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Abstract 

Hypothesis: 

The Bone Conduction Implant (BCI) can use a higher gain setting without having feedback problems 

as compared with a Percutaneous Bone Conduction Device (PBCD). 

Background: 

The conventional PBCD is today a common treatment for patients with conductive hearing loss and 

single sided deafness. However there are minor drawbacks reported related to the percutaneous 

implant and specifically poor high frequency gain. The BCI system is designed as an alternative to the 

percutaneous system, because it leaves the skin intact and is less prone to fall into feedback 

oscillations thus allowing more high frequency gain. 

Methods: 

Loop gains of the Baha Classic 300 and the BCI were measured in the frequency range of 100 to 

10000 Hz attached to a Skull simulator and a dry skull. The Baha and the BCI positions were 

investigated. The devices were adjusted to Full-on Gain. 

Results:  

It was found that the gain headroom using the BCI was generally 0-10 dB better at higher frequencies 

than using the Baha for a given mechanical output. More specifically, if the mechanical output of the 

devices were normalized at the cochlear level the improvement in gain headroom with the BCI versus 

the Baha were in the range of 10-30 dB.   

Conclusion: 

Using a BCI, significantly higher gain setting can be used without feedback problems as compared 

with using a PBCD. 

Key words: Percutaneous Bone Conduction Device, Baha, Bone Conduction Implant, feedback, 

implantable transducer, sound radiation, loop gain, stability, gain headroom.  
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Introduction 

Patients who are suffering from conductive and mixed hearing loss can sometimes not be 

rehabilitated by conventional air conduction (AC) hearing aids. If the sensorineural hearing is 

sufficient, a bone conduction (BC) hearing aid can be used for transmitting sound to the cochlea. In 

the 1980s a new generation of BC hearing aid called the Bone Anchored Hearing Aid was introduced 

which is a Percutaneous Bone Conduction Device (PBCD). PBCD is an important treatment for 

patients who cannot be rehabilitated by AC hearing aids (1-3) due to chronic otitis and malformations 

of the ear canal and the middle ear. PBCDs are also fitted in patients having single sided deafness 

(SSD) to reduce the head shadow effect (4-6). Figure 1 illustrates the principal design of the PBCD. 

Although very good rehabilitation results with the PBCD are reported (3), there are some known 

complications related to both the soft tissue around the implant and the implant anchorage to the 

bone (7-11). Even though some complications seem to decrease with new implant systems (12), one 

main issue is that it needs life-long daily care. Also, the bone-anchored fixture can be lost 

spontaneously or as a result of trauma, especially in children (13-14). Lastly, percutaneous bone 

conduction devices are known to have limited gain due to feedback problems. Feedback oscillations 

occur when increasing the gain over a certain point as sound is radiated back from skull bone and 

housing to the microphone. This is in fact an inherent limiting factor for PBCD gain at higher 

frequencies.  

A novel Bone Conduction Implant (BCI) has been proposed and developed as an alternative to the 

percutaneous bone conduction hearing device (15-17). It is shown in Figure 2 that the BCI contains 

two main parts; a) the audio processor which includes a plastic housing with battery compartment, 

digital and analog signal processing units, tuned power amplifier and transmitter radio frequency (RF) 

coil; and b) the implanted unit called BCI Bone Bridge that consists of RF receiver coil, filters and the 

BCI transducer. In Figure 3 it is illustrated that the speech signal is amplitude modulated and 

transmitted wirelessly via an inductive RF link through the intact skin to the implant. The audio 

processor housing and the implanted coil are aligned by a retention system with a permanent 

magnet in each unit. As this force is only for retention and not for coupling/transmitting bone 

conducted sound, it is smaller than the retention force in conventional bone conduction devices. It is 

expected that such retention force can be less than 10 times the mass of the external device 

(approximately 10 g) which means approximately 1 N. Furthermore, this force is distributed on a 

larger area, i.e. force per area will be less than in conventional bone conduction devices. Finally, this 

method of retention is also used in cochlear implants and middle ear implants like Vibrant Sound 

Bridge. The BCI transducer has approximately half the size relative of a bone anchored hearing device 

transducer and is permanently implanted under the skin. It is attached to the skull via a flat surface 
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of the housing held in place with a clamping bar construction using miniature orthopedic (Champy) 

screws. This transducer has a high frequency resonance which boosts the speech signal in the high 

frequency range. This boost might be beneficial in hearing speech cues. Also, the capsuled BCI 

transducer uses the Balanced Electromagnetic Separation (BEST) principle. For more details about 

present prototypes see (16,17).  

The surgical procedure that has been tested in cadavers and animal models is assumed to be 

minimally invasive and similar to PBCD surgery. Details will be published in a future article.  

 

Figure 1. Principal design of a generic percutaneous Bone Conduction Device (PBCD) with a screw 

attachment to the skull bone. It also comprises a microphone (Mic), battery (Bat) and pre and power 

amplifier (Amp) that drives the bone conduction transducer. The connection between the Amp and 

the transducer is opened for loop gain measurements. 

 

Figure 2. BCI system with an implanted and capsuled bone conduction transducer with a flat surface 

contact to the skull bone. It comprises also a receiver coil and an externally worn audio processor. The 

audio processor comprises a digital signal processor (DSP) and an amplitude modulation (AM) power 

amplifier (PA). 
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Figure 3. Principal design of the full-scale BCI device. The speech signal is picked up by the microphone 

(Mic) and fed to the digital signal processor (DSP). It is then transmitted through the intact skin using 

amplitude modulation (AM) of the radio frequency (RF) carrier wave. The speech signal is extracted 

by the tuned demodulating unit and then is fed to the BCI transducer which uses the Balanced 

Electromagnetic Separation (BEST) principle. 

Aim of Study 

During development of the BCI and particularly in previous cadavers studies (15,16), it has been 

noted that the BCI device was less prone to fall into feedback problems than the PBCD especially at 

higher frequencies. This finding indicates that the BCI can allow a higher gain setting than the PBCD 

without problems with feedback. An increased amplification especially at high frequencies can be 

very beneficial for speech understanding. The aim of this study is to investigate the gain headroom 

(how much extra gain can be provided before the device will oscillate) in the BCI and in a generic 

bone anchored hearing device. 

Theory and Classification of Feedback in Bone Conduction Devices 

In bone conduction devices, there are different undesirable feedback paths from the transducer to 

the microphone that can cause severe problems with feedback oscillations. Feedback is an inherent 

gain limiting factor in hearing aids due to proximity of the transducer and microphone. This 

undesired feedback is frequency dependent and results in ringing sounds or in worst case oscillations 

when a certain maximum allowable gain is exceeded. In digital signal processors for hearing aids, 

different algorithms are used for reducing undesired feedback in so called adaptive feedback 

suppression systems. These algorithms and methods are not the focus of this article.  

Analytical model for the PBCD 

There are basically four main types of undesired feedback paths that can occur in the PBCD. All can 

be defined by a feedback function dependent on frequency (f). In this paper the symbol “f” is 

regarded as the complex frequency. 
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1- Structure-borne mechanical feedback α1(f); transducer vibrations that are mechanically 

transmitted through the housing back to the microphone, 

2- Acoustical feedback α2(f); caused by the sound radiated from the skull bone and from the 

hearing aid housing which are acoustically transmitted back to the microphone, 

3- Electrical feedback; voltage fluctuations in the output amplifier are electrically transmitted to 

the preamplifier or the microphone within the electric circuit, and finally, 

4- Magnetic feedback; magnetic leakage from the transducer are magnetically transmitted to 

the microphone or possible a telecoil (if such is used in the vicinity of the transducer). 

The combination of electrical and magnetic feedbacks is denoted as α3(f) are considered as a 

single function due to the two following circumstances; a) these two feedback contributions are 

very low compared with the acoustical and mechanical feedback combinations; and b) it is 

difficult to measure their separate contributions.  

Figure 4 demonstrates the block diagram of the proposed analytical model. It should be noted 

that the output signal “Out” from the transducer is force and the input signal “In” to the 

microphone is sound pressure. The virtual summation point (∑) corresponds to the microphone 

diaphragm (18).  

 

Figure 4. Proposed analytical model of the PBCD employing structure-borne mechanical α1(f), 

acoustical α2(f), and combination of electrical and magnetic α3(f) feedbacks. G(f) is the forward 

transfer function which is the PBCD frequency response within normal operation i.e. when α1=α2=α3=0 

(neglected). Microphone and transducer are denoted as Mic and Trans, respectively.  

Analytical model for the BCI 

Similar to the PBCD, there are four main types of feedback problems that potentially can occur in the 

BCI. The difference is that the transducer is implanted in the skull bone and the intact skin is located 

between the audio processor housing and the implanted unit. This results in different amount of 

contributions for feedback pathways which are denoted as β1(f), β2(f), and β3(f), see Figure 5.   
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Figure 5. Proposed analytical model of the BCI employing structure-borne mechanical β1(f), acoustical 

β2(f), and combination of electrical and magnetic β3(f) feedbacks. H(f) is the forward transfer 

function. Intact skin exists between the audio processor housing and the implanted unit. Microphone 

and transducer are denoted as Mic and Trans, respectively. 

The frequency response function of a system A(f) can be determined as the output signal divided by 

the input signal. For the BCI using H(f), β1(f), β2(f), and β3(f) we find: 

 ( )  
 ( )

   ( ) ( )
  

 ( )

   ( )
 

where β(f) denotes the total BCI feedback contributions and T(f) is the loop gain function. The PBCD 

frequency response function A(f) can be obtained by substituting H(f) by G(f) and β(f) with α(f), 

respectively. α(f) and β(f) represents the total feedback contributions. Please note that in the ideal 

case there is no feedback i.e. α(f)=β(f)=0 which means that T(f)=0 and hence A(f)=H(f) (or G(f)). On 

the other hand if T(f)=1 (or 0 dB) a real problem occurs as A(f)= (infinity). This corresponds to a 

completely unstable system and the device will oscillate or howl at certain frequency. The only way 

for the patient to handle such a situation is to reduce volume control which results in reducing T(f) so 

that T(f)<1. 

Stability condition 

In order to have a stable system, obviously T(f)=1 must be avoided. One practical way of saying this is 

that the loop gain always must be below unity i.e. T<1. If the loop gain is T≥1, the signal around the 

loop can maintain (or increase) itself on its own and thus oscillate at the frequency that T(f)=1. Of 

course the patient will experience problems such as ringing or annoying sound also when loop gain is 

close to T=1. Therefore some margins to instability need to be introduced. The gain margin is the 

maximum additional gain that can be used before the system will start to oscillate (assuming the 

phase is zero degree).  

The gain margin can also be interpreted as the amount by which the amplifier gain can be increased 

with stability maintained and before the system starts to oscillate. A rule of thumb in percutaneous 



 

8 
 

bone conduction devices is to adjust the amplifier gain to keep 3-4 dB “gain headroom”. This is done 

as a factory preset of gain. The term “gain headroom” will be used to denote the margin to the 0 dB 

line (T(f)=1) independent of phase.  

Materials and Methods 

Loop gain measurements (magnitude and phase)  

In this paper, to study the stability margins, the percutaneous Baha Classic 300 from Cochlear 

(Cochlear bone-anchored solutions; Cochlear Corporation, Sidney, Australia) and the BCI version 2.0 

were used (19). As a generic percutaneous bone conduction device, Classic 300 was used. The reason 

to choose this device is that it is a linear device and does not use feedback cancellation. Since the BCI 

includes an advanced digital signal processor (DSP), all feedback cancellation algorithms were 

disabled and it was set for linear operation. Both devices were set to Full-on Gain. Two different 

positions were used on the dry skull. Position A is the bone anchored hearing device standard 

position in the parietal bone. Position B is where the capsuled Balanced Electromagnetic Separation 

Transducer (BEST) was attached to the temporal bone by a static force by means of a clamping bar 

and two orthopedic screws (16). Loop gain measurements were made using a dry skull and a Skull 

simulator as loads. The Skull simulator generates a voltage proportional to the force applied at the 

connection point (20). The dry skull is our most important model for bone conduction testing which 

has a completely intact cranium with a thin layer (1-2 mm) polyurethane rubber attached on its 

inside surface and glued sutures to provide more realistic mechanical properties (21).  

To be able to measure the loop gains of the Baha Classic 300 and the BCI the feedback loops had to 

be opened. In the Classic 300 the connection between the preamplifier and the power amplifier was 

disconnected, see Figure 1. In the BCI, the speech signal amplifier that drives the RF power amplifier 

for amplitude modulation was disconnected from the RF power amplifier. When opening/breaking 

the feedback loop, preferably between the pre amplifier and power amplifier it was ensured that the 

conditions that existed prior to breaking the loop was not changed. The Classic 300 power amplifier 

was driven with 1 mVrms sinusoidal voltage in all loop gain measurements. This level corresponds to 

approximately 58 dB equivalent input sound pressure level (SPL). For the BCI, 7 mVrms voltage was 

used that corresponds to approximately 56 dB SPL. It was assured that both devices were in their 

linear range during all measurement. A dynamic signal analyzer, Agilent 35670A, was employed to 

generate and analyze the signals. Automatic logarithmic swept sine in the frequency range from 100 

to 10000 Hz was used in all measurements. All measurements were performed in a sound-insulated 

room.  



 

9 
 

To measure the loop gain of the Classic 300 and the BCI with the dry skull as load, the dry skull was 

covered with 4 mm sticky adhesive to simulate the skin and subcutaneous soft tissues on the 

measuring side. It was also used to maintain a clearance between the transmitter and receiver coils 

in the BCI. Figure 6 illustrates the measurement set-ups for the Classic 300 and the BCI devices. 

Summary of measurements performed: 

1. Baha on dry skull, Pos A 

2. Baha on Skull simulator 

3. BCI on dry skull, Pos B 

4. BCI on Skull simulator 

 

 

Figure 6. Measurement set-ups of the left side of the skull for the Baha Classic 300 and the BCI devices 

with 4 mm sticky adhesive used as skin between transmitter and receiver coils of the BCI. In the BCI 

set-up, the microphone was located on top of the transducer for worst-case acoustical feedback 

effect. 

In addition, to investigate the contribution of acoustical feedback only, loop gain measurements 

were done in all conditions with microphone inlet obstructed by sticky adhesive. Also, noise floor 

measurements were done in all conditions in order to investigate the certainty of the measured 

signal levels. 

Results 

Loop gain measurements of the PBCD  

In Figure 7, the loop gain magnitudes and unwrapped phase diagrams of the PBCD on two different 

loads are presented. 



 

10 
 

Obviously the gain headroom to the critical 0 dB line is small and in the range of 3-4 dB for the PBCD 

(see black solid line). By occluding the microphone inlet of the PBCD the gain headroom to the 0 dB 

line is significantly increased for frequencies from 500 to 7000 Hz, see dashed line. This means that 

the dominating feedback path in the PBCD attached to the dry skull is the acoustical feedback for 

these frequencies. 

As a Skull simulator will not reflect the radiation of sound similar to the skull bone such 

measurement was also performed. Clearly the Skull simulator loop gain has higher gain headroom 

above 500 Hz. This means that the acoustical feedback has less contribution on a Skull simulator than 

on a dry skull. Obviously, in Figure 7 the noise floor curve shows that the measurements were all 

performed with a confident signal to noise ratio.  

 

Figure 7. PBCD loop gain magnitude and phase on Pos A on dry skull and Skull simulator and noise 

floor (solid lines). Also, the result when the microphone was occluded is shown (dashed line). Note 

that the critical magnitude of T=1 here corresponds to T=0 dB.  
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Loop gain measurements of the BCI 

Figure 8 presents the magnitude and unwrapped phase diagrams of the BCI device on two different 

loads; dry skull Pos B and Skull simulator. Obviously, the gain headroom in the BCI is considerably 

higher than in the PBCD (approximately 12 dB or more). Skull simulator measurement shows higher 

gain headroom than Pos B in frequency range of 2000 to 5000 Hz. This is due to the “no-radiation” 

characteristic of the Skull simulator.  

 

Figure 8. BCI loop gain magnitude and phase on Pos B on dry skull and Skull simulator and noise floor 

(solid lines). Also, the result when the microphone was occluded is shown (dashed line). Note that the 

critical magnitude of T=1 here corresponds to T=0 dB. 

The loop gain magnitude and unwrapped phase diagrams of the BCI in Pos B when the microphone 

inlet was occluded was similar to the result when the BCI was attached to the Skull simulator, see 

Figure 8. Comparison to the open microphone condition, it can be concluded that the feedback is 

dominated by electrical feedback for all frequencies and all conditions tested except for 

approximately 2000 to 5000 Hz where the acoustical feedback is dominating. This statement is based 

on that the phase is not sloping for all frequencies except for 2000 to 5000 Hz. 
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Noise floor curve shows that the signal levels measured during the tests were at a sufficient high 

level. The noise floor is higher for the BCI than for the PBCD and that is in consequence of the 

difference between the opening points of the loops in the devices. In the BCI it is made in a later 

stage which then results in more microphone noise at the measured output than in the PBCD case, 

simply because that the noise is amplified more. This difference does not affect the loop gain 

measurement per se. 

Figure 9 shows a comparison of the PBCD and the BCI loop gain magnitudes as they were measured 

and with their frequency responses as presented in Figure 10. The PBCD has a minimum of 3 dB gain 

headroom in the loop gain magnitude to avoid feedback problems. It has 0-5 dB higher gain 

headroom than the BCI below 500 Hz. In contrast, in the important frequency range from 500 to 

10000 Hz, the BCI device obtains 0-25 dB more gain headroom than the PBCD, but there are big 

frequency variations as expected because of the acoustical feedback is present. The gain headroom 

in the critical frequency (close to the 0 dB line) is 3 dB for the PBCD and 12 dB for the BCI. 

 

Figure 9.The PBCD and the BCI loop gain magnitudes on dry skull. The Baha Classic 300 was 

positioned in Pos A and the BEST transducer was implanted in Pos B for the BCI device.  

Discussion 

Compensating for identical mechanical output 

It has been discussed that there might be a 10-15 dB output loss of the BCI due to the inductive RF 

link across the skin (15,16). If the forward gain magnitude of the device decreases, the loop gain 

magnitude will also decrease with the same amount. Therefore, the BCI device loop gain magnitude 

should be compensated with the gain difference between the PBCD output force level (OFL) and the 

BCI OFL to yield the same mechanical output. Linear spectrum magnitudes of the Baha Classic 300 
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and the BCI were therefore measured on Skull simulator in the anechoic chamber while the input 

sound pressure kept constant at 60 dB SPL which is in the linear range of both devices, see Figure 10. 

A 4 mm clearance (silicone sheet) was used between transmitter and receiver coils in the BCI. As 

expected in most frequency ranges, the PBCD has higher output force than the BCI of 10-15 dB 

(attributed to inductive transmission loss) except in the frequency range from 4000 to 6500 Hz where 

the BCI has even a higher output force. It should be pointed out that the BCI transducer has a high 

frequency boost resonance that has been described by Håkansson et al. (16) and that not exist in the 

Classic 300 transducer. In Figure 11, the PBCD loop gain is presented together with the compensated 

BCI loop gain for identical mechanical output. The compensated BCI loop gain is now more similar to 

the loop gain of the PBCD in the mid frequency range, but there is still an advantage of 10 dB higher 

gain headroom compared to the PBCD in the 3000 to 5000 Hz range. 

 

Figure 10. Linear spectrum magnitude of the PBCD and the BCI (4 mm skin) measured on Skull 

simulator in the anechoic chamber at 60 dB SPL. 

 

 



 

14 
 

Figure 11. The PBCD and the BCI loop gain magnitudes on dry skull where the BCI has been 

compensated to produce the same mechanical output as the PBCD.  

Compensated for the same cochlear acceleration level  

However, it has been shown in earlier studies (15, 16, 21-23) on dry skull and cadaver heads that the 

sensitivity to bone-conducted sound would increase if the excitation point approaches the cochlea. 

Therefore, the BCI device should be compensated a second time by the gain differences between 

implantation in Pos A versus B. This was made by measuring the Promontory Acceleration Levels 

(PAL) using a laser Doppler vibrometer (LDV). The same PBCD transducer was attached in both 

positions on the dry skull. In Figure 12, the PAL for both positions are presented when 1 volt was 

applied to the transducer.  

 

Figure 12. Frequency response magnitude (Promontory acceleration divided by input voltage) of the 

PBCD transducer in Pos A and Pos B at the ipsilateral side on the dry skull.  

 

Based on the PAL difference between the Position A and Position B, the compensated BCI loop gain 

in Figure 12 was once more compensated to yield the BCI loop gain presented in Figure 13. Now the 

BCI loop gain is also compensated to give the same cochlear acceleration as the PBCD which gives 

additional 0-25 dB more gain headroom as compared with the PBCD. It can be observed that the 

compensated BCI for the same cochlear acceleration level has 10-30 dB higher gain headroom than 

the PBCD in the range of 600 to 7500 Hz. The gain headroom improvement at the critical frequency is 

17 dB. The improved gain headroom indicates how much the amplification can be increased with the 

BCI device, as compared with the PBCD, without obtaining feedback oscillations. Reviewing the call 

for improving the high frequency gain in the PBCD (which is now inherently limited by feedback) as 
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compared with conventional air conduction devices this improved gain headroom with the BCI may 

show to be of great clinical value. 

 

Figure 13. The PBCD and the twice compensated BCI loop gain magnitudes on dry skull. BCI 

compensations were done to obtain the same cochlear acceleration level as the PBCD. 

One relevant question to ask is why the difference in gain headroom between the BCI and the PBCD 

is so big. One possible explanation may be that the difference in mechanical point impedances in Pos 

A and B may play a role. It has been shown by Eeg-Olofsson et al. (23) that mechanical impedance is 

significantly higher in Position B as compared with Position A and hence the radiation of sound for a 

given force excitation might be lower in Position B than in Position A. Therefore, we repeated the 

loop gain measurements on the other side of the dry skull (right side) but this time with the same 

percutaneous bone conduction device in both position A and B. To place the PBCD in Pos B, an 

extension rod was attached to the skull bone and the abutment was screwed on top of the rod. It 

was found that position B has 1-5 dB more gain headroom in some frequencies than position A and 

hence does not explain the big differences in loop gain between the PBCD and the BCI (Figure 13).  

Another explanation may be that the acoustic contribution of feedback is much higher in the PBCD 

than in the BCI. This can be understandable as the transducer in the PBCD is in the same housing as 

the microphone whereas in the BCI they are separated and having skin and subcutaneous tissue in 

between. This explanation is further supported by the fact that the difference between the open and 

occluded microphone condition is 10-20 dB bigger for the PBCD (Figure 7) than for the BCI (Figure 8). 

Present findings are only based on measurement and analysis of one dry skull and it is of course very 

important to repeat these measurements on real patients when such are available. If other 

percutaneous bone conduction devices should be tested in terms of “loop gain” measurement, they 

should be linear, should not have any feedback cancelation enabled in the DSP and it should be 
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possible to open/break the signal loop internally of the amplifier preferably after the preamplifier for 

noise reasons. This was possible in the Classic 300, but it is not obviously possible in newer models 

with manufacture specific DSP. As the feedback path in the PBCD is dominated by acoustical 

feedback due to the skull radiation and transducer suspension/motion, the results from using Classic 

300 may be generic and also valid for newer models.   

Conclusion 

A new bone conduction implant (BCI) device which keeps the covering skin intact after healing has 

been developed as an alternative to the percutaneous bone conduction device. In cadavers studies it 

has been noticed that the BCI was less prone to fall into feedback problems. Hence the scope of this 

study was to investigate feedback in the PBCD and the BCI. It was found that the BCI had an 

improved gain headroom of 10-30 dB versus the PBCD, if the mechanical output of the devices were 

normalized at the cochlear level. More specifically the improvement in gain headroom at the critical 

frequency was 17 dB. One reason might be due to the higher mechanical point impedance of the 

position B compared with position A which imply that less sound is radiated for a given force level. 

Another explanation for this improved gain headroom might be that the transducer in the BCI is 

completely encapsulated and is mechanically separated from the microphone in the audio processor. 

The improved gain headroom will allow a possibility to increase the real gain of the BCI compared to 

the PBCD. This may have a significant clinical importance for the hearing rehabilitation of patients. In 

conclusion it was found that the BCI was less prone to fall into feedback problems than the PBCD but 

these tests should also be conducted on real patients to confirm the clinical benefits. 
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