more closely studied in Joneja (1987, unpublished), but
to the best of our knowledge, it has not been further studied in the
literature, although other formulations of the DJRP and similar prob-
lems are present (see Boctor et al., 2004, for an overview). In partic-
ular, a model introduced by Boctor et al. (2004) is strengthened
(Narayanan & Robinson, 2006) to a model equivalent to (1), which,
however, serves only as a basis for heuristics and lower bounding.
To the best of our knowledge, the model (1) has neither been studied
from a polyhedral point of view, nor been applied directly as a deci-
sion support tool, nor at all within the maintenance community.

2.3. Properties of the 0-1 ILP model

We next investigate the mathematical properties of the model
(1). We first show that the integrality restrictions on the variables
xi

st can be relaxed, then that all linear inequalities define facets of
the convex hull of the set of feasible solutions. Let

PConv :¼ conv ðx;zÞ 2 f0;1gnðTþ1ÞðTþ2Þ=2þT
			 ð1bÞ; ð1cÞ; and ð1dÞ hold

n o
denote the convex hull of the set of feasible solutions to the model
(1). Further, for any fixed values of zt 2 f0;1g; t 2 T , let

Pz :¼ x 2 ½0;1�nðTþ1ÞðTþ2Þ=2
			 ð1bÞ; ð1cÞ; and ð1dÞ hold

n o
denote the feasible set of the continuous relaxation of the corre-
sponding projection of the feasible set of the model (1) onto the
dimension of the variables x.

Proposition 1. If the variables zt ; t 2 T , are fixed to binary values
then the polyhedron Pz � RnðTþ1ÞðTþ2Þ=2 possesses integral extreme
points.
Proof. When the values of the variables z are fixed, the model (1)
decomposes over the components i 2 N . For each component i 2 N

a network flow problem is obtained whose feasible set has integral
extreme points (e.g., Nemhauser & Wolsey, 1988, Sect. III.1, Cor.
2.9). h

Proposition 1 implies that the integrality restrictions on the
variables xi

st can be relaxed.

Proposition 2. Each of the constraints (1b) induces a facet of the
convex hull of feasible solutions PConv .
Proof. We start by investigating the dimension of the convex hull
polytope PConv. The model (1) contains nðT þ 1ÞðT þ 2Þ=2þ T vari-
ables and nðT þ 1Þ linearly independent equality constraints. It
thus holds that dimðPConvÞ 6 D :¼ nðT þ 1ÞT=2þ T. Define the face
Fit � PConv as the set of points that, for fixed values of i and t, satisfy
the constraint (1b) with equality, implying that
dimðFitÞ 6 dimðPConvÞ � 1. A face of a polytope is a facet if its
dimension is one unit less than that of the polytope itself
(Nemhauser & Wolsey, 1988, Sect. I.4.3). We will present Dþ 1
schedules whose corresponding points, ðx; zÞ, are affinely indepen-
dent and belong to PConv. Out of these schedules, D will be shown to
belong to Fit , thus implying that dimðFitÞP D� 1 and hence that Fit

is a facet of PConv. We assert the affine independence by, for each
new schedule, setting a variable value to 1 which was set to 0 in
all previous schedules.

First, the schedule of no PM and no maintenance occasions
(except for the PM of all the components at the times 0 and T þ 1)
is constructed; it belongs to the set Fit . For each u 2 T , a schedule is
constructed with no PM but with a single maintenance occasion at
the time u (i.e. zu ¼ 1; zv ¼ 0, v 2 T n fug). This yields T additional
schedules which all belong to the set PConv and which all, except for
u ¼ t, also belong to set Fit . The set of all thus constructed
schedules is affinely independent.

We next introduce PM of a single component. For
v 2 f0; . . . ; T � 1g and w 2 fv þ 1; . . . ; Tg, a ðv;wÞ-schedule for
component i is defined by its PM at the times v and w only; these
are also the only two maintenance occasions (except that PM is
performed for all the components at the times 0 and T þ 1). Each of
these TðT þ 1Þ=2 schedules extends the set of affinely independent
schedules and they all belong to Fit . This procedure is applied for all
components j 2 N n fig, with the addition of a maintenance
occasion and a replacement of component i at time t in order to
assure that the schedules belong to the set Fit .

Summarizing, we obtain 1þ T þ nTðT þ 1Þ=2 ¼ Dþ 1 affinely
independent schedules, among which D belong to the face Fit .
Hence, Fit is a facet of PConv, which proves the proposition. h
2.4. Time-independence and periodicity

The applications of the model (1) presented in Sections 3–5 con-
sider PMSPIC instances with time-independent costs, for which we
here introduce a representation. By additional appropriate con-
straints the model (1) can enforce solutions conforming to the class
of standard indirect grouping solutions, which may, however, be
non-optimal for the PMSPIC.

The time-independent cost structure is defined as follows. To
each maintenance occasion is assigned the set-up cost d; hence,
dt ¼ d for all t 2 T . Further, each scheduled PM of component
i 2 N is assigned the component cost cPM

i . For component i, the dete-
rioration cost function Mi : T ! R is such that each PM interval of
length u 2 T generates the deterioration cost MiðuÞ in addition to
the component cost. This means that

ci
st :¼ cPM

i þMiðt � sÞ; s 2 T ; t 2 fsþ 1; . . . ; T þ 1g; ð2aÞ

and

ci
0t :¼ MiðtÞ; t 2 f1; . . . ; T þ 1g: ð2bÞ

Given a schedule represented by the solution ðx; zÞ to the model (1),
the PM cost is defined as

CPM
ðx;zÞ :¼

X
t2T

dzt þ
X
i2N

X
s2T

XTþ1

t¼sþ1

cPM
i xi

st: ð3aÞ
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Correspondingly, since xi
st ¼ 1 if and only if ðs; tÞ is an active main-

tenance interval, the total deterioration cost corresponding to the
solution ðx; zÞ is defined as

CD
ðx;zÞ :¼

X
i2N

X
ðs;tÞ2I

Miðt � sÞxi
st : ð3bÞ

The cost structure of the time-independent PMSPIC equals that
of the independent standard grouping strategy reviewed by Dekker
et al. (1997). However, we do not enforce periodic replacement,
and we consider a discretized and finite planning horizon. As dis-
cussed in Dekker (1995), different choices of the deterioration cost
functions Mi lead to a variety of models.

We now extend the model (1) by a set of constraints such that
only solutions fulfilling the periodicity requirement of standard
indirect grouping (see Section 1) are feasible. Periodicity of compo-
nents’ replacement is imposed by the constraints

xi
st ¼ xi

2s�t;s; i 2 N ; ðs; tÞ 2 fðu; vÞ 2 I jv 6 2ug; ð4aÞ

which imply that if a replacement interval is scheduled between the
times s and t, then a replacement interval must be scheduled also
between the times s� ðt � sÞ and s.

We next establish that periodicity of the maintenance occasions
is imposed by the constraints

zs þ zt 6 1þ z2s�t ; ðs; tÞ 2 I : T P t < 2s > 0; ð4bÞ
zs 6 zks; k 2 1; . . . ; T=sb cf g; s 2 T : ð4cÞ

Assume that for some p P 2; zp :¼ 1 and zr :¼ 0, r 2 f1; . . . ;

p� 1g, hold. From (4c) then follows that zkp ¼ 1, k 2
f1; . . . ; bT=pcg. In (4b), let s :¼ kp and t :¼ kpþ r, k 2 f1; . . . ;

bT=pcg; r 2 f1; . . . ; p� 1g (i.e., s is a multiple of p while t is not);
the appearance of (4b) then is the inequality zkpþr 6 zkp�r . By
induction with respect to k it then follows that zt ¼ 0,
t 2 T n fkp j k 2 f1; . . . ; bT=pcgg, i.e., any set of maintenance occa-
sions satisfying (4b) and (4c) is periodic.

Note that the requirements (4b) and (4c) make the PMSPIC
polynomially solvable by evaluating all T possible lengths of the
intervals between maintenance occasions; by Proposition 1 each
of these evaluations can be performed in polynomial time.

3. Application to rail grinding

Rolling contact fatigue (RCF) defects, such as head checks, squats,
corrugations, and wear, may cause severe problems in a railway
system. If the natural wear rates of the rail are too low—such that
initiated cracks and defects are not worn away quickly enough—
artificial procedures for defect removal must be adopted (Grassie,
2005). The most common measure to prevent or remove RCF de-
fects is rail grinding: a grinding machine removes a layer of the rail
in order to reduce cracks and corrugations and to maintain a cor-
rect track geometry. For a thorough description of RCF cracks, see
Lewis and Olofsson (2009). We consider planning the rail grinding
on a set of track sections.

In the model (1), N denotes a set of track sections, each charac-
terized by its curve radius. The PM actions considered are rail
grinding and replacement of the track section. Since the rail de-
grades with time, the cost for rail grinding increases with the
length of the interval between two consecutive maintenance occa-
sions. In this application, time represents tonnage, which is mea-
sured in mega gross tonnes (MGT; 1MGT means 106 tonnes
being transported on the rail).

3.1. Rail degradation and maintenance costs

We consider a simple model for RFC crack depth growth consid-
ering only head check cracks. The model is based on the two
assumptions that the crack depth growth rate (a) depends on the
radius of the track section and (b) increases or is constant with
time (tonnage); see (INNOTRACK, 2009, Eq. (8)), which explains
how the growth rate depends on the radius of the track section
for the rail grade R220. Since the increase of the crack growth rate
with time is uncertain, we consider two degradation models: the
crack depth growth rate (i) is constant and (ii) increases by 1%
per MGT.

Cracks are removed by performing a number of grindings of the
track section. The number of grindings required to remove a crack
depends on its depth. We assume that one pass with the grinding
machine can remove cracks up to h mm depth, and that the cost of
one grinding pass is cg . A multiple (depending on the time [ton-
nage] between two consecutive occasions) of cg is thus paid for
each grinding occasion. If the cracks grow too deep—which in
our modeling is represented by the time between two consecutive
maintenance occasions on track section i exceeding its limit
Ti—then the section must be replaced at a cost cr � cg . This cost
structure is modeled by the following deterioration cost function
(see Section 2.4 and Fig. 1): The crack depth of track section i at t
time units after the previous PM action is a function of its curve ra-
dius and is denoted LiðtÞ. The deterioration cost is then defined as
MiðtÞ :¼ cg

LiðtÞ
h

l m
if t 6 Ti � 1 and MiðtÞ :¼ cr if t ¼ Ti. The length of

the maintenance interval may not exceed Ti, which is incorporated
in the model (1) by letting MiðtÞ � cr if t P Ti þ 1. We let cPM

i :¼ 0,
implying that the interval costs in the model (1) are defined as
ci

st ¼ Miðt � sÞ. Finally, each time any maintenance is performed
the set-up cost d, for utilizing a grinding machine, is paid.

3.2. Numerical results

We consider a set of five track sections (i.e., n ¼ 5) with radii
500 m, 700 m, 900 m, 1100 m, and 1300 m, respectively. Whenever
several track sections have identical curve radii these will render
the same grinding strategy in an optimal solution to the program
(1). In a more detailed model, including the geographical locations
of the track sections, different strategies can, however, be optimal
for different sections having equal radii.

We employ the costs for rail grinding and rail replacement pre-
sented in Chattopadhyay, Reddy, and Larsson-Kråik (2005). Since
the main objective of our case study is to analyze the grinding
strategies for a system of track sections, these costs are normalized
with respect to cg , such that cg ¼ 1 and cr ¼ 76. We assume that
each grinding pass removes cracks up to h ¼ 2:5 mm, and that
the rail needs to be replaced when the crack depth exceeds
10 mm (Banverket, 2004). The time limits are then computed as
Ti ¼ argmintftjLiðtÞP 10mmg, i 2 N . Since the set-up cost d is
not considered by Chattopadhyay et al., we analyze the rail grind-
ing and replacement model for three magnitudes, d 2 f0;1;10g, of
these costs. Time is discretized into intervals corresponding to 2
MGT and the planning horizon comprises T ¼ 100 intervals.
Fig. 2 illustrates optimal maintenance schedules for the constant
and increasing degradation models, respectively. As the mainte-
nance occasion cost d increases, the coordination of the mainte-
nance occasions becomes increasingly important. For the
increasing degradation model, an optimal solution consists of more
frequent maintenance occasions with fewer grinding passes at
each occasion, compared to the constant degradation model. This
is due to the fact that, for an increasing crack growth rate, the
lengths of the time intervals, in which the deterioration cost func-
tion is constant, decrease.

We compared the maintenance schedules obtained by solving
the model (1) with three other maintenance scheduling principles:
(i) Solve the model (1) extended by the constraints (4a), implying
that the maintenance operations on each track section are period-
ical. (ii) Solve the model (1) extended by the constraints (4b) and
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Fig. 2. Rail grinding schedules for the constant and increasing degradation models, and three magnitudes for the values d of the maintenance occasion cost. In each of the
schedules, the five rows represent the five track sections.
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(4c), implying that the maintenance occasions for the system are
periodical. (iii) Apply the age policy with soft and hard lives (see
Section 1). The hard lives are set to ahard

i :¼ Ti � 1 and the soft lives
to asoft

i :¼ Ti � g. The age policy is applied for each of the values of
g 2 f1; . . . ;mini2N fTigg; for each problem instance the value yield-
ing the lowest objective value is chosen.

In Table 1, the costs, CPM
ðx;yÞ (3a), resulting from the four mainte-

nance principles are presented for the two cases of constant and
increasing degradation, respectively. When d ¼ 0, the inclusion of
the constraints (4a) or (4b)–(4c) does not affect the maintenance
cost as compared to solving the model (1), since then the problem
can be solved for each individual track section, which in turn
means that the requirement of a cyclic schedule poses no further
restrictions. For d 2 f1;10g the cyclic schedules generate higher
costs than the model (1) schedule. For both constant and increas-
ing degradation, the cost of the schedule resulting from the model
(1), (4a) is never higher than that resulting from the model (1),
Table 1
The total maintenance cost CPM

ðx;zÞ

� �
and the number of maintenance occasions (#) resultin

Degradation rate d Model (1) Model (1), (4a

CPM
ðx;zÞ

# CPM
ðx;zÞ

Constant 0 80 37 80
Constant 1 89 8 91
Constant 10 137 5 138

Increasing 0 98 42 98
Increasing 1 119 13 119
Increasing 10 192 8 192
(4b)–(4c). This is due to the fact that the constraints (4a) follow
as a consequence of the constraints (4b) and (4c), (1b). The age pol-
icy performs well for the constant degradation case, but results in
more expensive schedules for the increasing degradation case. For
the most successful instance, the model (1) reduces the costs by
10% as compared to the age policy.
4. Application to maintenance of a low pressure turbine

The low pressure turbine (LPT) is a module of the aircraft engine
RM12, which is manufactured and serviced at GKN Aerospace (for-
merly Volvo Aero Corporation) in Trollhättan, Sweden. The engine
RM12 consists of several modules, each comprising several compo-
nents. When a component is to be replaced, the engine is removed
from the aircraft and the corresponding module is disassembled.
When an engine is removed for maintenance a replacement engine
g from four scheduling principles for rail grinding.

) Model (1), (4b)–(4c) Age policy

# CPM
ðx;zÞ

# CPM
ðx;zÞ

#

37 80 26 80 18
9 93 5 92 8
5 138 5 138 5

42 98 42 98 27
11 120 9 132 10

8 194 7 196 7



1 For c � 0 an optimal schedule is to replace all components at all times.
2 For c ¼ 1 an optimal schedule would contain no replacements at all.
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is hired. We consider the maintenance scheduling of the LPT mod-
ule only; the data used originate from a case study in Almgren et al.
(2012a).

The LPT contains ten components, four classified as safety criti-
cal and six as on condition. A failure of a safety critical component
may have a catastrophic outcome; each such component is thus as-
signed a technical life defining the latest allowed time for its
replacement, i.e., a maximum allowed replacement interval. An on
condition component is replaced after a condition measurement
indicates that a threshold value has been reached. We regard the
event of a condition measurement enforcing a replacement as a
component failure, and assume its probability to be Weibull distrib-
uted over time. Time units are measured in flight hours (fh). For
each component i 2 N , the replacement cost cPM

i is composed by
its purchase cost and the work cost for its replacement. The set-
up cost d consists of the costs for removing the module and hiring
a replacement engine. Due to confidentiality, all costs presented
are normalized by the set-up cost d. Time is discretized into inter-
vals of 50 fh and the planning horizon comprises T ¼ 100 intervals
(i.e., 5000 fh).

An optimal schedule for replacement of the safety critical com-
ponents only could be obtained by solving an instance of Almgren
et al. (2012a, model (1)). One may refrain from planning future
replacements of the remaining on condition components, but an
absent maintenance plan can result in many unplanned production
stops, due to maintenance as well as at inconvenient times (as, e.g.,
when the aircraft is not located at the home base). Any unplanned
maintenance stop generates at least the set-up cost d, but the cost
may be much higher, however, hard to estimate. Therefore, we first
consider the bi-objective optimization problem of minimizing the
cost for PM and the probability of at least one unexpected mainte-
nance stop within the planning horizon. Then, we assign a cost to
each unexpected maintenance occasion. For both problems, we
investigate the cases with and without periodicity restrictions.

Maintenance scheduling of the LPT has previously been studied
by Almgren et al. (2012a) and Patriksson et al. (2014). Almgren
et al. (2012a) assign maximum replacement intervals (represent-
ing the expected lives) to on condition components while unex-
pected stops are ignored. Almgren et al. (2012b) employ the
same methodology for the entire aircraft engine. Patriksson et al.
(2014) model maintenance decisions for the LPT assuming equal
costs for scheduled and unexpected stops, thus restricting PM to
occasions when the replacement of at least one component is trig-
gered by condition measurements. None of these three approaches
considers additional costs for unexpected stops.

4.1. The bi-objective approach

Consider the bi-objective minimization of the PM cost, defined
by (3a), and the probability of unexpected maintenance stops, de-
fined by (5) below, subject to the constraints (1b)–(1e) and (1f). A
schedule is Pareto optimal if no other feasible schedule exists such
that both the probability of an unexpected stop and the PM cost is
lower (see Ehrgott (2005) for the concept of Pareto optimality in
multiple objective optimization). We aim at finding Pareto optimal
schedules whose objective values are scattered over the set of
Pareto optimal solutions, i.e., the Pareto front.

4.1.1. The choice of deterioration costs
Assume that each component i 2 N possesses a cumulative fail-

ure distribution function Fi : R! R. A solution ðx; zÞ fulfilling the
constraints (1b)–(1e) and (1f) corresponds to one replacement
schedule for each component i. Let qi denote the number of sched-
uled replacements of component i and Sr

i the number of time steps
between replacements r � 1 and r; r 2 f1; . . . ; qi þ 1g. We assume
independence of failures between different components and
between different replacement intervals, and presume that the
replacement schedule defined by ðx; zÞ is employed. The probability
of an unexpected maintenance stop during the time interval
½0; T þ 1� is then calculated as

pstop
ðx;zÞ :¼ 1�

Y
i2N

Yqiþ1

r¼1

1� Fi Sr
i

� �� �
; ð5Þ

where 1� Fi Sr
i

� �
is the probability of no failures occurring for indi-

vidual r of component i. For u 2 T , the deterioration cost function is
defined as

MiðuÞ :¼ �1� c
c

logð1� FiðuÞÞ; c 2 ð0;1�; ð6Þ

where c is a weight parameter. That is, Mi Sr
i

� �
is proportional to the

log-probability of failure of component i within its rth replacement
interval. The next proposition shows that solving the model (1)
yields a Pareto optimal schedule.

Proposition 3. Let ðx; zÞ be an optimal solution to (1) with the
deterioration function defined by (6). The schedule corresponding to
ðx; zÞ is Pareto optimal for the minimization of (3a) and (5) subject to
(1b)–(1e) and (1f), and the value of (1a) at ðx; zÞ equals

1
c

cCPM
ðx;zÞ � ð1� cÞ log 1� pstop

ðx;zÞ

� �� �
: ð7Þ
Proof. By the equalities (5) and (6) it holds that

�1� c
c

log 1� pstop
ðx;zÞ

� �
¼
X
i2N

Xqiþ1

r¼1

MiðSr
i Þ:

Using the definitions (2) and (3a) of deterioration and PM costs, for
the case when dt ¼ d; t 2 T , the objective (1a) can be expressed as
(7). Since the function g : R! R, defined by gðuÞ :¼ � logð1� uÞ, is
increasing, the schedule given by ðx; zÞ is Pareto optimal with re-
spect to the objectives (3a) and (5). h

The weight parameter c controls the balance between the
objectives. Letting c � 0 means minimizing the probability of
unexpected failures,1 while c ¼ 1 means minimizing the cost of
PM.2 Since the feasible set of an ILP is in general non-convex, our
weighted average approach does not guarantee that all Pareto opti-
mal schedules can be found. In our tests the Pareto optimal solutions
found are, however, fairly well spread.

Since the component failures are Weibull distributed
(e.g. Murthy, Xie, & Jiang, 2004) with shape parameter bi and scale
parameter ai, the deterioration function can be simplified as

MiðuÞ ¼ �
1� c

c
logð1� FiðuÞÞ ¼

1� c
c

u
ai


 �bi

:

4.1.2. Results
The weight parameter c is heuristically varied such that each

new point on the Pareto front is generated between the two of
the already generated points having the largest gap. We study
schedules obtained by solving the two models (1), (4) and (1)
(i.e., with, and without, periodicity requirements on both mainte-
nance occasions and replacements). Since the model (1), (4) is a
restriction of the model (1), all (Pareto optimal) solutions to (1),
(4) are feasible solutions to (1). Hence, any Pareto optimal solution
to (1), (4) is either Pareto optimal to (1) or dominated by at least
one solution to (1). This property is indicated in Fig. 3, which
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Fig. 3. Objective values for Pareto optimal schedules with and without the
periodicity requirements (4) on the maintenance occasions and the component
replacements, for the bi-objective LPT case.
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illustrates the results of our computations. The Pareto optimal
periodic schedules cost up to 5% more than the corresponding
non-periodic schedules with approximately the same probability
of an unexpected maintenance stop; see Fig. 3(b). Table 2 provides
the objective values and the CPU times required for solving the
models for two values of the weight parameter c (the correspond-
ing points are indicated in Fig. 3(a)). We observe, as expected, that
adding the periodicity restriction (4) typically reduces the solution
time. The results for c ¼ 0:0586 also demonstrate that verifying the
optimality of a solution to the model (1) can be quite time consum-
ing; the optimal solution to this instance was found already after
60 s.
4.2. The expected maintenance cost

A cost is assigned to each unexpected maintenance stop and we
minimize the sum of the PM costs (3a) and the cost of unexpected
maintenance stops over the planning period, i.e., the CM cost,
defined in (9) below.
Table 2
Objective values and CPU-times obtained for two values of the weight parameter c on the

c Model (1)

pstop
ðx;zÞ CPM

ðx;zÞ
CPU-time (s)

0:001 0.166 166.7 3.3
0:0586 0.773 40.2 225.2
4.2.1. Choosing the deterioration cost
Assume that the components’ failure probabilities are indepen-

dent. If component i fails, then a maintenance stop, at the cost dCM,
and a replacement, at the cost cPM

i , must be performed. Consider
the renewal function mi : Rþ ! R, such that miðuÞ is the expected
number of failures of a newly replaced component i during the
time period ½0;u�, provided that it is replaced at failure. The deteri-
oration cost function is given by

MiðuÞ :¼ cPM
i þ dCM

� �
miðuÞ; u 2 T : ð8Þ

The calculation of the renewal function for the Weibull distribution
is non-trivial (Smith & Leadbetter, 1963). For inclusion into the
model (1), the value of the Weibull renewal function is required
only at a discrete set of time points. Hence, we simulate a large
number of Weibull processes, then used to obtain a numerical
approximation of the Weibull renewal function.

Assume that ðx; zÞ is a feasible solution to the model (1), that
components are preventively replaced according to the corre-
sponding schedule, and that each unexpectedly failed component
is instantly replaced, with no further modification of the schedule.
The CM cost is then defined as

CCM
ðx;zÞ ¼

X
i2N

Xqiþ1

r¼1

cPM
i þ dCM

� �
miðSr

i Þ; ð9Þ

where qi and Sr
i are defined as in Section 4.1.1. By the relations (8),

(9), (3a), and (2) the objective function in (1a) corresponds to
CPM
ðx;zÞ þ CCM

ðx;zÞ. If rescheduling at an unexpected failure of a component
is not allowed, then the model (1) yields an optimal replacement
schedule. It is, however, natural to consider a rescheduling at a
component failure. By re-optimizing the model at a given failure
event and rescheduling accordingly, the model (1) can be used as
a policy which may yield a lower total maintenance cost than that
resulting from the schedule initially computed. Allowing for
rescheduling (by the model (1)) at a component failure—which is
thus a PM opportunity—means, however, that the deterioration cost
function no longer captures the full expected CM cost, and, hence,
that the maintenance decisions are not provably optimal to the
problem of minimizing the sum of costs for PM and expected CM.

4.2.2. Simulation and results
In order to investigate the effect of rescheduling, we simulate

the system according to the following. The term policy here means
either a simple policy, or a fixed replacement schedule, or a re-
scheduling using the model (1). A scenario is obtained by—for each
component—sampling a sequence of component lives from its life
distribution. The policy provides the time of the first scheduled
maintenance stop. If a failure of any component occurs before that
stop, the unexpected maintenance stop cost dCM arises and the
failed component is replaced. If no failure occurs, the maintenance
occasion cost d arises and a scheduled maintenance stop is per-
formed. At both scheduled and unscheduled maintenance stops
the policy provides decisions for component replacements and
for the next scheduled maintenance stop. The replacement of com-
ponent i generates the cost cPM

i . After a component is replaced, it
obtains the life of the next component individual in the scenario
bi-objective LPT case.

Model (1), (4)

pstop
ðx;zÞ CPM

ðx;zÞ
CPU-time (s)

1 0.167 166.3 2.15
2 0.839 35.7 2.19
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Fig. 4. Fixed schedules obtained as solutions to model (1) with or without
periodicity restrictions (4) for the LPT case. Black and gray boxes correspond to
replacements of safety critical and on condition components, respectively.

398 E. Gustavsson et al. / Computers & Industrial Engineering 76 (2014) 390–400
sequence. All the policies are compared over the same set of
scenarios.

We consider three simple policies defined in Section 1. The first
is the constant-interval (CI) policy, defined by replacing all compo-
nents after tB time units. The value of the parameter tB is deter-
mined by comparing the mean cost from the policy over the set
of scenarios for tB 2 T . The second is the age policy based on soft
asoft

i

� �
and hard ahard

i

� �
lives for all components. For the safety crit-

ical components, ahard
i ¼ asoft

i :¼ Ti, where Ti is the technical life of
the component. For the on condition components,
ahard

i :¼ Ti þ ghard and asoft
i :¼ Ti þ gsoft, where the values of gsoft

and ghard are selected according to the following. First, ghard :¼ T
and the value of gsoft 2 f�mini2N fTig; . . . ; Tg yielding the lowest
mean cost over the simulated scenarios is selected. Then, the value
of ghard 2 fgsoft; . . . ; Tg yielding the lowest mean cost over the sim-
ulated scenarios is selected. The third simple policy considered is
the target built life (TBL) policy. The TBL value is set by performing
an exhaustive search, and the hard lives are set as for the age pol-
icy. Note that the CI policy does not consider rescheduling while
the others do. Further, policies allowing for rescheduling do not
correspond to fixed schedules, since the decisions on PM actions
depend on the future expected CM.

We compare the use of simpler policies with the replacement
schedules obtained by solving the model (1), and consider problem
settings with, and without, the restrictions (4). First, the schedules
are implemented without rescheduling: at failure, only the failed
component is replaced. Then, rescheduling is implemented by
solving the model (1) at every maintenance stop: scheduling for
the rest of the planning period and employing the life distributions
conditioned on the respective components’ ages for their first
interval costs. Only the replacement decisions at the current main-
tenance stop are implemented.

The cost of unexpected maintenance stops is hard to estimate;
we compare the performance of the suggested policies for
dCM 2 fd;2d;4dg. Table 3 shows the average maintenance costs
and the corresponding standard deviations, over the same set of
simulation scenarios. The model (1) with rescheduling provides
the most cost efficient policy. Out of the simple policies, the age
policy performs the best with an average cost that is 4–15% higher
than that of the model (1) with rescheduling. The best fixed sche-
dule is computed by the model (1). The periodic schedules are
slightly more expensive than the corresponding non-periodic ones.
For the case dCM ¼ 4d, the fixed schedule from model (1) is almost
as good as its rescheduling analogue; this is due to the fact that
unexpected maintenance stops are fairly rare. Fig. 4 shows the
periodic and non-periodic fixed schedules resulting from the mod-
el (1). The CPU-time required for solving the model (1) was always
less than 10 s.
5. Application to maintenance of a farm of wind turbines

We consider the scheduling of PM in a farm comprising M ¼ 5
identical wind turbines. This problem was studied by Tian et al.
(2011) in the context of condition based maintenance (CBM).
In this setting, maintenance costs are time-independent and
Table 3
Comparison of maintenance policies for the LPT. The mean total maintenance cost (standar
standard deviation is presented in units of the maintenance occasion cost d.

dCM Allowing for rescheduling

Model (1) Age TBL

d 27.4 (3.2) 28.5 (2.8) 29.2 (3.2)
2d 31.8 (4.1) 34.9 (4.1) 36.7 (4.4)
4d 39.0 (7.3) 44.7 (8.8) 50.4 (8.4)
composed by component replacement costs, and set-up costs for
individual wind turbine maintenance occasions and for visits to
the wind turbine farm. The probability of a component failure is as-
sumed to increase with its age according to a Weibull distribution
(Tian et al., 2011). Let M denote the set of identical wind turbines,
each with a set N of components to be maintained during a plan-
ning period, defined by the set T , and let the set I be defined as in
Section 2.2. The cost for visiting the wind farm is denoted f and the
d deviation) for each policy applied to 100 simulation scenarios is listed. The cost and

Fixed schedule

Model (1) Model (1), (4) CI

29.1 (3.2) 30.9 (3.3) 31.2 (3.3)
34.8 (5.8) 35.7 (5.8) 39.5 (5.5)
40.5 (7.8) 41.4 (6.8) 48.3 (8.7)



Table 4
The mean total maintenance costs (standard deviation) per day and average scenario
statistics for the three policies for the wind farm case.

CI CM Model (10)

Cost (std) ($=day) 820 (81) 1200 (80) 770 (71)
Wind farm visits 24.9 54.6 19.6
Visits/turbine 9.1 11.5 8.1
Replacements/component 24.1 11.6 24.6
Failures/scenario 19.9 54.6 18.8
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set-up cost for individual wind turbine maintenance is denoted d.
For component i 2 N the cost of a preventive (corrective) replace-
ment is denoted cPM

i (cCM
i > cPM

i ). For component i and replacement
interval ðs; tÞ 2 I , the interval cost ci

st is given by the deterioration
cost function Mi, defined in (2). We introduce the variables

xmi
st ¼

1; if component i in turbine m is replaced m 2M;

at times s and t; and not in� between; i 2 N ;

0; otherwise; ðs; tÞ 2 I ;

8><>:
zm

t ¼
1; if turbine m is maintained at time t; m 2M;

0; otherwise; t 2 T ;

�
and

yt ¼
1; if the farm is visited at time t;

0; otherwise;

�
t 2 T :

The model (1) is then extended to the problem to

minimize
X
t2T

fyt þ
X
t2T

X
m2M

dzm
t þ

X
m2M

X
i2N

X
ðs;tÞ2I

ci
stx

mi
st ; ð10aÞ

subject to
Xt�1

s¼0

xmi
st 6 zm

t ; i 2 N ; m 2M; t 2 T ; ð10bÞ

Xt�1

s¼0

xmi
st ¼

XTþ1

s¼tþ1

xmi
ts ; i 2 N ; m 2M; t 2 T ; ð10cÞ

XTþ1

s¼1

xmi
0s ¼ 1; i 2 N ; m 2M; ð10dÞ

zm
t 6 yt; m 2M; t 2 T ; ð10eÞ

xmi
st 2 f0;1g; i 2 N ; m 2M; ðs; tÞ 2 I ; ð10fÞ
zm

t 2 f0;1g; m 2M; t 2 T ; ð10gÞ
yt 2 f0;1g; t 2 T : ð10hÞ

We will utilize the model (10) to minimize the sum of PM and ex-
pected CM costs, analogous to the ideas presented in Section 4.2.
The performance of the model will be evaluated for the case when
rescheduling at failure is allowed.

5.1. The choice of deterioration cost functions

In addition to the deterioration cost functions employed in Sec-
tion 4.2, we include a term approximating the effect of reschedul-
ing as follows. Let S1; S2; . . . ; Sk be i.i.d. random variables drawn
from the failure time distributions of component i. The k:th failure

time of component i is defined as Jk :¼
Pk

l¼1Sl. A natural deteriora-
tion cost function is the expectation

MiðtÞ :¼ E
X1
k¼1

IfJk6tgGðJk; tÞ
" #

;

where I denotes the indicator function, and the value of Gðs; tÞmea-
sures the effective cost of a failure occurring at time s provided that
a replacement is scheduled at time t > s, and a replacement has
been performed at time 0. A simple model for the function G to ac-
count for rescheduling is to assume that whenever a failure occurs
long before a planned preventive replacement, i.e., when s� t, a
dynamic rescheduling is likely to result in a pure CM for the failed
component. The marginal failure cost in this scenario is thus fairly
well represented by the sum ðcCM

i þ dþ f Þ. On the other hand, if a
component fails just before a planned PM, i.e., when s � t, a dy-
namic rescheduling is likely to move any soon-to-be-performed
planned PM to the present time. The marginal failure cost in this
scenario may thus be represented by the sum cCM

i � cPM
i

� �
. We link

these two scenarios by modeling the effective cost of a failure as
Gðs; tÞ :¼ ðcCM

i þ dþ f Þ � s
t

� �k cPM
i þ dþ f

� �
, where k > 0.
5.2. Results

Data for component lives and PM and CM costs are taken from
Tian et al. (2011). The parameter value k ¼ 3 is chosen by trial-and-
error and the planning period of 8900 days is discretized into
T ¼ 90 time steps. The simulation set-up described in the first par-
agraph of Section 4.2.2 (augmented by the farm set-up cost f) is
used. We compare the use of the model (10)—re-optimized at fail-
ure—with a CI policy (see Sections 1 and 4.2.2) as implemented by
Tian et al., as well as with a pure CM policy. As shown in Table 4,
the model (10) results in the lowest average total maintenance
cost; the average cost of the CI policy is 6% higher, while the cost
of the CM policy is 67% higher. The benefit of the model (10) over
the CI policy is only slight and not at the level of the improvement
obtained by considering CBM as discussed by Tian et al. The CBM
strategy, however, requires access to condition monitoring equip-
ment, which the strategies considered here do not. It should be
noted that the initial schedule resulting from the model (10) equals
that obtained by the optimal CI policy of Tian et al. Hence, the
advantage of the model (10) over the CI policy is purely due to
the rescheduling. Comparing the model (10) (with rescheduling)
with the two policies reveals a clear reduction of the number of
visits to the wind farm, and a slight decrease in the average num-
ber of failures. Coupled with the 13:5% reduction of the standard
deviation of the total maintenance cost, this signifies an increase
in reliability of the wind farm by using the model (10) with
rescheduling.

6. Conclusions and future research

We introduce the preventive maintenance scheduling problem
with interval costs (PMSPIC), which is an NP-hard problem. We
demonstrate that the 0-1 ILP model (1), originally developed for
the joint replenishment problem, provides a mathematical model
for the PMSPIC. We show that the integrality restrictions on a
majority of the variables in the model can be relaxed, and that
the inequality constraints define facets of the convex hull of feasi-
ble solutions.

The model (1) is evaluated through case studies from the air-
craft, railway, and wind power industries. It is designed for PM
scheduling, but can also be dynamically used in a setting allowing
for rescheduling. Using the model (1) reduces the maintenance
costs by up to 16% as compared with the best simple policy inves-
tigated. Modeling the expected cost for CM between consecutive
maintenance occasions by an interval cost reveals a limitation of
our approach: Interval costs for separate components are expected
to be accurate models only in cases where an unexpected CM event
has only a weak influence on the maintenance schedules for the
system. In the aircraft engine study, comprising relatively few
CM events, this seems to be the case. However, for the wind farm
study, due to the large number of components unexpected stops
will be frequent, hence the separate component interval cost does
not accurately capture the effects on the system of unexpected CM
events.
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In future research, we will study problems comprising several
types of maintenance decisions; inspections, and repairs at differ-
ent levels. We also intend to develop the model (1) to include, e.g.,
production and staff planning.
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