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Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts:
Composite spin-wave resonances and their excitation mechanism
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This work provides a detailed investigation of the measured in-plane field-swept homodyne-detected
ferromagnetic resonance (FMR) spectra of an extended Co/Cu/NiFe pseudo-spin-valve stack using a nanocontact
(NC) geometry. The magnetodynamics are generated by a pulse-modulated microwave current, and the resulting
rectified dc mixing voltage, which appears across the NC at resonance, is detected using a lock-in amplifier. Most
notably, we find that the measured spectra of the NiFe layer are composite in nature and highly asymmetric,
consistent with the broadband excitation of multiple modes. Additionally, the data must be fit with two Lorentzian
functions in order to extract a reasonable value for the Gilbert damping of the NiFe. Aided by micromagnetic
simulations, we conclude that (i) for in-plane fields the rf Oersted field in the vicinity of the NC plays the
dominant role in generating the observed spectra, (ii) in addition to the FMR mode, exchange-dominated spin
waves are also generated, and (iii) the NC diameter sets the mean wave vector of the exchange-dominated spin

wave, in good agreement with the dispersion relation.

DOLI: 10.1103/PhysRevB.93.134427

I. INTRODUCTION

Spin-torque ferromagnetic resonance (ST-FMR) [1-9] is a
powerful and versatile tool that enables the characterization of
magnetodynamics on the nanoscale. Unlike more conventional
FMR measurement techniques, where a resonant cavity or
waveguide is used to generate rf magnetic excitation fields, the
resonant precession in an ST-FMR measurement is assumed to
be primarily a result of the ST from a spin-polarized current.
However, ST-FMR represents a specific type of a more general
homodyne-detection scheme where the excitation mechanism
itself can originate from a variety of physical mechanisms apart
from or in combination with ST, including, e.g., rf Oersted
fields [10] and electric fields [11].

While homodyne-detected FMR studies on magnetic tun-
nel junction (MTJ) and all-metallic spin-valve nanopillar
devices have dominated the literature [2-6], there have
been an increasing number of studies utilizing point and
nanocontacts (NCs) on extended multilayer film stacks [7,12—
15]. The NC geometry is particularly promising for high-
frequency spin-torque oscillators (NC-STOs) [16-22] and
for the emerging field of ST-based magnonics, [23-27], in
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which highly nonlinear auto-oscillatory modes are utilized for
operation.

In the NC geometry literature [7,12—15,28], the observed
ST-FMR spectra of the NiFe-based free layers have been
analyzed as a single resonance, despite a significant peak
asymmetry hinting at additional contributions. The linewidth
of this asymmetric peak has not been understood so far [7].
The same studies also note that the typical field condition of an
in-plane field aligning both magnetic layers in parallel should
not result in any ST, calling into question the fundamental
excitation mechanism of the observed spectra. This significant
discrepancy has been tentatively explained as being caused by
local misalignments due to sample imperfections. However,
given how robust ST-FMR measurements are over sets of
different devices, it is rather unsatisfactory to have to refer
to unknown extrinsic factors for the ST-FMR technique to
function. It appears that the rf Oersted field generated by the
injected microwave current into NC could be at play [15].
Therefore, a better fundamental understanding of both the
linear spin-wave (SW) modes in the NC geometry and their
excitation mechanism is highly desirable.

In this work, we show that the observed resonance spectrum
in a NiFe NC-STO free layer is composite in nature and
can be described as a sum of two distinct resonances with
very different behaviors and origins. Experimentally, the data
must be fit with two Lorentzian functions in order to extract a
reasonable value for the Gilbert damping of the FMR mode.
From these fits, it is also clear that only the width of one
of the resonances shows a dampinglike linear dependence
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on the frequency, whereas the width of the other is mostly
frequency independent. Aided by micromagnetic simulations,
we conclude that (i) the composite resonance is a sum of
a FMR mode and an exchange-dominated spin-wave mode,
(ii)) the NC diameter sets the mean wave vector of the
exchange-dominated spin waves, in good agreement with
the dispersion relation, and (iii) for in-plane fields the rf
Oersted field, not ST, in the vicinity of the NC plays the
dominant role in exciting the observed spectra. We argue that
homodyne-detected FMR studies in the NC geometry must
account for such additional excitations to accurately extract
the fundamental magnetodynamical properties.

II. EXPERIMENT

NC-STO fabrication starts with a blanket Pd (8 nm)/Cu
(15 nm)/Co (8 nm)/Cu (8 nm)/NiFe (4.5 nm)/Cu (3 nm)/Pd
(3 nm) film stack deposited by magnetron sputtering on a
thermally oxidized Si substrate, where the NiFe (NiggFe,g)
and Co play the role of the free and fixed layers, respectively,
as shown in Fig. 1(a). The blanket film is then patterned into
16 x 8 ,um2 spin-valve mesas, and a 30 nm SiO, layer is
deposited by rf magnetron sputtering. Circular NCs of nominal
diameters D of 90, 160, and 240 nm are defined through the
SiO, insulating layer using electron-beam lithography at the
center of the mesa. A final photolithographic process then
defines a coplanar waveguide for electrical connections and
efficient microwave signal pickup.
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FIG. 1. (a) Schematic of the NC-STO and the measurement setup.
(b) Plot of the field vs frequency of the dominant resonance peak.
The resonance fields can be well fit by the Kittel equation using
noM; = 0.85 £ 0.02 T for the NiFe layer. Inset: ST-FMR spectra at
four different frequencies for the D = 160 nm device.
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All measurements were performed at room temperature
in a custom-built probe station utilizing a uniform in-plane
magnetic field. Our homodyne-detected FMR measurements
utilized both a microwave generator and lock-in amplifier,
which were connected to the device using a bias tee, as
schematically shown in Fig. 1. The tf power injected into
the NC is —14 dBm, which ensures that the excited magne-
todynamics are in the linear regime. The resulting dc mixing
voltage [3] Vpix 1s measured as a function of the magnetic field
and at a fixed excitation frequency. The microwave current
was amplitude modulated at a low (98.76 Hz) modulation
frequency for lock-in detection of Vipix.

III. EXPERIMENTAL RESULTS

The field-swept spectra measured for different frequencies,
which are vertically offset for clarity, are shown in the inset of
Fig. 1(b) for the D = 160 nm device. As shown in the main
panel of Fig. 1(b), the dominant resonance peak (data points)
can be well fit (solid line) with the Kittel equation, which
results in the saturation magnetization uoM; = 0.85 £0.02 T
and a negligible magnetocrystalline anisotropy.

Interestingly, upon closer inspection, it becomes clear that
the measured spectra are highly asymmetric, exhibiting a
significant shoulder on the low-field side of the dominant
resonance peak. In Fig. 2 we show a single representative
resonance at f = 18 GHz for the D = 160 nm device. While
it is well known that the mixing voltage can be intrinsically
asymmetric [2,29,30], it is important to point out that we
cannot fit our data with a single resonance having both
symmetric and antisymmetric contributions. Most importantly,
the prior theoretical results are virtually independent of the NC
diameter, in direct contrast to our experimental observations.
In order to properly fit (red solid line) the entire spectrum we
must instead use rwo Lorentzian functions, each with its own
resonance field and linewidth, as shown in Fig. 2 (inset). The
fit shows a vanishing antisymmetric contribution to the line
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FIG. 2. Zoom-in of a representative ST-FMR spectrum of the
D = 160 nm device taken at f = 18 GHzand I,; = 1.3 mA, together
with a fit (red line) based on two Lorentzians as described in the text.
The inset shows the two individual contributions of the quasiuniform
FMR mode (black) and the spin wave resonance (blue).
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FIG. 3. The measured (dots) and fitted (solid lines) linewidths of
the FMR and SWR modes are shown for the different NC diameters.

shape for both of the resonances,
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where B and B!, are applied and resonance fields, respectively,
and AB' is the linewidth of the corresponding peak. S’
and A’ are amplitudes of its symmetric and antisymmetric
components, respectively. As the frequency vs field behavior
of the main resonance mode can be well fit with the Kittel
equation, Fig. 1(b), we ascribe this peak to the FMR mode of
the NiFe layer and the second low-field mode with a higher-
order spin-wave resonance (SWR), which will be discussed in
detail later.

The linewidth vs frequency of both the FMR and SWR
modes are plotted in Fig. 3 for three different NC diameters
of 90, 160, and 240 nm. Three significant observations can be
made. First, the FMR mode shows a clear linear increase of
linewidth with the frequency, from which the Gilbert damping
a can be extracted using the following relation:

. drna .
AB' = — f + ABy, 2)
14

where y /27 is the gyromagnetic ratio and AB{ is an
inhomogeneous broadening of the corresponding resonance.
Our measured values of o, which are all on the order of
0.01, are also consistent with those measured in Ref. [31].
This provides further evidence that the dominant resonance
mode can indeed be correlated with the usual FMR mode
of NiFe. Second, the linewidth of the SWR mode is mostly
independent of frequency, indicating that the primary origin
of the linewidth is not damping. Third, the inhomogeneous
broadening is approximately inversely proportional to the NC
diameter, which at first seems counterintuitive as one would
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FIG. 4. Measured (dots) and calculated (solid lines) resonance
fields of the FMR and SWR modes for the different NC diameters.
The black solid line is a fit to an average of the FMR mode for all three
devices. Inset: A plot of the fitted NC diameter D’ vs the nominal
diameter D, together with a line indicating D’ = D.

expect a larger NC to sample a larger sample volume and
therefore include more inhomogeneities. The origin of this
interesting effect will be explained later.

The frequency versus field dependence of the measured
FMR and SWR modes are summarized in Fig. 4. The black
solid line shows the average behavior of the FMR mode for NC
diameters of 90, 160, and 240 nm and essentially reproduces
what is shown in Fig. 1. For a fixed frequency, we find that the
SWR mode shifts to lower fields as the NC diameter decreases.
Assuming that the origin of the SWR mode is the exchange
interaction, the diameter of the NC, D’, can be estimated using
the following dispersion relation:

f = 2 A[B + oMok
x [BSVR + uoMs + j10Ms(eck)?]} %, 3)

where A,y = /2A/uoM? and k = /D’ are the exchange
length and the SWR wave vector, respectively. The room-

temperature value of the exchange stiffness is set to A =
11 pJ/m [32]. The estimated sizes of the NCs are in reasonable
agreement with the corresponding nominal values, as shown
in the inset of Fig. 4.

IV. MICROMAGNETIC SIMULATIONS

The micromagnetic simulations were performed using the
MUMAX3 solver [33]. Since the actual spin-valve mesa is too
large to be simulated in its entirety in a reasonable time frame,
we limited our calculations to a 5.120 um x 2.560 um x 4 nm
volume with periodic boundary conditions tailored to mimic
the lateral aspect ratio of the experimental spin-valve mesa.
To break the symmetry of the system, which might otherwise
fully forbid any ST-related effects and nonconservative SW
scattering, we assume that the applied field points 5° out of
plane, comparable to the possible error in the experimental
field alignment. As a first step, the evolution of the ground
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state of the entire Co/Cu/NiFe stack is calculated, confirming
that (i) the Co and NiFe layers remain virtually collinear in
the given range of the applied magnetic fields and (ii) there
are no mutual stray fields produced between the layers in
the vicinity of the NC. Since there is a significant spin-wave
dispersion mismatch between Co and NiFe, we do not expect
any resonant dynamic magnetic coupling between the layers.
Under these three considerations we can confidently simulate
the dynamics of the NiFe free layer alone.

In the simulations we replicate the experimental data
acquisition routine by performing the field sweeps with
a harmonic excitation of f = 18 GHz. The infinite wire
approximation is used to calculate the Oersted field produced
by the NC [34,35]. For every value of the applied field we
first let the system reach the steady state and then sample
the spatial map of the magnetization for the following
5 ns at 3.5-ps time intervals with a subsequent pointwise fast
Fourier transform (FFT) applied and the amplitude and phase
of the magnetization precession extracted at the excitation
frequency. Where applicable, the direction of the spin-current
polarization is assumed to be collinear with the magnetization
in the nominally fixed Co layer. The implemented saturation
magnetization, gyromagnetic ratio, and damping constant are
estimated by fitting a Kittel equation to the experimental data.
The room-temperature value of the exchange stiffness is set
to A =11pJ/m [32].

The simulated magnetic responses shown in Fig. 5(b) agree
well with the experimentally measured data shown in Fig. 5(a).
To identify the origin of the observed peak asymmetry we
investigate the spatial profiles of the magnetization precession
amplitude in the vicinity of the resonance [see Fig. 5(c)]. The
snapshots clearly show propagating SWs on the low-field side
of the main peak, while no SWs are resolved on the high-field
side. Looking closer at the phase profiles of the corresponding
modes, which essentially depict the wavelength of the excited
magnons, the following conclusions can be made: (i) The
propagation of SWs perpendicular to the saturation direction
is suppressed, and (ii) the lowest excited mode is not uniform
but antisymmetric with respect to the NC center.

V. DISCUSSION

If the free layer is magnetized in plane, then both back-
ward volume magnetostatic SWs (BVMSSW) and surface
magnetostatic-exchange SWs (SMSSW) can be excited:

SfBvMssw = {[fB + fuexk)’]

1 — ek 1/2
Sl

Ssmssw = {[fB + fuCexk)? 1 f5 + Furhek)* + furl

X [fB + fu(herk)* + fM<

2 1/2
+’jTM(1 —e—%} ;

where fz = B, fu = 3= uoMs.
They are calculated using Egs. (5.97b) and (5.111b) from
Ref. [36] for propagation along and perpendicular to the
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FIG. 5. (a) The normalized measured mixing voltage Vy,ix and (b)
the normalized simulated magnetization precession amplitude for the
three NC diameters as a function of the applied in-plane magnetic
field. (c) Spatial maps of the magnetization precession amplitude
(top row) and phase (bottom row) simulated for a D = 160 nm NC
diameter taken at the fields corresponding to the main peak and its %
and % heights [as shown by the corresponding black symbols in (b)].
Propagating spin waves are clearly seen for the two lowest fields.

saturation direction, respectively. The exchange contribution
is included by substituting B — B + ;LOMS()Wk)Z.

The corresponding dispersion relations are shown in Fig. 6
for NiFe thicknesses d of 100 nm (green lines) and 4.5 nm
(red lines). There is always a region of resonance fields,
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FIG. 6. The dispersion relations for the SWs propagating parallel
and perpendicular to the saturation direction are shown for different
thicknesses of the NiFe layer. The points correspond to the minimum
of the SW group velocity.
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where magnetostatic and exchange-dominated SWs coexist, as
highlighted by the shaded area in Fig. 6 for a NiFe thickness
of 100 nm. Although the band is broad for relatively thick
layers, it only amounts to 1.16 mT for the 4.5-nm NiFe, i.e.,
an order of magnitude smaller than the intrinsic linewidth of
the FMR peak. We therefore conclude that SWs contributing
to the low-field tail of the FMR peak are exchange-dominated.
Note that the calculated dispersion relations differ from what is
found using Eq. (3) (thick solid line in Fig. 6). This difference
arises as the dispersion relations also strongly depend on
the exact boundary conditions at the free-layer surfaces. For
instance, if the NiFe film is pinned on both surfaces, e.g.,
if it is placed in between sufficiently thick metallic layers,
the dispersion of the exchange-dominated backward volume
SWs is given by the following equation (shown by the square
symbols in Fig. 6) [37]:

SBVMSSW-pinned = {[fB + fuOuexk)?]

fM 1/2
2
* <fB+fM()\exk) +Wd/7‘[)2>} .

Note that in this case the spectrum of the exchange-dominated
surface SWs will be dispersionless and not accessible experi-
mentally.

Since Eq. (3) fits the NC diameter reasonably well, we
conclude that (i) the detected mixing voltage is generated by
the exchange-dominated backward volume SWs and (ii) there
is undoubtedly some surface pinning of the NiFe layer. The
exact origin of the pinning and its strength is beyond the scope
of the present study.

Due to the collinear free and fixed layers we do not expect
any significant contribution from the ST to the observed
magnetization dynamics, which is confirmed by comparing
micromagnetic simulations performed with and without ST
included. Correspondingly, for the in-plane applied magnetic
fields in the NC geometry with no dc bias currents applied,
the rf Oersted field is the primary excitation mechanism
responsible for the observed dynamics.

In a linear approximation the response of the system is
essentially determined by the spectrum of the excitation, which
in our case is provided by the rf Oersted field. If the excitation
has a finite amplitude at some point of reciprocal space (i.e.,
at the given frequency and wave vector), then, if allowed,
the corresponding magnon will be excited. The spatial profile
of the QOersted field and its spectrum for the D = 160 nm
NC are shown in Figs. 7(a) and 7(b), respectively. We can
identify both local and global antisymmetries with respect
to the NC center with corresponding periods determined by
twice the NC diameter and mesa width L, respectively. Since
both spatial components are naturally confined to their unit
periods, the linewidth of the corresponding excitation peak is
finite. Therefore, the Oersted field most efficiently couples to
the SW bands having widths of 2r /L and v/ D corresponding
to the wave vectors of 2w /L and nmw /D, respectively, where
n =1,3,... [see Fig. 7(c) and its inset]. As the NC diameter
decreases, the position and width of the former band stay
constant, while the latter one shifts towards lower resonance
fields and increases its width, leading to the observed extension
of the tail in the excitation spectrum.
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FIG. 7. (a) The spatial distribution and (b) the corresponding
2D FFT of the out-of-plane component of the Oersted field by the
D = 160 nm diameter NC. (c) The Oersted field as a function of
the wave vector component along the saturation direction is shown
for the D = 160 nm diameter NC. The inset shows a zoom-in of
the small wave-vector part of the spectrum. (d) The dispersion
relation of the exchange-dominated SWs. (e) The experimentally
acquired magnetization dynamics spectrum using a nanocontact of
D = 160 nm diameter.

It is important to mention that the circular NC cannot
effectively couple to the uniform FMR. Instead, the main
peak observed in the experiments and simulations corresponds
to the antisymmetric mode with k = 2w /L. However, due
to the vanishing magnetostatic dispersion, its resonant field
is virtually indistinguishable from the uniform FMR (k = 0)
mode.

Considering a typical FMR experiment where the excitation
frequency is fixed, according to Eq. (3), the wave vector
of the generated propagating SW is ultimately determined
by the value of the applied magnetic field. As the field is
swept towards zero past the dominant FMR resonance, the
NC continuously excites propagating SWs of increasing wave
vectors. Since the excitation amplitude drops rapidly for the
low values of the applied field (i.e., for short-wavelength SWs),
the detected magnetic signal vanishes accordingly, leading to
the appearance of the low-field tail [see Figs. 7(c) and 7(e)].

By assuming that the extent of the tail is estimated at
1/10 of its peak amplitude, we can project the corresponding
experimentally observed applied magnetic field to the cutoff
wave vector of the excitation spectrum, as schematically
demonstrated by the shaded rectangles in Figs. 7(c), 7(d),
and 7(e). This gives us the cutoff wave vectors (in units of
/D"y of 1.93, 1.95, and 2.34 for the NCs of 90, 160, and
240 nm nominal diameters, respectively. Since these values fall
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roughly inside the first two fundamental SW bands attributed
to k =2 /L and k = 7/ D, the two-peak scheme used to fit
the experimental data is fully justified.

It should be noted that the micromagnetic simulations do
not reproduce the shoulder as it is observed experimentally for
all the NC diameters. According to our model, the shoulder
should be inherited from the excitation spectrum. Perhaps
the approximation we used to calculate the Oersted field,
an infinite wire, is not sufficient to bring out this feature.
Nevertheless, this does not change the interpretation of the
results and conclusions of the present study.

Finally, the NC size dependence of the FMR and SWR
inhomogeneous broadenings shown in Fig. 3 can be well
understood by assuming that it is inherited from the linewidth
of the corresponding excitation peaks. For the SWR mode,
the expected extrinsic contribution to the magnonic linewidth
is 96, 43, and 15 mT for the NC diameters of 82, 122, and
205 nm, respectively, in excellent agreement with the fitted
values. In contrast, for the FMR mode the contribution is
vanishing and should be virtually independent of the NC
size. However, if the NC exhibits shape imperfections, the
corresponding irregularities in the Oersted field profile should
broaden the excitation peaks and, eventually, the FMR and
SWR. As we typically observe a less perfect NC for smaller
diameters, the inhomogeneous broadening of FMR should
increase accordingly, consistent with the experimental data.

VI. CONCLUSIONS

In conclusion, using homodyne-based measurement tech-
niques we provide an in-depth study of the magnetodynamics
in a quasiconfined system, namely, a NC patterned on an
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extended pseudo-spin-valve film stack. The observed spectra
are highly asymmetric and cannot be explained by a single
resonance mode, as has been done in the past [7,12]. Instead,
each spectrum is fit by a combination of two Lorentzians
from which we can extract the FMR mode resonance field
and linewidth. The secondary mode corresponds to the
generation of exchange-dominated spin waves with a wave
vector inversely proportional to the NC diameter. The results
are reproduced by the micromagnetic simulations that show
the rf Oersted field generated by the injected rf current is
the dominant excitation mechanism of the observed magne-
tization dynamics. We thereby demonstrate experimentally
a highly tunable point source of the propagating SW with
the wave vectors limited only by the resolution of the
fabrication process used. This is of paramount importance
for applications of subterahertz and terahertz magnonics and
spintronics.
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