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Effect of space in the game “war of attrition”
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Spatial dynamics has in many cases been invoked as a mechanism that can promote the evolution of coexistence
and cooperation, although the precise conditions for this to occur have not yet been characterised. In an effort to
address this question we have analyzed an alternative version of the theoretical game “war of attrition,” which

exhibits unusual behavior: The well-mixed system exhibits quasistationary coexistence and a relaxation time that
scales exponentially with the system size, while the spatial system shows a relaxation time that is considerably
smaller and scales with a power @ &~ 1.4 of the system size. Further, the spatial system exhibits a first-order phase
transition in the strategy distribution at a consolation prize of k & 1/3. Close to this point the relaxation time
diverges with an exponent y ~ 1.2. This analysis shows that the effect of space is highly dependent on the type

of game considered.
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I. BACKGROUND

Maynard Smith and Price presented the game called the war
of attrition, which was inspired by a standoff situation where
two animals do not fight over territory, but rather wait each
other out [1]. Assuming that the two animals have strategies
(i.e., maximal waiting times) 77 and 75, where T} > T,, the
game will finish after 7, time units has passed, when the shorter
waiting time has been reached, and the corresponding player
gives up. The winner, i.e., the player with strategy 7 prepared
to wait the longest, will get a unity payoff, while the loser
has to go for the less attractive territory and therefore receives
a consolation payoff of k£ < 1. However, both have to pay a
price for the time 7, spent in the game, which means that the
total payoff for the winner is 1 — 75, while that for the loser is
k — T,. Maynard Smith and Price found the evolutionary stable
stategy (ESS) of this game as a mixed strategy of waiting
times described by the formula P(t) = 1/(1 — k)e™"/1=0),
Since then, many authors have analyzed variants of this game,
for example, multiple player situations [2] and asymmetric
predator-prey versions [3].

II. MOTIVATION

In the above-mentioned studies the population of players
was considered well mixed, or in the context of statistical
mechanics, a mean-field approach was used. The players
were paired together in a random fashion, averaging out any
possible spatial structure and local correlations. However, the
dynamics of many biological systems depends crucially on
spatial separation, and this has also been shown to be true in
game theoretic models. In the “prisoner’s dilemma” game [4]
the well-mixed case always gives rise to defection as the
dominant strategy, while in a spatial configuration cooperation
can persist, and coexistence of strategies is observed [5]. In
a game similar to the rock-scissors-paper game modeled on
bacterial competition, a similar phenomenon is observed [6].
When interactions occur locally the model shows coexistence,
while well-mixed dynamics leads to the dominance of a single
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strategy. The introduction of a spatial component can thus have
a positive impact on the level of coexistence. Motivated by this,
we have investigated a spatially extended version of the war
of attrition.

As a starting point of our study we have taken an extension
of the war of attrition, which was introduced by Eriksson et al.
[71, in which the cost function, instead of being given explicitly
as the time spent in the game, was given only implicitly.
This was achieved by considering the social dynamics of a
population of players, where the cost for playing emerges
implicitly, as the games missed out by players already engaged
in a waiting contest. Players with long waiting times run the
risk of getting caught in very long games, which, because of the
constant payoff for winning a single game, results in low payoff
per unit time. An analytic expression for the ESS was found
and the evolutionary dynamics turned out to be significantly
different for consolation prizes below or above a certain break-
point around k ~ 0.17. For k 2 0.17 the population converged
to a stable distribution of waiting times, while for smaller
consolation prizes oscillatory dynamics were observed.

III. MODEL

In the model of Eriksson et al. the strategy space was given
by the non-negative real numbers, but in an effort to simplify
the system we have considered a fully coarse-grained strategy
space that contains only two possible strategies: impatient
players I and stubborn players S. The impatient players have
a waiting time equal to zero, while the stubborn players are
ready to wait essentially an infinite amount of time. This means
that an S player always beats an I player and that the game
finishes instantly (as the I player gives up instantly). The game
between two I players also finishes instantly, this time with
a draw, while the game between two S players continues ad
infinitum and hence does not produce a winner. The only way
to end such a game is for an [ player to challenge one of
the two occupied S players. This means that we do not need
to keep track of the never-ending games between S players;
instead the games finish instantly without any payoffs.

We will consider the dynamics of a population of N players
both in the well-mixed (WM) case where encounters are
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FIG. 1. Distribution of impatient players (white) and stubborn
players (black) on 200 x 200 lattice when the consolation prize
k = 1/3. Periodic boundary conditions have been imposed.

completely random and a spatial system where the players are
located on a square lattice of dimension two and only interact
with their neighbors in a von Neumann neighborhood.

In the spatial system each iteration of the model starts by
picking two neighboring agents and letting them play one
round of the game. At the end of the game a reproduction event
occurs proportional to the payoffs received by the agents. As
before the winner receives a unity payoff, while the loser gets
the consolation prize k. The dynamics of the model can be
summarized in the following way:

(I.I) = (I.1) +1,

I with probability k/(k + 1)
S with probability 1/(k + 1),

(8.8) = (S.9), (D

(S, 1) — (S.,I) +{

where the players in brackets represent the agents involved
in the game and the offspring replaces a random agent in
the neighborhood of the parent agent (i.e., not necessarily
the losing agent). In the (I,I) case the parent is chosen
with equal probability among the two players since the game
ends with a draw. From this formulation it is clear that the
model is equivalent to a stochastic two-state two-dimensional
cellular automata with a neighborhood consisting of second
nearest (von Neumann) neighbors. An example of a spatial
configuration arising through the dynamics of the system is
shown in Fig. 1, which is the result of arandom initial condition
with equal numbers of 7 and § players, which has been iterated
10® time steps with the consolation prize k = 1/3.

In the WM model, the two interacting agents are chosen at
random in the population and the offspring replaces arandomly
chosen player among the entire population conserving the
population size. That is, the dynamics of the spatial and
well-mixed models are identical up to the neighborhood

PHYSICAL REVIEW E 85, 041115 (2012)

0.9F

0.8f (a)

0.7

0.6

0.5

0.4F

0.3F M‘%
02 W

well-mixed

fraction s

v

) Ui;ﬁ L\% M&'MWMW

0.1
0 L L L L L L L L L J
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time steps x 10°
;
0.9
0.8
(b)
0.7 spatial

fraction s

W

2 25 3 3.5 4 4.5 5
4

time steps x 10

FIG. 2. (Color online) Fraction of stubborn players as a function
of time for different initial conditions in both the (a) well-mixed
and (b) spatial setups. Here the population size is N = 400 and the
consolation prize k = 0.6.

structure. As there is no spatial configuration in the WM model,
the state of the system is fully determined by specifying the
number N; of S players (or / players) and the transitions from
one state to another only depends on this variable (and not on
the history). This means that the WM model is equivalent to a
Markov chain with N states, a fact we will make use of later
on. It is also worth mentioning that both the spatial and the
WM model contain two absorbing states: only S players or
only I players. Summarizing, the model contains two types of
strategies, stubborn and impatient players, and two parameters,
the population size N and the consolation prize 0 < k < 1.

IV. RESULTS

Figure 2 shows the fraction s = Ng/N of S players as a
function of time over 5 x 10* time steps in the (a) well-mixed
and (b) spatial cases for a range of different initial conditions.
The population size is set to N =400 and k = 0.6. From
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FIG. 3. Fraction of S players in the spatial model after 10'° itera-
tions for N = 16, 25, and 100. The dashed vertical line corresponds to
k= % The inset shows that the size A of the region where coexistence
occurs (0 < s < 1) scales as A ~ N~144,

this we can see that the WM model does not immediately
drift into an absorbing state but instead exhibits coexistence
and fluctuates around some intermediate fraction of stubborn
players, while the spatial model rapidly converges to a state that
contains only / players. This suggests an increased propensity
for a single strategy to dominate the population in the spatial
system. However, since there are two absorbing states (s = 0
and 1) for both the models and the system will eventually end
up in one of them, we are essentially observing a difference in
transient behavior.

In order to investigate if the rapid convergence to the
absorbing state is a general feature of the spatial model, we
simulate the system, with the consolation prize k ranging from
0 to 1, until it reaches an absorbing state or a maximum of
10'° time steps. The final fraction of S players is shown in
Fig. 3 for N = 16, 25, and 100. For the largest system size the
dynamics exhibit a sharp threshold at k &~ 1/3. Fork < 0.3 the
system always ends up containing only S players, while for
k > 0.36 the system is absorbed into the opposite state, i.e.,
the size of the interval of k values where coexistence occurs is
given by A ~ 0.36-0.3 = 0.06. For smaller N the transition
is smoother and it turns out that the width A of the region
where coexistence occurs (i.e., where 0 < s < 1) scales as
A ~ N~!'* (Fig. 3, inset). The nature of this seeming phase
transition will be investigated further, but first we explore the
dynamics of the well-mixed model.

In the well-mixed system the time to absorption is consider-
ably longer, which implies that the behavior of the system can
be characterized by looking at the quasistationary distribution
Q(s), the probability that the system contains a fraction s of
stubborn players, given that it has not reached fixation. Such
a distribution can be obtained by considering the Markov
chain that describes the dynamics of the WM model [given
in Eq. (2)] and modifying it by adding infinitesimal escape
probabilities ¢ out of the two absorbing states. The stationary
distribution (independent of ¢) for this related process can then
be computed using standard numerical techniques [8]. Two
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FIG. 4. (Color online) Quasistationary distribution Q(s) of the
fraction of S players in the well-mixed model when N = 400,1200
and k = 0.6. The circles show the values obtained from simulation
and the solid lines display the results obtained from the nonabsorbing
Markov chain. The inset shows that for the consolation prize fixed at
k = 0.6 the variance of the distribution scales as 0> ~ N3,

such quasistationary distributions are plotted in Fig. 4, one of
which (N = 400) describes the behavior of the simulations
shown in Fig. 2(a). The inset of Fig. 4 shows that as the system
grows the quasistationary distribution becomes narrower or,
more precisely, that the variance of the distribution scales as
02 ~ N~%, where a ~ 1.3.

The simulation results presented in Fig. 2(a) suggest that the
well-mixed model attains some quasistationary state around
which it fluctuates. In order to find an analytical expression
for the quasistationary state we view the WM model as a
Markov chain with the number of § players N; as the state
variable. For a given N and N; we can, by viewing Eq. (1)
as a transition between different states, derive the following
transition probabilities:

P(N, — N, + 1) _2S(1—_S)2
) N - (1+k) £
(2
HN—»NW—D—%ﬂL:2§+ﬂ1—w2
s s = (1 +k .

The quasistationary state is given by the value of s for which
the probability of increasing and decreasing the number of S
players is equal and can thus be found by setting P(N; —
N; + 1) = P(Ng — N; — 1) and solving for s. By doing this
we obtain the quasistationary solution as
., 11—k

YTk ®
It is straightforward to show that s* also is an ESS in the two-
player game with the payoff matrix wgg = 0,15; = 1,71;5 =
k, and m;; = % and that s* is a stable fixed point for the
corresponding replicator equation.

The expression in Eq. (3) together with the fraction obtained
from simulating the WM model for a range of different values
of k is shown in Fig. 5. From an initial condition of s = 0.5
a system of N = 400 agents was iterated for 5 x 10° time
steps and the final fraction of S players was averaged over
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FIG. 5. Quasistationary state as a function of the consolation prize
k. The solid line corresponds to the analytically derived expression
s* = (1 —k)/(1 + k) and the circles correspond to values obtained
from simulation. The error bars show standard error. Note that for
k values larger than 0.7, the simulated values are all lower than the
analytic values.

20 simulations. From this plot we can observe that Eq. (3)
gives a good approximation of the behavior of the system,
although deviations occur for k close to unity. This is a finite-
size effect, where the impatient players might become fixed
due to fluctuations in the system. These are greater for small
values of s since impatient players both spread and decay more
rapidly than the stubborn players.

In order to quantify the long-term behavior of the system
we analyze the relaxation time 7, i.e., the time it takes for
the system to reach one of the absorbing states (all S or all
I players), as a function of the model parameters N and k in
both the spatial and WM setups. For example, in Fig. 2(b) it
corresponds to the average number of time steps that elapse
before the fraction of S players reaches zero. The results are
summarized in Fig. 6, where Figs. 6(a) and 6(c) correspond to
the spatial system and Figs. 6(b) and 6(d) correspond to the
nonspatial system. Starting with the dependence on system
size, we observe two things. First, the relaxation time is much
larger for the WM system compared to the spatial system. For
N = 400it takes on average 10'? time steps for the WM system
to reach an absorbing state, while the corresponding value
for the spatial system is 3 x 10*. Second, the relaxation time
scales with N in different ways in the two cases: For the spatial
system we have that 7, ~ N* for « ~ 1.4, while for the WM
system we see that T, ~ ¢V for 8 &~ 0.03. When it comes to
the dependence on the consolation prize & in the spatial system
[Fig. 6(b)] we observe that the relaxation time diverges in the
vicinity of the transition point as 7, ~ |k — k|77 fory = 1.2,
where we have used k. = 1/3. In the well-mixed case we also
observe a sharp increase of the relaxation time, but at a lower
value of £ ~ 0.2 and with a broader peak.

A. Phase transition

From the results presented so far it is clear the spatial
component in the model has a significant impact on the
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dynamics. The WM system exhibits coexistence of the two
strategies at a fraction s* = s*(k) of S players, while the
spatial system rapidly (compared to the relaxation time for
the WM system) goes into one of the absorbing states. The
transition between the absorbing states shown in Fig. 3 is
quite sharp and suggests a phase transition in the fraction of
S players at k. = 1/3. In order to characterize this transition
further, we measure the spatial correlations at the critical point
k = 1/3 [9] using the pair correlation function G(r). We find
that G(r) ~ e~"/%, with a correlation length £ ~ 1.2. Hence the
length scale in the system does not diverge at the critical point.
This can be seen in Fig. 1, which shows that spatial distribution
of strategies for k = 1/3, where a typical length scale of the S
and I domains is present even though the system is at the
critical point. The temporal autocorrelation [9] in contrast
exhibits a scaling of the form C(r) ~ t% for § ~ 0.2 and
T < 10. Here 7 is measured in generations (corresponding to
N games), suggesting long-time memory effects in the system.

Taken together these results suggest that the spatial sys-
tem exhibits a first-order phase transition, where the order
parameter, the fraction of S players, changes discontinuously
at the critical point k. = 1/3, at which the correlation length
remains bounded. In contrast we observe a divergence in the
relaxation time with 7, ~ |k — k.| and a scale-free decay in
the temporal autocorrelation function.

V. DISCUSSION

An explanation as to why the relaxation time in the spatial
system is so much shorter compared to the WM system
is that stubborn players are confined into regions within
which they can enter only extremely long games, in our
setup approximated as zero payoff games, while they can
be exploited by (or exploit depending on the value of k)
impatient players at the domain boundaries. In fact, on a
one-dimensional lattice a domain of I players will always
expand into surrounding § players independent of the value
of k, showing that coexistence is impossible in this case.
In the WM model there are no boundaries to impede the
dynamics, but counterintuitively this leads to a lower degree
of competition, which is due to the fact that the lack of spatial
structure balances the competition between the strategies in
favor of the weaker strategy. In the continuum limit of the
well-mixed model, when the number of players N — oo
(i.e., the replicator equation) the coexistence is realized by
an internal stable fixed point whose position is given by s*
in Eq. (3). When s > s* the impatient players have a higher
fitness, while for s < s* the stubborn players are favored.

The location of the critical point k., which from both the
fraction (Fig. 3) and the relaxation time plot [Fig. 6(c)] seems
to occur at k & 1/3, can be arrived at by inspecting Eq. (3).
If we (falsely) assume that all possible neighborhoods are
equally frequent in the spatial system and further that the
system is at the critical point where both strategies are equally
frequent, i.e., s = 1/2, then by plugging this value into Eq. (3)
we can solve for k and find that k. = 1/3. This should not
be taken as a proof that the phase transition occurs at the
derived value but rather as a conjecture supported by numerical
evidence.
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FIG. 6. Relaxation times as a function of the population size N and k for both (a) and (c) spatial and (b) and (d) well-mixed games. In
(a) and (b) the consolation prize is fixed at k = 0.6 and in (b) and (d) the population size is fixed at N = 400. Error bars show standard error.

The observation that a spatial component inhibits coexis-
tence of different strategies is contrary to what has been seen
in most game theoretic models (see, for example, Ref. [10]),
although some instances have been reported [11-14]. All
these examples belong to the so-called directed percolation
universality class described in Chap. 6 in Ref. [15]. The
snowdrift (or hawk-dove) game is also known to exhibit less
diversity in a spatial setting [16]. Interestingly, that system
also shows a phase transition in its spatial version, although
the properties of that transition have not yet been properly
characterized.

VI. CONCLUSION

In conclusion, we have in this paper introduced and
analyzed the dynamics of a simplified version of the war of

attrition in the framework of statistical mechanics. Our analysis
has shown that the spatial system exhibits dominance of a
single strategy and a first-order phase transition in the strategy
distribution depending on the consolation prize k, while the
well-mixed model displays a larger degree of coexistence for
which we derived an expression for the strategy distribution.
These results emphasize the effect of spatial interactions in
game theoretical models and the usefulness of applying the
concepts of statistical mechanics to models such as these.
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