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• Amodel based on a gamma distribution of diffusion coefficients for analysis
of pulsed-field gradient NMR data is evaluated.

• The gamma model is substantially faster and easier to implement com-
pared to the more wide-spread log-normal model.

• Results from experimental and simulated data show that the gamma
model produces results very similar to those produced by the log-normal
model.
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Abstract

Self-diffusion in polymer solutions studied with pulsed-field gradient nuclear
magnetic resonance (PFG NMR) is typically based either on a single self-
diffusion coefficient, or a log-normal distribution of self-diffusion coefficients,
or in some cases mixtures of these. Experimental data on polyethylene gly-
col (PEG) solutions and simulations were used to compare a model based on
a gamma distribution of self-diffusion coefficients to more established models
such as the single exponential, the stretched exponential, and the log-normal
distribution model with regard to performance and consistency. Even though
the gamma distribution is very similar to the log-normal distribution, its NMR
signal attenuation can be written in a closed form and therefore opens up for
increased computational speed. Estimates of the mean self-diffusion coefficient,
the spread, and the polydispersity index that were obtained using the gamma
model were in excellent agreement with estimates obtained using the log-normal
model. Furthermore, we demonstrate that the gamma distribution is by far su-
perior to the log-normal, and comparable to the two other models, in terms of
computational speed. This effect is particularly striking for multi-component
signal attenuation. Additionally, the gamma distribution as well as the log-
normal distribution incorporates explicitly a physically plausible model for poly-
dispersity and spread, in contrast to the single exponential and the stretched
exponential. Therefore, the gamma distribution model should be preferred in
many experimental situations.

Keywords: Pulsed-field gradient NMR, self-diffusion, PEG, polymer, gamma
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1. Introduction

Pulsed-field gradient nuclear magnetic resonance (PFG NMR) is a powerful
method to evaluate translational motion such as diffusion or flow [1, 2]. If the
sample studied is sufficiently monodisperse, the (mean) self-diffusion coefficient
can be obtained by fitting a single exponential function to the observed signal
attenuation [3]. Also multi-component systems can easily be studied because of
their chemical shift resolution. However, when the self-diffusion of for example
a polymer is characterized by a molecular weight distribution and a correspond-
ing distribution of self-diffusion coefficients, we obtain a more complex signal
attenuation [4, 5, 6, 7]. The probability distribution of self-diffusion coefficients
may be extracted by using an inverse Laplace transform, typically using the
CONTIN framework, where no specific functional form or shape assumptions
are imposed, but the solution is regularized for smoothness [8, 9, 10, 11]. Even
though being notoriously difficult and very noise-sensitive, this approach has
been widely applied in various techniques, e.g. NMR relaxation and diffusion
measurements, and dynamic light scattering [12, 13]. An alternative approach
is to assume a specific but flexible functional form, using e.g. the so-called
stretched exponential, cumulant expansions, or a log-normal distribution model
[14, 15, 5]. Many functional forms yield more or less identical fits and results
in terms of the first two moments of a distribution (mean and variance) [16].
Thus, it is possible to choose the specific functional form based on simplicity
and computational convenience.

In this paper, we propose to use a model based on a gamma distribution
of self-diffusion coefficients. We discuss and compare different models for eval-
uating the NMR signal attenuation obtained from a PFG NMR experiment of
polymers in water. In particular, we compare the computational speed and
performance of the gamma model to the single exponential, the stretched expo-
nential, and the log-normal models, all of which are already accepted and spread
within the community. Although the gamma distribution has been mentioned
in the literature as a model for a distribution of self-diffusion coefficients [15],
its performance and suitability for the analysis of PFG NMR data appears not
to have been thoroughly evaluated. To do this is the purpose of this work.

We first describe the basic theory and put the gamma distribution model
in context. Then, we evaluate the single exponential, the stretched exponen-
tial, the log-normal, and the gamma model on experimental data sets of two
polyethylene glycol (PEG) solutions with different polydispersity and also on
several simulated data sets. The models are compared in terms of estimated
mean self-diffusion coefficient, spread and polydispersity index. The perfor-
mance of the gamma distribution model is compared to all other models, and
in particular to its most obvious competitor, the log-normal distribution model.
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2. Theory

For a single self-diffusion coefficient, Stejskal and Tanner [17] showed that
the echo decay is exponential (the so called single exponential model),

I(k) = I0 exp (−k⟨D⟩), (1)

where I0 is the signal intensity before decay (for k = 0), ⟨D⟩ is the mean self-
diffusion coefficient (actually, it is the only one, but we stick to the ⟨D⟩ notation
for consistency), and

k = (γgδ)2
(
∆− δ

3

)
. (2)

Here, γ is the proton magnetogyric ratio (γ = 2.6752 × 108 rad T−1s−1), g is
the gradient strengh, δ is the gradient pulse duration, and ∆ is the time lapse
between the leading edges of the gradient pulses. In a plot of log I(k) vs k,
a single self-diffusion coefficient will manifest itself by a linear decay (straight
line). Generally, the echo attenuation shows non-linear behavior for molecules
with a large degree of polydispersity. The obvious interpretation is that a single
self-diffusion coefficient can not accurately describe the features of the system.
Perhaps the simplest way of dealing with this problem is to use the stretched
exponential model,

I(k) = I0 exp
(
−(kDapp)

β
)
, (3)

a phenomenological relationship which is able to express polydispersity to some
extent through the ’stretch’ parameter β [18, 19], and some attempt have been
made to interpret this in terms of polydispersity [20]. However, the relation be-
tween spread and the value of the beta parameter is complicated [20]. However,
the stretched exponential model does not correspond to an actual distribution
of self-diffusion coefficients. Accordingly, there is no expression relating Dapp,
the apparent self-diffusion coefficient, to the true, mean self-diffusion coefficient
⟨D⟩; however, as was pointed out by Callaghan (personal communication) it
can be shown that

⟨ 1
D
⟩ =

1
βΓ

(
1
β

)
Dapp

, (4)

where Γ is the gamma function. However, since ⟨1/D⟩−1 ̸= ⟨D⟩, any estimate
of the mean self-diffusion coefficient will be weighted toward the slowly diffusing
molecules. Therefore, a more physically adequate approach is to start by assum-
ing that the self-diffusion coefficient D follows a probability distribution P (D),
which yields that the attenuation is an integral (weighted sum) over different
exponential decays,

I(k) = I0

∫ ∞

0

P (D) exp (−kD)dD. (5)

In general, the functional form of P (D) is unknown [6]. However, a very common
assumption is that the self-diffusion coefficients are log-normally distributed [21].
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The log-normal distribution has probability density

PL(D;µ, σL) =
1

D
√
2πσL

2
exp

(
− (logD − µ)2

2σ2
L

)
, (6)

with µ = log(⟨D⟩) - σ2
L/2 where ⟨D⟩ is the mean of D, and σ2

L = log(1+CV2).
The spread, or coefficient of variation (CV), is defined as CV = (standard de-
viation / mean) × 100 %. However, the log-normal distribution does not yield
an analytically tractable integral in Eq. (5). We suggest an alternative for
the distribution P (D) that does yield a tractable integral, namely the gamma
distribution,

PG(D;κ, θ) = Dκ−1 exp (−D/θ)

Γ(κ)θκ
, (7)

where Γ is the gamma function, κ is the ’shape’ parameter, and θ is the ’scale’
parameter. Replacing P (D) in Eq. (5) with PG gives the echo decay model

I(k) = I0(1 + kθ)−κ, (8)

which can be written by using mean self-diffusion coefficient ⟨D⟩ and standard
deviation σG as

I(k) = I0(1 + kσG
2/⟨D⟩)−⟨D⟩2/σG

2

(9)

(see Appendix A for details regarding the gamma distribution model). This
latter expression is not only more transparent to the practitioner, but was also
found to be more numerically well-behaved. We will be interested in the spread
CV and the polydispersity index, defined as

PDI =
Mw

Mn
, (10)

where Mw and Mn are the weight-average and the number-average molecular
weights, respectively [22]. The polydispersity index is per se a measure of the
width of the molecular-weight distribution, whereas with PFG NMR we estimate
the self-diffusion coefficient distribution. The self-diffusion coefficient D can be
related to the molecular weight M by

D = KM−α, (11)

with K and α being scaling parameters. From the parameters of the self-
diffusion coefficient distribution, the polydispersity index can be computed as

PDI = exp

(
σ2
L

α2

)
(12)

for the log-normal model and by

PDI =

(
1 +

σ2
G

⟨D⟩2

)1/α2

(13)
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for the gamma model (see Appendix B for details about the polydispersity index
calculations). In this paper we use α = 0.525, the value previously measured
for dilute PEG in water [6].

For multiple components which can not be resolved due to their chemical
shift, it is assumed that the signal attenuation is a weighted sum of several
attenuations of any of the above types.

Fitting the models to data is performed by the standard non-linear least
squares method [23]. We minimize the sum

S =
∑
n

(Iobs(kn)− I(kn))
2
, (14)

where Iobs(kn) is the normalized signal intensity for k = kn, yielding least
squares (or equivalently, if the noise truly is Gaussian and independent, maxi-
mum likelihood [24, 25]) estimates of the parameters for the chosen model.

3. Materials and methods

3.1. Materials

Two different polyethylene glycol (PEG) solutions were prepared using ei-
ther a 11840 g mol−1 PEG (Agilent Technologies, United Kingdom) or a 15000
g mol−1 PEG (Sigma Aldrich, MO, United States), with different polydispersity
index. PEG was dissolved in an appropriate amount of D2O (99.8 %, Armar
Chemicals, Switzerland) to achieve a concentration of 0.1% (w/w) ensuring
independence of the parameter α of the different molecular weights in these
distributions. Standard 5 mm NMR tubes were filled with 400 µl. We denote
the two PEG solutions by PEG I (PEG 11840) and PEG II (PEG 15000) for
convenience.

3.2. Self-Diffusion Measurements
1H PFG NMR experiments were carried out on a 600 MHz Bruker (Bruker,

Germany) equipped with a diffusion probe (Diff30, providing a maximum gra-
dient strength of 12 Tm−1). A standard spin echo sequence was used with ∆
= 100 ms and a gradient pulse duration δ of 2 ms. Gradient strengths were
varied linearly in 32 steps. The decrease in signal was roughly about 3 orders
of magnitude in order to resolve the degree of polydispersity accurately [26].
All measurements were performed at 25 ◦C using the PEG signal at 3.7 ppm
for evaluation. The measurements were repeated 100 times for each sample to
study the intra-sample variation.

3.3. Simulations

Simulated data sets were generated using both the log-normal model and the
gamma model, and used to evaluate how well mean self-diffusion coefficient the
and spread (where applicable) were estimated using each of the four models. In
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all cases, the true mean self-diffusion coefficient is 10−10 m2s−1. The k vector
includes 32 different data points, distributed equidistantly in

√
k (linearly in

gradient strength) between 2.5× 107 and 2.5× 1011 m−2s1. Using this range of
k values, we ensure that the attenuation is at least 3 order of magnitude even
for the broadest distributions. The true signal intensities I(k) are computed
for each model (from Eq. (5)). Normally distributed noise with mean zero and
standard deviation σnoise = 0.001 (roughly corresponding to the noise levels esti-
mated from the experimental data sets studied in 3.2) is added to the simulated
measurements. The spread is varied in the range 0%,2.5%,5%,...,47.5%,50%
(polydispersity index varying between 1 and 1.25). For every parameter set-
ting, 1000 simulated data sets were generated to obtain reliable averages of the
parameter estimates.

Simulated data sets were also generated to evaluate the computational speed
for fitting of multiple component distributions. Here, the aim is not to evalu-
ate the accuracy or precision of the estimated parameter values, but only to
evaluate the fitting speed under varied, realistic conditions. Therefore, the un-
derlying true distribution in the simulations was chosen to be a random multiple
component distribution consisting of up to 3 log-normal components. In each
simulation, the number of components was randomly selected as either 1, 2,
or 3. The value for the mean self-diffusion coefficient for each component was
randomly chosen between 0 and 5 × 10−10 m2s−1. The value for the CV for
each component was randomly chosen between 0 and 50%. For each data set,
multiple component distributions with 1,2, and 3 components, of all types, i.e.
single exponential components, stretched exponential components, log-normal
components, and gamma components, were fitted and the time for fitting mea-
sured. For every parameter setting, 1000 simulated data sets were generated to
obtain reliable averages of the time for fitting.

3.4. Evaluation

All code was run in Matlab 7.11.0 (R2010b) using the fmincon optimization
routine and the sequential quadratic programming (sqp) option for non-linear
least squares fitting. Analytical derivatives were provided where possible, i.e. for
the single exponential, stretched exponential, and gamma distribution models,
but not for the log-normal model. Multiple fittings with different (random)
initial parameter guesses were run to avoid getting stuck in locally optimal
points during optimization.

The parameters of the four different models were estimated for the experi-
mental data sets and the simulated data sets, and compared in terms of mean
self-diffusion coefficient, coefficient of variation (where applicable), and polydis-
persity index (where applicable).

4. Results and Discussion

4.1. Experimental data sets

Normalized signal attenuations together with the corresponding model fits
with residuals for PEG I and PEG II are presented in Fig. 1. The signal at-

7



10
−3

10
−2

10
−1

10
0

In
te

ns
ity

[a
.u

.]

0 0.2 0.4 0.6 0.8 1.0 1.2
−10

0

10

k [x1011m−2s]

R
es

id
ua

ls
[x

10
−

3 ]

10
−3

10
−2

10
−1

10
0

In
te

ns
ity

[a
.u

.]

0 0.2 0.4 0.6 0.8 1.0 1.2
−10

0

10

k [x1011m−2s]

R
es

id
ua

ls
[x

10
−

3 ]

Figure 1: Example of a (normalized) experimental signal attenuation from PEG I data (top,
open circles) and PEG II data (bottom, open circles) in a semi-logarithmic representation
together with the fits using the single exponential (black line, residuals black filled circles),
stretched exponential (red line, residuals red filled circles), log-normal distribution (green line,
residuals green filled circles), and gamma distribution (blue line, residuals blue filled circles)
models. Note that the log-normal and gamma models fit equally well and the residuals almost
completely coincide.

tenuation for PEG II is typically characterized by a slightly more pronounced
curvature at higher k-values in comparison to the attenuation for PEG I, corre-
sponding to a higher degree of polydispersity. The residuals for all models are
non-random for both PEG I and PEG II, indicating that none of them are a
perfect fit. The residuals are largest and most clearly non-random for the single
exponential model, which evidently provides the worst fit. The stretched expo-
nential, the log-normal, and the gamma distribution models are comparable in
terms of goodness of fit. Note in particular that for both PEG I and PEG II,
the log-normal and gamma distribution models fit almost equally well and the
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Figure 2: Histograms of estimates, based on 100 repeated experiments, of the mean self-
diffusion coefficient (⟨D⟩), the coefficient of variation (CV), and the polydispersity index
(PDI) for the PEG I (solid line) and PEG II (dashed line) data using the single exponential
(black), stretched exponential (red), log-normal distribution (green), and gamma distribution
(blue) models.

residuals almost completely coincide. Histograms of the distributions of the esti-
mated values for mean self-diffusion coefficient, CV and PDI are shown in Fig. 2.
The estimated mean self-diffusion coefficients obtained for the single exponential
and the stretched exponential models have very similar values. This indicates
that whereas the stretched exponential provides for a better fit to the data
than the single exponential, the estimate of the mean self-diffusion coefficient
is no less biased. The estimated mean self-diffusion coefficients, CV, and PDI
obtained for the log-normal and gamma distribution models have very similar
values, also the difference that is there is slightly more pronounced for the more
polydisperse PEG II. The estimated values of the mean self-diffusion coefficient
and spread for the log-normal and gamma models were compared with the help
of scatter plots (see Fig. 3), which further emphasize the similarity between
these two models. The scatter plots indicated that the estimates are overall
strongly correlated and not substantially different between the log-normal and
gamma models. For all three parameters, the gamma and log-normal distribu-
tion models gave almost perfectly correlated estimates (ρ > 0.999 in all three
cases).

4.2. Simulated data sets

We provide one simulated decay curve (for the log-normal) and the corre-
sponding fitted models in Fig. 4. In addition, we include a comparison of the
averages for the estimated values of mean self-diffusion coefficient (⟨D⟩) and
coefficient of variation (CV) for all models in the two cases where the true un-
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Figure 3: Scatter plots of estimates, based on 100 repeated experiments, of the mean self-
diffusion coefficient (⟨D⟩, black circles), the coefficient of variation (CV, blue circles) for PEG
I (left) and PEG II (right) data using the log-normal distribution (horizontal) and gamma
distribution (vertical) models. The gray line shows the ideal result with unit slope. The PDI
behaved very similarly to the CV and was excluded here.
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Figure 4: Example of a simulated signal attenuation curve corresponding to a log-normal
distribution with 25 % spread (CV) (open circles) in a semi-logarithmic representation together
with the fits using the single exponential (black line, residuals black filled circles), stretched
exponential (red line, residuals red filled circles), log-normal distribution (green line, residuals
green filled circles), and gamma distribution (blue line, residuals blue filled circles) models.
Note that the residuals for the log-normal and gamma models almost completely coincide.

derlying distribution is either log-normal or gamma (see Fig. 5). We see that
for small to moderate coefficients of variation, the four models perform compa-
rably when estimating the mean self-diffusion coefficient. For large coefficients
of variation, however, the gamma and log-normal models are superior to the
single exponential and stretched exponential. Also, for very large coefficients
of variation, the difference between the gamma and log-normal models is more
pronounced, although the difference is not crucial.
Furthermore, we include a comparison of the computational speed for fitting

of the different models (see Fig. 6). We see that the gamma model is increas-
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Figure 5: Average of estimated mean self-diffusion coefficients ⟨D⟩ and estimated coefficients
of variation (CV) using the single exponential (black, circles), stretched exponential (red,
triangles), log-normal distribution (green, squares), and gamma distribution (blue, diamonds)
models, when the true underlying distribution is a log-normal (left) and gamma (right) with
true mean self-diffusion coefficient 10−10 m2s−1. The mean estimates are computed from
1000 simulated attenuation curves for each value of CV. The gray line shows the ideal result.
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Figure 6: Average time for one fitting using the single exponential (black), stretched expo-
nential (red), log-normal distribution (green), and gamma distribution (blue) models, each of
the models with 1 (left), 2 (center), and 3 (right) components. The inset is a magnification.

ingly superior to the log-normal in terms of computational speed as the number
of components increases. This is due to the number of numerical computa-
tions increasing roughly linearly in the number of components when analytical
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derivatives of the objective function are supplied, but super-linearly when they
are not. Surprisingly, we note that the gamma distribution is not substantially
slower than the single exponential. Note that this is the computational time
measured for one data fitting only. Since the number of fittings (number of
random initializations) would need to be increased when the number of com-
ponents increases, which we have not accounted for here, the computational
time needed for fitting would actually increase much faster as a function of the
number of components than this figure suggests. This makes the differences in
computational speed even more pronounced. The gamma distribution is thus
computationally much simpler to handle than the log-normal distribution, and
should be preferable in many situations.

5. Conclusion

We conclude that the log-normal and gamma distribution models perform
comparably, and that the gamma distribution model is a very competitive choice
for fitting the signal attenuation in PFG NMR studies in order to estimate the
distribution of self-diffusion coefficients. Except in the most extreme cases (less
than 3% difference in ⟨D⟩ if the true CV is less than 50%), parameter estimates
obtained using the gamma model were very similar to those obtained using the
more widely applied log-normal model. Moreover, in terms of computational
speed the gamma model is superior to the log-normal model, comparing well to
the single exponential and the stretched exponential models. It is also consid-
erably easier to implement in software compared to the lognormal. Therefore,
the gamma model should be considered in many situations as an alternative to
all of these three other models. In particular it should be preferable over the
log-normal, especially when analyzing multi-component systems.
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Appendix A. Derivation of the gamma distribution model

Inserting the gamma distribution,

PG(D;κ, θ) = Dκ−1 e−D/θ

Γ(κ)θκ
, (A.1)
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into the general expression for the NMR echo decay,

I(k) = I0

∫ ∞

0

P (D)e−kDdD, (A.2)

we get that

I(k) = I0

∫ ∞

0

PG(D;κ, θ) exp (−kD)dD =

I0

∫ ∞

0

1

Γ(κ)θκ
Dκ−1 exp

(
−D/

(
1

1
θ + k

))
dD =

I0θ
−κ

(
1

1
θ + k

)κ ∫ ∞

0

PG(D;κ,
1

1
θ + k

)dD =

I0θ
−κ

(
1

1
θ + k

)κ

=

I0(1 + kθ)−κ. (A.3)

Moreover, since the mean ⟨D⟩ = κθ and the standard deviation σG =
√
κθ2, it

follows that κ = ⟨D⟩2/σ2
G and θ = σ2

G/⟨D⟩, and the gamma distribution model
can be reformulated as in Eq. (9).

Appendix B. Derivation of polydispersity index relations

The polydispersity index is defined as the ratio of the weight-average molec-
ular weight Mw and the number-average molecular weight Mn. Assume our
molecular weight M follows some (any) probability distribution, then the two
quantities are defined as

Mw =
⟨M2⟩
⟨M⟩

(B.1)

and
Mn = ⟨M⟩. (B.2)

So, the polydispersity index becomes

PDI =
Mw

Mn
=

⟨M2⟩
⟨M⟩2

. (B.3)

It is found in [6] that B.3 can be related to the parameters of the distribution
of our self-diffusion coefficients D by the empirical relation

⟨M2⟩
⟨M⟩2

=

(
⟨D2⟩
⟨D⟩2

)1/α2

. (B.4)

This last step is a general formula relating PDI to the properties of the dis-
tribution of self-diffusion coefficients, which we will now compute for both the
lognormal and the gamma distributions. For lognormal, we have that

⟨D⟩ = exp (µ+ σ2
L/2) (B.5)
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and
⟨D2⟩ = exp (2µ+ 2σ2

L). (B.6)

Hence,

PDI = exp

(
σ2
L

α2

)
. (B.7)

Equivalently for gamma,
⟨D⟩ = κθ (B.8)

and
⟨D2⟩ = κ(1 + κ)θ2. (B.9)

Hence,

PDI =

(
1 +

1

κ

)1/α2

=

(
1 +

σ2
G

⟨D⟩2

)1/α2

. (B.10)
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