
Improving Measurement Certainty by Using
Calibration to Find Systematic Measurement
Error – A Case of Lines-of-Code Measure

Miroslaw Staron1, Darko Durisic2, and Rakesh Rana1

1 Computer Science and Engineering, University of Gothenburg, Sweden
miroslaw.staron/rakesh.rana@gu.se,

2 Volvo Car Group, Sweden
darko.durisic@volvocars.com

Abstract. Base measures such as the number of lines-of-code are of-
ten used to make predictions about such phenomena as project effort,
product quality or maintenance effort. However, quite often we rely on
the measurement instruments where the exact algorithm for calculating
the value of the measure is not known. The objective of our research is
to explore how we can increase the certainty of base measures in soft-
ware engineering. We conduct a benchmarking study where we use four
measurement instruments for lines-of-code measurement with unknown
certainty to measure five code bases. Our results show that we can ad-
just the measurement values by as much as 20% knowing the systematic
error of the tool. We conclude that calibrating the measurement instru-
ments can significantly contribute to increased accuracy in measurement
processes in software engineering. This will impact the accuracy of pre-
dictions (e.g. of effort in software projects) and therefore increase the
cost-efficiency of software engineering processes.

1 Introduction

With the introduction of the measurement information model in the interna-
tional ISO/IEC 15939 standard for measurement processes the discipline of soft-
ware engineering evolved from discussing metrics in general to categorizing them
into three categories – base measures, derived measures and indicators. The use
of base measures is fundamental for the construction of derived measures and
indicators. The base measures are also the types of measures which are collected
directly and are a result of a measurement method. In many cases this measure-
ment method is an automated algorithm (e.g. a script) which we can refer to
as the measurement instrument which quantifies an attribute of interest into a
number.

Since in software engineering we do not have reference measurement etalons
as we do in other disciplines (e.g. kilogram or meter for physics), we often rely
on arbitrary definitions of the base quantities. One of such quantities is the size
of programs measured as the number of lines of code. Even though the num-
ber of lines of code of a given program is a deterministic and fully quantifiable



2 Staron et al.

number the result of applying different measurement instruments to obtain the
number might differ. The difference can be caused by a number of factors, such
as: i) difference in implementation of the same measurement method, ii) dif-
ference in the defininition/design of the measurement method, or iii) faults in
the measurement instruments. Since we do not know the true value without the
measurement procedure we need to find what the accuracy (certainty) of the
measured value is. When using measurement instruments it is often not possible
to explore the measurement methods in details by analyzing the implementa-
tion of the measurement method (in practice the measurement instruments are
provided as compiled code), which means that the measurement engineer needs
to either accept the fact that the uncertainty is unknown or estimate the un-
certainty. The latter leads to more benefits in terms of improved quality of the
measurement results and therefore it is of interest for our work, which addresses
the following research question:

How to reduce the uncertainty of measurement results obtained from mea-
surement instruments with an unknown measurement method?

This research question is addressed by constructing a benchmarking study
where we use four different measurement instruments which quantify the number
of physical lines of code of a program. We use these measurement instruments on
five different open-source code bases in order to explore the deviations between
the results obtained from these tools. We also use a simple program with a known
number of physical lines of code in order to estimate the systematic error of the
tools and then we use that number (converted to a percentage) to reduce the
error of the measurement obtained in the first step.

In the study we use the lines-of-code measure because of its practicality and
availability of measurement instruments (both open source and proprietary) with
unknown measurement method [1]. Another practical advantage is the fact that
the lines-of-code measure is usually calculated using automated software tools
which provide deterministic results and redefine the notion of the error for this
measure. In other engineering disciplines the measurement tools are prone to
systematic errors (related to calibration of the tools) and random errors (related
to the measurement process). When using automated tools for measuring such
quantities as LOC the measurement process always results in the same value
when measuring the same entity – therefore seemingly without the random error.
Calibrating the tools is sometimes difficult, which results in not being able to
distinguish the systematic errors for measurement from the random ones. The
measure has been both widely used in software engineering for calculating the
size of programs [2], software complexity [3] or to predict software size [4]. The
wide use of the measure has resulted in multiple variants of the definition – e.g.
non-commented lines of code, total lines of code, or source statements. Although
the different variants of the measure should not be mixed, it is often the case
that these definitions are not recognizable in measurement tools (also known as
measurement instruments) and thus result in measurement errors.



Estimating measurement error... 3

Our results show that using this simple approach we can reduce the uncer-
tainty to 1.85% from 20% in some cases. We perceive this type of uncertainty
reduction to be applicable to many other base measures (i.e. other than the
lines-of-code measure used in this study) and have a potential to increase the
validity of the prediction models using these base measures (e.g. COCOMO or
defect density, [5]).

The paper is structured as follows. Section 2 outlines the most relevant work
in the field. Section 3 presents the concept of the measurement error used in this
paper. Section 4 presents the measure of lines of code. Section 5 presents the
evaluation of the different definitions of errors on a set of open source programs.
Section 6 provides recommendations on how to use the LOC measure in practice
and section 7 presents the conclusions.

2 Related Work

We review work in three areas – standardization in the area of measurement
in software engineering, measurement theory (in general and its applications in
software engineering) and the overview of critical articles of measurement in
software engineering.

Lincke et al. [6] studied the deviations of results from measurement tools
for sizing object-oriented designs. Their results showed significant deviations
between tools. Their work shows how important the notion of systematic and
random measurement errors are and can to a large extent be explained by the
work presented in our paper.

The recent advances in the field of metrology have also started to arrive in
the field of software engineering. Abran [7] used a combination of the ISO VIM
standard to discuss the validity of the most common metrics used in software
engineering e.g. software complexity or the function points measures. Although
the developments are recent, they are based on the previously defined needs for
more precise terminology and validation of software metrics, e.g. [7]. One of the
major current trends identified by Abran is the search for etalons – elementary
units – in software engineering.

The basic concepts of measurement theory for software engineering have been
redefined by Briand et al. [8] – for example the concepts of relational systems,
mappings and scales. Similar to the definition of relational systems one can
define properties of software measures, which are a foundation for defining a
general measurement instrument model. Such properties are defined by Briand
et al. [9] based on the general properties of measures defined by Weyuker [10],
Zuse [11] and Tian and Zelkowitz [12]. Although the property-based definition of
measures addresses the problem of correct definition of software metrics, it does
not address the issues of uncertainty of the measurement process in practice (i.e.
the instantiation of the mapping between the empirical world and the relational
systems).

Measurement theory has been used as a basis for the main international
standard in measurement on common vocabulary in metrology – VIM [13].



4 Staron et al.

The standard defines such concepts as measurement uncertainty, measurand and
quantification. These definitions capture the meaning of the concepts from the
measurement theory in engineering.

VIM standardizes the most important concepts which influence measurement
processes, for example:

– Measuring instrument: device used for making measurements, alone or in con-
junction with supplementary device(s)

– Instrumental measurement uncertainty: component of measurement uncer-
tainty arising from the measuring instrument or measuring system in use,
and obtained by its calibration

– Measuring system: set of one or more measuring instruments and often other
devices, including any reagent and supply, assembled and adapted to give
measured quantity values within specified intervals for quantities of specified
kinds

VIM does standardize the vocabulary, but the international standard ISO/IEC
15939:2007 [14] (Systems and Software Engineering - Measurement Processes)
focuses on the processes of measuring – data collection, processing and analy-
sis. The ISO/IEC 15939 standard has an impact on the definition of metrics
and measurement guidelines for the ISO/IEC 25000 series of standards. How-
ever, none of these two standards addresses the actual problem of measurement
errors.

3 The concept of measurement error

Measurement error is defined in measurement theory as the deviation between
the real value of the measurand and the value obtained from the measurement
process. It is derived from the concept of measurement uncertainty which is the
dispersion of the values attributed to the measurand. The main definition is
provided in ISO/IEC 17045 (General requirements for the competence of testing
and calibration laboratories, [15]) and later on used in software engineering in
ISO/IEC 25000 series of standards [16].

The measured quantity can be referred to as the estimator as the true value
of the measurand always remains unknown because of the finite accuracy of
the measurement instruments. In general the estimators (X) combine both the
expected value of the measurement (M) plus the error (E) – see formula 1.

X̂ = M̂ + Ê (1)

The measurement error is combined of two types of errors – the systematic
error (S) and the random error (R) – formula 2.

Ê = Ŝ + R̂ (2)

The systematic error is usually caused by the miscalibration of the measure-
ment instruments and is the same for all measurements taken by the instrument.



Estimating measurement error... 5

Fig. 1. Regression models with different accuracy of prediction

The mean of the systematic error is expected to be non-zero, and causes skewe-
ness of the measurement results. In order to minimize the systematic errors the
measurement instruments are calibrated – adjusted to show the correct results
when measuring entities of known properties.

The random error, on the other hand, is different for each measurement taken.
The mean value of the random measurement error is expected to be zero and it
causes the distribution of the measurement results to be wider.

In general it seems easy to distinguish between these two types of errors,
but in practice it might be very difficult. In section 5 we show examples of this
problem.

3.1 Impact of measurement error on predictions – Standard Error of
the Estimate

Software measures are usually used within various models designed for moni-
toring and forecasting [17, 18]. When using these measures within prediction
models, the other major source of errors come from estimation error. Every es-
timation method involves an estimation error, which comes from the simple fact
that the real quantity generally differs from its estimated quantity.

Taking an example of simple prediction model with single predictor (x) and
predicted variable (y) have a linear relationship between them (y ∼ m∗x, where
m=2), two scenarios of prediction model can be shown as in Figure 1.

As evident from Figure 1, the prediction model A seems more accurate then
prediction model B, or in other terms the estimation error is expected to be
lower for model A compared to mode B.

The standard error of the estimate (or SEE) is the measure of accuracy of
predictions. For estimations using linear regression minimizes the sum of squared
deviations of prediction (also referred to as Sum of Squared Errors, or SSE). Thus
the standard error of estimate for method of least squares (linear or non-linear
models) is equal to SSE, which can be calculated as:

σest =

√
Σ(Ya − Yp)2

N
(3)



6 Staron et al.

Where σest is the standard error of estimate, Ya is the actual value, Yp is the
predicted value, and N is the number of observations.

4 Lines of code (LOC)

In this paper we use the measure of Lines of Code (LOC) as an example to illus-
trate the concept of measurement error. The measure has been used in practice
since 1950s and there is substantial body of research on it, [19]. It is also used as
a input variable to many prediciction models – e.g. the Constructive Cost Model
(COCOMO) and its newer versions [4].

LOC measure is often also called SLOC (Source Lines of Code) as an acronym
and has multiple variations, for example:

1. Physical (Source) Lines of Code – measure of all lines, including comments,
but excluding blanks

2. Effective Lines of Code – measure of all lines, excluding: comments, blanks,
standalone braces, parentheses.

3. Logical Lines of Code – measure of those lines which form code statements

The variations of the measure are used for specific purposes and can be
regarded as measures of the same entity, but with different measurement methods
according to the definitions included in ISO/IEC 15939 [14]. We can also observe
that these measures are liable to systematic errors in different ways – for example
the number of physical lines of code will include comments which do not add to
the complexity of the algorithm, but may impact the effort needed to develop
the program; the logical lines of code will naturally not be sensitive to the same
type of error (i.e. comments).

5 Empirical evaluation

In order to assess what the effects of different ways of calculating measurement
error have on the results, we designed a benchmarking study of calculating LOC
on a number of open source projects. For the calculations we chose a set of tools
which calculate the effective lines of code and should be comparable. The goal
of the evaluation was to evaluate the impact of the systematic and random mea-
surement errors on the result of the measurement process from the perspective
of a quality manager.

5.1 Design

For the purpose of the evaluation we randomly chose four measurement instru-
ments:

– Unified CodeCount (UCC), Release 2011.10,
http://sunset.usc.edu/research/CODECOUNT/



Estimating measurement error... 7

Table 1. Results from measuring five source code repositories with four different tools

Source code UCC Understand Code Ana-
lyzer

Universal
CLC

Median

Linux Kernel 11 631 288 9 466 175 11 650 363 11 207 899 11 419 931
Mozilla Firefox 5 066 234 4 282 587 5 457 003 4 966 983 5 016 609
Open Office 4 855 090 4 431 717 5 231 869 4 742 033 4 798 562
Android 878 157 878 041 876 795 871 710 877 418
Chrome 5 502 768 4 460 016 6 263 157 5 453 027 5 419 742

– Understand, http://www.scitools.com/download/
– Code Analyzer, Version 0.7.0, http://sourceforge.net/projects/codeanalyze-gpl/
– SLOCCount, Version 2.26, http://www.dwheeler.com/sloccount/

We also chose five different source code packages in order to capture variabil-
ity in the programming styles:

– Linux Kernel, Release 3.13.6
– Mozilla Firefox, 27.0.1
– Open Office, V4.0.1 R1524958
– Android, V4.0.3 R1
– Chrome, V18.0.1025123

The size of the measured programs was more than a few hundred lines of
code, which was important for the estimations – the size was too large for a
person to count the number of lines of code manually and the estimates were
needed.

The process of our benchmarking study was as follows. First we calculated the
LOC for all software packages and calculated the median for each package. The
median was chosen as it is the value that is in-between the middle data points (or
the mid data point in case of odd number of data points) and therefore is can be
the value that has been measured by one tool. Once we calculated the median we
calculated the absolute error which is the difference between each measurement
and the median. Then we calculated the relative error as a ratio between the
absolute error and the median, which we use later on for comparison. Then we
calculated the systematic error by using a pre-defined program as a measured
entity for each measurement instrument. Then we used the measured systematic
error to adjust the values of the LOC measurements from the five software
packages and repeated the procedure with finding the median and calculating
the absolute and the relative errors. We then compared the differences between
these two calculations and discussed them.

5.2 Results

The results are presented in Table 1 and are predictably correct – all measure-
ment tools provide different measurement results. We do not know the system-
atic and the random measurement error for these programs. Therefore it is not
possible to distinguish the differences between these two types of errors.



8 Staron et al.

Table 2. Absolute measurement error when using median as the estimator of the true
value

Source code UCC Understand Code Ana-
lyzer

Universal
CLC

Linux Kernel 211 695 - 1 953 419 230 770 - 211 695
Mozilla Firefox 49 626 - 734 022 440 395 -49 626
Open Office 56 529 -366 845 433 308 - 56 529
Android 739 623 - 623 - 5 708
Chrome 24 871 - 1 017 882 785 260 -24 871

Table 2 shows the results from calculating the absolute relative error using
the median as the substitute for the true value of the measurement. We chose
median instead of arithmetic mean as it has the property of being the middle
value in the data set (if the number of elements is odd). This means that it is a
value which exists in the data set whereas the arithmetic mean has the property
of being in the middle, but most often it does not exist in reality.

The error values shown in Table 2 indicate that there is a large discrep-
ancy in which tools present the lowest and the highest results – visible for the
measurement results for the Android source code.

Table 3 presents the percentage – the relative measurement error for the same
measurement results.

Table 3. Relative measurement error when using median as the estimator of the true
value

Source code UCC UnderstandCode Ana-
lyzer

Universal
CLC

Linux Kernel 1.85% 17.11% 2.02% 1.85%
Mozilla Firefox 0.99% 14.63% 8.78% 0.99%
Open Office 1.18% 7.64% 9.03% 1.18%
Android 0.08% 0 0.07% 0.65%
Chrome 0.45% 18.58% 14.34% 0.45%

The results presented in Table 3 shows that the relative error could be as
large as 18.58% for the example data set (Android code measured using Under-
stand). It is natural that this kind of error is unacceptable for any evaluation
and that this kind of magnitude of the error could be caused by a systematic
error combined with the total size of the software (i.e. low numbers combined
with large systematic error will result in large percentage of relative error).

Table 4 shows the results from calibrating the measurement tool on a small
C++ program with 21 lines of code as shown in Figure 2. The program has 10
lines of executable code and the code is written with extra white spaces (e.g.
after { after the main procedure). Each line which is counted as a LOC has a
number in bracket next to it (e.g. ”#include<stdio.h>(1)”).

The results shown in Table 4 show that several of the programs provide the
results which count the lines of executable code as we intended – e.g. UCC and
Code Analyzer. The tool Understand does not even count the curly brackets and



Estimating measurement error... 9

Fig. 2. Example program used for calibration of the tools

therefore can be seen as the one with a negative systematic error – the number
of LOC is 8 for that program.

Table 4. Results from measuring 5 source code repositories with 5 different tools

Measurement in-
strument

Measured
LOC

Systematic
Error

Systematic
Error (rela-
tive)

UCC 10 0 0%
Understand 8 2 20%
Code Analyzer 10 0 0%
Universal CLC 9 1 10%

One observation which we can make by comparing the relative error and the
systematic error is the difference between these two. For example let’s consider
the tool Understand, which has a difference of 2 LOC in table 4 with the calibra-
tion results. 2 LOC is 20 % of 10 LOC of the program used for the calibration.
In table 3 that tool shows a relative error in the range of 0.07%− 18.58%. This
means that knowing an estimate of a systematic error allows to reduce the ran-
dom error from as much as 18.58% to 1.42% (calculated as (20% − 18.58%). If
we apply the same approach to all measures in table 3, we get the results as
presented in table 5.

We could see that the tools which have the largest systematic error still have
the largest error in total (e.g. Understand). Now, that we know the systematic
error and its direction (underestimation) we can take that into the account and
change the values of the LOC measurement from Table 1 and redo the calcula-



10 Staron et al.

Table 5. Relative measurement error when using median as the estimator of the true
value reduced by the systematic error from table 4

Source code UCC UnderstandCode Ana-
lyzer

Universal
CLC

Linux Kernel 1.85% 2.89% 2.02% 8.15%
Mozilla Firefox 0.99% 5.37% 8.78% 9.01%
Open Office 1.18% 12.36% 9.03% 8.82%
Android 0.08% 19.93% 0.07% 9.35%
Chrome 0.45% 1.42% 14.34% 9.55%

tions which results in the following number of the relative error as presented in
Table 6.

Table 6. Relative measurement error when using median as the estimator of the true
value reduced by the systematic error from table 4

Source code UCC UnderstandCode Ana-
lyzer

Universal
CLC

Linux Kernel 0.08% 2.42% 0.08% 5.91%
Mozilla Firefox 4.38% 3.00% 3.00% 3.13%
Open Office 7.06% 1.80% 0.15% 0.15%
Android 4.39% 14.71% 4.54% 4.39%
Chrome 4.31% 6.93% 8.91% 4.31%

The results should be compared with Table 3 as they are recalculated in the
same way, given the new median (as the LOC measurement for Understand and
Universal CLC are increased by 20% and 10% respectively). What the results
show is that we can decrease the uncertainty (compared to Table 5) as we only
have the relative error component in the measurement.

Naturally more studies are needed to use different programming styles when
defining the programs used to calibrate the tools, but even this small example
shows that the calibration has a significant impact on the measurement error
and thus on the estimation formulas where the measure value is used (e.g. in the
COCOMO estimation model).

5.3 Threats to validity

The empirical validation of the results have a number of validity threats as any
other empirical study. We use the framework of Wohlin et al. [20].

The main threat to the external validity is the fact that we only used open
source code in the evaluation. Although this threat can indicate a potential bias,
we understand that the coding style differs enough between the open source
projects (e.g. code written by different consortia) in order to make claim which
can be generalized to other types of programs. The study by Lincke et al. [6]
showed the same types of deviations as we observed in our work (but using
higher-level, object-oriented metric suite), which was an independent study. This
increases the validity of our conclusions as it is in fact a triangulation of the
approach. However, we believe that more evaluations on more base measures to



Estimating measurement error... 11

explore if our conclusions are valid in more contexts. We also plan to expand
this study in the future to allow to draw the calibration code sample from the
code base and therefore have consistency between the calibration code and the
code base.

The main threat to the conclusion validity is the size of the sample – i.e.
the number of measurement instruments (code counting tools) and the number
of open source programs. We used a simple calibration program in order to
establish the baseline for the systematic error in the measurement. Since our
main goal was to understand the scale of the measurement error in practice, the
small sample size does not lower the validity of our conclusions.

The main threat to the construct validity stems from the assumption that
there is a difference between systematic and random error in software engineer-
ing. Both concepts are established in the measurement theory and they are based
on the assumption that there is some degree of non-determinism in the measure-
ment. The non-determinism assumption can be debatable, though, in software
engineering (due to automated measurement instruments). Given the fact that
the tools used in our study produced a result we treated them as correct (i.e.
free from bugs), but this does not have to hold for all measurement instruments.
Having bugs in the measurement instruments contributes to the presence of ran-
dom error and therefore we plan to investigate it more in the next steps. The
goal of this study was to investigate whether this assumption is correct and the
results of our study show that these concepts are present.

The main threat to the internal validity is the choice of measurement tools
and programs. They were chosen randomly based on internet search given the
criteria that they can calculate the same type of LOC measure. Since there were
differences between the measurement tools we believe that the internal validity
is not jeopardized; had this not been the case, i.e. there were no differences we
would require to expand the study to more tools.

6 Recommendations

Measurement errors are present in almost every measurement taken, including
measurements in software engineering. The notion of the errors in software en-
gineering is similar to the same notions in other disciplines and we provide the
following recommendations:

– Calibrate the instrument using small programs: Calibration is the most
important part of measurement and provides the possibility to calculate the
errors with the ”true” value of the estimator known (which is not the case of
measurement of larger entities). Small program allow to manually calculate
the values which can be used for calibration.

– For the calibration, use the same programming style as the code
base: Drawing the sample of the calibration code from the measured code base
allows for consistency between the programming styles between the measured
code and the calibration code – the same programmers usually write the code
in the same way [21].



12 Staron et al.

7 Conclusions

The goal of this paper was to study how the notion of measurement error can
be defined for metrics in software engineering to enable correct measurement.
In order to study this concept we chose one of the most used and the simplest
metrics – Lines of Code. As the metric is designed to measure source code we
could link the results of measuring a program to a number. This metric allowed
us also to discuss the measurement error based on a small calibration program.

The results showed that both the systematic and random errors are present
and that the key to distinguish between these is to use calibration of measure-
ment tools. These results mean that the measurement processes can be signifi-
cantly improved when using calibration. Instead of using the concepts of standard
deviations and average to estimate the LOC in the programs, which are based on
assumptions of normal distribution of the metric, calibration provides a better
estimate of measurement error and thus a better estimate of the true value of
LOC.

In the future we plan to expand our approach by taking into considerations
the influence of the assumptions made in this work – one of these assumptions
being the consistency in programming styles between the code base and the cali-
bration code. To account for that we plan to draw the sample code for calibration
from the measured code base and calculate the influence of certain programming
constructs on the measurement. For example we can count the number of lines
containing only the curly brackets,or the number of lines containing only white
spaces to capture different programming styles.

Acknowledgment

The authors would like to thank the doctoral students in the ”Measurement in
Software Engineering” course at the University of Gothenburg for the discussions
on the topic of measurement error and measurement theory.

References

1. A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and
development effort prediction: a software science validation,” Software Engineering,
IEEE Transactions on, no. 6, pp. 639–648, 1983.

2. T. M. Khoshgoftaar and J. C. Munson, “The lines of code metric as a predictor
of program faults: A critical analysis,” in Computer Software and Applications
Conference, 1990. COMPSAC 90. Proceedings., Fourteenth Annual International.
IEEE, 1990, pp. 408–413.

3. J. S. Davis and R. J. LeBlanc, “A study of the applicability of complexity mea-
sures,” Software Engineering, IEEE Transactions on, vol. 14, no. 9, pp. 1366–1372,
1988.



Estimating measurement error... 13

4. B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby, “Cost
models for future software life cycle processes: Cocomo 2.0,” Annals of software
engineering, vol. 1, no. 1, pp. 57–94, 1995.

5. N. Nagappan and T. Ball, “Use of relative code churn measures to predict sys-
tem defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. IEEE, 2005, pp. 284–292.

6. R. Lincke, J. Lundberg, and W. Löwe, “Comparing software metrics tools,” in
Proceedings of the 2008 international symposium on Software testing and analysis.
ACM, 2008, pp. 131–142.

7. A. Abran, Software metrics and software metrology. John Wiley & Sons, 2010.
8. L. Briand, K. El Emam, and S. Morasca, “On the application of measurement

theory in software engineering,” Empirical Software Engineering, vol. 1, no. 1, pp.
61–88, 1996.

9. L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software engineering
measurement,” Software Engineering, IEEE Transactions on, vol. 22, no. 1, pp.
68–86, 1996.

10. E. J. Weyuker, “Evaluating software complexity measures,” Software Engineering,
IEEE Transactions on, vol. 14, no. 9, pp. 1357–1365, 1988.

11. H. Zuse, A framework of software measurement. Walter de Gruyter, 1998.
12. J. Tian and M. V. Zelkowitz, “A formal program complexity model and its appli-

cation,” Journal of Systems and Software, vol. 17, no. 3, pp. 253–266, 1992.
13. I. B. of Weights and Measures, International vocabulary of basic and general terms

in metrology, 2nd ed. Genve, Switzerland: International Organization for Stan-
dardization, 1993.

14. I. S. Organization and I. E. Commission, “Software and systems engineering, soft-
ware measurement process,” ISO/IEC, Tech. Rep., 2007.

15. I. B. of Weights and Measures, General requirements for the competence of testing
and calibration laboratories, 1st ed. Genve, Switzerland: International Organiza-
tion for Standardization, 2005.

16. ——, Systems and software engineering – Systems and software Quality Require-
ments and Evaluation (SQuaRE) – Guide to SQuaRE, 2nd ed. Genve, Switzer-
land: International Organization for Standardization, 2014.

17. M. Staron, “Critical role of measures in decision processes: managerial and tech-
nical measures in the context of large software development organizations,” Infor-
mation and Software Technology, vol. 54, no. 8, pp. 887–899, 2012.

18. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner, “Evaluat-
ing long-term predictive power of standard reliability growth models on automotive
systems,” in Software Reliability Engineering (ISSRE), 2013 IEEE 24th Interna-
tional Symposium on. IEEE, 2013, pp. 228–237.

19. B. Boehm, “Managing software productivity and reuse,” Computer, vol. 32, no. 9,
pp. 111–113, 1999.

20. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer, 2012.

21. L. Kuzniarz and M. Staron, “Inconsistencies in student designs,” in the Proceedings
of The 2nd Workshop on Consistency Problems in UML-based Software Develop-
ment, San Francisco, CA. Citeseer, 2003, pp. 9–18.


