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Abstract—Intelligent transportation systems rely on the avail-
ability of high quality data in order to allow its multiple actors to
make correct decisions in diverse traffic situations. Traditionally,
high quality is associated with the correctness of the data, its
timeliness or integrity. Going beyond data quality, this paper
explores the notion of data veracity, which we approach from the
perspective of the truthfulness of the data with respect to reality,
or, in other words, its ability to be free from °‘lies’. Starting
from the concrete case of the slippery road warning scenario
(which comes from an industrial player), we define an initial
taxonomy of data veracity (which is derived from the study of
the literature) and use such taxonomy as a means to analyze
the threats to data veracity in the above mentioned scenario.
Additionally, this paper has the ambition to draw the attention
of researchers and practitioners on the emerging challenges in
the fiels of data veracity and to define a research roadmap to
tackle such challenges.

I. INTRODUCTION

Intelligent transportation systems have the potential to in-
crease the safety of roads users by means of the timely sharing
of road-related information. To this aim, a core component
is represented by the connected vehicles. A common trend
in the automotive industry is to collect the data generated
by connected vehicles and store the data in cloud services.
Manufacturers like Volvo, Tesla, and Mercedes (among others)
are already following this path for their premium cars. Such
data is primarily used by manufactures for the purpose of
centralized analysis but can also be shared with interested third
parties, like for instance the traffic management agencies, road
assistance services, first responders, and so on. The data shared
by connected vehicles is generated in large quantities and at
a fast pace. These two characteristics are often referred to as
velocity an volume, respectively, and are a hefty concern in
Big Data systems like the intelligent transportation systems '.

The present state of research in the Big Data community
has devoted major attention to the above-mentioned aspects
of Big Data systems. However, as the volume of the data
and its velocity increases, the quality of the data is more and
more essential in order to avoid problems with the reliability,
trustworthiness and safety of these systems [1], [2]. As shown
later, unfortunately, the concern of veracity of the information
used in big data systems is disregarded in the state-of-the-
art research and underestimated by the state-of-the-practice.
For instance, the Gartner definition of Big Data includes high
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volume, high velocity and high variety, but does not mention
veracity. The ambition of this paper is to define a roadmap
for research in the field of data veracity, with a specific focus
on intelligent transportation systems as the decisions made by
such systems can become hazardous for road users if they are
based on untrustworthy information.

In this paper we explore the notion of veracity of data, which
can be commonly perceived as the truthfulness of the data
with respect to reality, or, in other words, its ability to be free
from ‘lies’. The concept of lies as violations of the veracity
property is crucial as it recognizes the ability of agents in
transportation systems (car sensors, road devices, humans) to
either willingly or unintentionally introduce false information
into the system. In the literature, lies are classifies as either
lies of commission, i.e., making a misleading statement about
something that is not a fact, or lies of omissions i.e., making a
misleading omission of a relevant fact [3]. Both types of lies
are relevant in the context of data veracity. A faulty car sensor
that stops providing information about the road conditions is
an example of omission, while a rogue road user producing
fake traffic information is an example of commission.

In this paper, we set forward the idea that veracity has
several sub-concerns that need to be studied and understood.
Commonly, veracity is interpreted from a trustworthiness
perspective, meaning that the provenance of data need to be
tracked and leveraged in order to assess the trust level of
the data used in any analysis or decision process. However,
veracity is a multi-faceted concerns that includes timeliness,
precision, completeness and several other sub-concerns. Note
that a lie could involve any of the above-mentioned aspects.
Therefore, we believe it is of uttermost importance that the
different facets of veracity are identified in a taxonomy, so
that the threats to veracity can be systematically cataloged
and explored as well.

A thorough understanding of the threats to veracity is a
foundation stone in order to identify methods, techniques and
algorithms to make intelligent vehicle systems robust vis-a-vis
such threats. We remark that engineering robustness to data
veracity threats is our ultimate goal. The research problem
is motivated by the fact that the intelligent transport systems
increasingly rely on using Big Data in decision making [4].
The data can come from multiple actors (e.g. vehicles or
infrastructure) and can be heterogeneous in terms of its seman-
tics. As the consequences of the noises, biases and abnormality
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(low veracity of the data) for decision making in algorithms
in advanced driver support systems can be catastrophic for
drivers and passengers we need to find automated, scalable
and high performance methods for assuring freshness, trust
and integrity of the data generated by several sources.

From a practitioner’s perspective, the selection and adoption
of a data veracity technique, should be driven by the risk
associated to the veracity threats. This means that lies can
be associated to a likelihood value depending on what poses
the threat (e.g., a defective sensor vs. a rogue individual).
Similarly, lies have a varying impact depending on the con-
sequences of the decisions taken on the basis of such lies. A
risk value associated to a lie could be computed staring from
the likelihood and the impact values. In turn, the risk value is
crucial in order to determine how to deal with a potential lie,
e.g., in terms of countermeasures adopted in the system.

In summary, the research agenda we suggest comprises
three pillars: (i) understanding what are lies in intelligent
transportation systems, (ii) defining ways to assess the risks
associated to these lies, and (iii) define techniques to deal
with the lies. At present time, we are tackling the first
pillar mentioned above and have the ambition to create a
taxonomy of the various types of veracity threats in intelligent
transportation systems. To this aim, starting from the analysis
of a concrete scenario (i.e., the slippery road warning scenario
as described in Section II), we have setup a qualitative study
in which we interview several key stakeholders, including
a major car manufacturer (Volvo) and a traffic management
agency (the Swedish Transport Administration). In preparation
for the study, we have analyzed several sources and compiled
an initial list of the sub-concerns of veracity that could be
threatened by lies. The results are reported in Section III.
Based on such taxonomy, in Section IV, we report on an initial
assessment of the potential data veracity threats in the slippery
road warning scenario and elaborate on the consequences
of such threats. Finally, the paper sets forward a roadmap
in Section V, discusses the related work in Section VI and
presents the conclusions in Section VII.

II. EXAMPLE SCENARIO

To illustrate the problems related to the calculation of the
veracity of data we can consider a scenario of slippery road
warning, which is considered as a scenario of an intelligent
transportation system as defined by Dimitrakopoulos and
Demestichas [S]. According to that definition an intelligent
transportation system is characterized by implementing func-
tionality for providing knowledge to vehicles, thus jointly
managing traffic and safety.

The slippery road warning scenario can be found in adver-
tisements of modern cars such as Volvo [6] and is presented
in Figure 1.

The scenario has two goals: (i) to warn the drivers about
slippery road (thus contributing to increased safety) and (ii)
to notify the road administration of the need to handle the
slippery road. In the scenario there are a number of actors
such such:

Figure 1. Slippery road warning scenario presented by Volvo Car Group.
Picture used with permission from [6].

1) vehicles/drivers which collect the data and get warnings,

2) road administration which gets the notifications and
dispatches road maintenance vehicles, and

3) infrastructure providers who store the data, calculate the
conditions and notify the road administration.

For the purpose of identifying the actors and the communi-
cation channels let us represent the scenario with the focus on
actors and the communication channels as presented in Figure
2. In our context of veracity it is both the channels and the
actors which are important as the information can become a
”lie” in both these kinds of entities.

In this scenario the first vehicle (A) recognizes the slippery
road using its sensors (e.g. the ABS systems) and notifies the
infrastructure provider about this using the V-2-I channel. The
infrastructure provider makes the calculations of how slippery
the road it, how long it was/is slippery using the information
from Vehicle A and the information about the road (from its
database), other vehicles (if available). The calculations can
result in a decision that the slippery conditions are getting
worse and notifies the road administration which dispatches
the road maintenance trucks to salt the road.

In this description the assumption is that none of the actors
(Vehicle A, infrastructure provider and road administration)
operate on a veracious data, i.e. all information is true.
However, it can be the case that the information is not true,
e.g. in the following cases:

« sensors in vehicle A have been tampered and are there-
fore uncalibrated, providing inaccurate measurement data
and not notifying the infrastructure provider (i.e. non-
varacious data through omission),

o communication V-2-I have been inaccurate and the in-
formation about slippery road is sent to a wrong infras-
tructure provider or with wrong identification of location,
and

o the I-2-1 communication is blocked by severe weather
conditions resulting in not sending the information about
the slippery road to the road administration.

In addition to the slippery road warning scenario, the
following scenarios and usage areas are often mentioned in the
literature when discussing data-intensive communication. In
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Figure 2. Slippery road warning scenario with the emphasis on actors and
their communication channels

the context of intelligent transportation systems these scenarios
and areas are:

o Connected vehicles and cooperative driving [7],

« Using robots to enhance the vehicle-to-vehicle commu-
nication [8],

o Smoothing of traffic flow [9], and

o Truck fleet optimization [10]

The challenges related to handling of the non-veracious data
can differ, but the taxonomy of the assessment methods is
similar in all these scenarios.

III. DATA VERACITY

Historically, the notion of veracity is derived from the
area of sociology and its major popularity lies in the area
of criminology — the ability to detect whether a witness is
veracious or not [11], [12]. In that particular context, the term
veracity is used both in relation to actors (e.g. witnesses)
and their statements [13]. The latter refers to judging the
truthfulness of a statement and is in scope for our purposes as
well.

In our context, we consider the definition of veracity as
quoted by Krotofil [14] who defines the veracity as the
property that an assertion truthfully reects the aspect it makes
a statement about. We can see a direct relation to the field of
criminology and also see the challenges related to automated
assessment of the veracity in the context of software systems.

For instance, the veracity of the data can be violated by:

« non-adequate measurement of a physical property by a
sensor because of the inappropriate design of the sensor

« non-adequate measurement caused by a faulty sensor
during the operation

« non-adequate measurement caused by an obstructed sen-
sor

o faulty data caused by a malicious agents tempering with
the sensor data

Naturally, there are differences in the countermeasures pre-
venting the malicious manipulation of sensors or other unin-
tentional problem. However, dealing with the non-veracious
data does not differ — the system making a decision based on
the data needs to assure that its actions do not cause harm
to the system and the environment it operates in. Therefore,
in our work we consider the ability to function properly in

the presence of non-veracious data to be central in order to
attain robustness to veracity violations. In general robustness
is defined as the ability of a system to operation despite
violations in its operational environment [15] and in this
context is narrowed to only handle the problems related to
detecting and handling of data threats.

As shown in Figure 3, data veracity threats can emerge from
the violation of several sub-concerns. The list presented in the
figure is not a complete taxonomy, but rather an initial list
that we are validating by means of a series of interviews with
industrial experts. In particular, veracity entails at least the
following aspects:

o Free from error: this is the most fundamental property
of veracity. Errors can be generated because of a lack of
measurement accuracy or because of bogus data produced
maliciously.

o Precision: the data is exact and withing the acceptable
tolerance errors. For instance, a location can be reported
as a circle and a more precise location involves a smaller
radius. Manipulating the way a fact is reported by altering
the precision of the account is a common form of lie.

o Objectivity: the data used for analysis, reasoning, and
decision making are based on facts rather than opinions
or beliefs. This aspect is particularly relevant for human
agents.

o Completeness: the data does not contain omissions, i.e.,
all relevant data is used to make a claim.

« Provenance: the origin of the data can be ascertained with
confidence.

o Freshness: the data is not stale and hence is still relevant
at the time it is used for analysis, reasoning and decision
making.

Precision

Completeness

Pravenanc
Objectivity =
Freedom from errors

Sub-concerns -

Freshness

Figure 3. Some sub-concerns of data veracity

A. Related concepts

The concept of data veracity is related to a number of
information quality attributes, for example a subset of these
presented in the AIMQ information quality framework [16].
The relation can be based on the methods for assessing of
the veracity (or the related attribute) or the ability to detect
the threats to veracity. Figure 4 shows the taxonomy of these
concepts. Another related area is the area of information
security, which is related to the assessment of veracity of
information transmitted over a communication channel (e.g.
V-2-1 in figure 2).

We present a short description of these related concepts in
the list below:
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Figure 4. Concepts related to data veracity

Believability — the degree to which the information can
be believed; the non-believeable information should be
treated as non-veracious.

Understandability — the degree to which the data can be
understood by the consumer; the data with low under-
standability should be treated in the same way as low
veracity data.

Plausibility — the degree to which the data is plausi-
ble/possible; the concept is very similar to veracity in
the sense that plausibility checks can be used to detect
non-veracious data.

Sensitivity — the degree to which the data can be prone
to manipulations; the property can indicate that the data
should be extra checked for its veracity.

Timeliness — the degree to which the data is up-to-date
(also known as freshness); the data which is out-of-date
is no longer useful and can be treated in the same as
non-veracious data.

Reputation — the degree to which the data comes from
a reputable source; the low reputation data should be
treated in similar way as the uncertain data (sensitive).
Accessibility — the degree to which the data can be
accessed;

Appropriate amount — the degree to which the data fulfills
the requirements for the information richness; if the data
does not have the appropriate amount then it should be
treated in the same way as low veracity data.
Interpretability — the degree to which the data can be
interpreted; low interpretability data is treated the same
as low veracity data.

Integrity — the degree to which the data has not been
tempered with; low integrity data should be treated in
the same way as low veracity data.

Trustworthiness — the degree to which the data can be
trusted; treated in the same way as low believability and
low veracity.

Repudiation — the degree to which the data can be traced

to its source; non-repudiated data is the same as non-
veracious data.

o Confidentiality — the degree to which the data can be kept
free from 3rd party reading; low confidentiality data can
imply that the data can be non-veracious.

The typical properties of Big Data (volume, value, velocity
and variety are only provided for references and more infor-
mation about them can be found in [17].

In the next section we consider the threats to data veracity
in the slippery road warning scenario and the threats to them.

IV. THREATS TO DATA VERACITY IN THE SLIPPERY ROAD
WARNING SCENARIO

In order to present the roadmap for developing robustness
algorithms to data veracity threats in section V, we first present
a set of example threats to data veracity. As mentioned earlier
there are two major sources of threats to veracity: i) actors and
ii) communication channels as depicted in figure 2. This first
version of the threats taxonomy leads to the understanding of
the potential problems with data veracity and helps to explore
what needs to be done in order to develop an algorithm for
robustness to data veracity threats.

The first group of threats is related to the vehicle as an actor
(an excerpt):

« Physically manipulating the sensors in the vehicle (e.g.

covering cameras)

e Manipulating with the car without malicious intentions
(e.g. putting the snow chains and thus reducing the ability
of the sensors to detect wheel slippage and thus slippery
conditions)

o Manipulating with the car’s software (maliciously or not)
and therefore altering the information sent to the cloud

« Reducing the ability of the car to send data to the cloud
(e.g. by severe weather conditions)

o Incompatibility between the car’s data and the cloud
provider’s data format (e.g. reporting time stamp in a
locale which is different from the locale of the cloud
provider)

As it can be noticed, addressing these threats can be done
by an algorithm which includes plausibility checks and/or
can compare data from two different sources of different
believability. However, this cannot be done at the vehicle itself,
but needs to be done at the infrastructure provider’s side as
the vehicle does not have the right reference data (e.g. data
from another vehicle).

The second group of threats is related to the infrastructure
provider and can be exemplified by:

o Erroneous addressing of data in the databases thus faulty
output of decision algorithms

« Using majority voting algorithms to determine which data
is “true”

e Marking a non-veracious data points as veracious and
spreading this data point to other actors

For these threats we can observe that an algorithm needs
to be more complex as the data volume is larger (multiple



vehicles) and therefore new problems arise such as majority
voting. Since the infrastructure provider also provides the data
to more actors than a single vehicle the consequences can be
more severe (e.g. traffic congestions if the faulty warnings are
sent or accidents if the warning information is not provided
but expected).

The third group of threats is related to communication
channels between the actors (an excerpt):

« Non-maliciously altering the data (e.g. data errors caused
by severe weather conditions)

o Maliciously altering the transmitted data (e.g. hackers
changing the location data)

« Malfunctioning infrastructure altering the data (e.g. bro-
ken base station altering the time stamp in the data)

These threats cannot be recognized more easily at the infras-
tructure provider as the communications can be repeated and
the standard algorithms for communication quality assessment
can be applied (e.g. checksums). However, the challenge is
that from the perspective of the infrastructure provider these
threats are similar to the threats for the data veracity at the
vehicle (e.g. faulty sensor data).

V. ROADMAP

Given the state-of-the-art in veracity assessment of Big Data
systems, the complexity of the scenarios in intelligent trans-
portation systems, the development of algorithms to robustly
handle veracity issues requires a number of steps. In figure 5
we present a roadmap towards such an algorithm based on the
three layered roadmapping method advocated by Phaal et al.
[18]. These three layers are (from the top): i) the market pull
layer describing the needs for the robustness assessment, e.g.
scenarios in intelligent transportation system, ii) features of the
algorithm, and iii) technology layer describing the technology
enabling the features of the algorithm.

The roadmap presents examples of the features as the
work which we present in this paper is still in-progress. To
summarize the technology layer of the roadmap we can predict
that we are currently on the way of enabling interoperability
between systems thanks to open data (i.e. allowing to freely
use such data as maps, weather or traffic information). We
could also see that the introduction of safety standards (ISO
26262) and common platforms (such as AUTOSAR) provides
more possibilities to collect data in similar formats. As the
trend continues it enables more advanced features of the
robustness algorithm — from the basic information quality
assessment (which does not require interoperability), through
basic world modelling and threat assessment to advanced
world modelling, the algorithm provides the possibility to
assess more sub-concerns of veracity and also the related
concepts (e.g. plausibility of the data given the semantic
information about the location). These kinds of algorithms will
contribute to the ability to enable autonomous driving. Please
note, however, that veracity assessment is only one small part
of the entire algorithm for autonomous driving.

VI. RELATED WORK

Veracity of data in the context of a single cyber-physical
system has been considered by Krotofil et al. [14]. The authors
explored the concept of computational veracity. In our work
we expand a similar approach to the transportation systems,
in this case consisting of multiple cyber-physical systems.

In general, veracity can be considered as one of the quality
attributes of the data together with such attributes (concepts)
as believability or timeliness. These attributes are often part
of data quality models, such as the AIMQ model by Lee et
al. [16].

Automatic assessment of veracity requires a reference point
with the annotation which data is true (the reference point)
and which is the data that is assessed. A similar approach
to the validation of data for another quality attribute of the
data has been done in our previous studies at Ericsson [19],
[20]. Although the concept of reliability is similar, it does not
require the reference point as for veracity and therefore in
our current work we study the methods for constructing the
reference points for assessing the veracity.

The work of Gerlach et al [21] explores the challenges
related to the security of data with the focus on plausibility
checks. Although, as shown in our work, the concepts are
related checking for plausibility does not require a reference
point for the data (e.g. the "true” value) and therefore our
work complements the work on the plausibility checking, also
visible in such works as Jabbari et al. [22].

As assessing the robustness of a system to data veracity
violations is a subset of robustness as a quality of a measuring
system, methods from assessing the robustness of a measure-
ment program can be applied [23], which we intend to address
in our future work.

Security of big data is an emerging field of research. The
Cloud Security Alliance has outlined the Top 10 security and
privacy challenges for big data systems [24]. The challenges
are organized into four areas: infrastructure security (including
secure computation), data privacy (including granular access
control), data management (including secure storage) and reac-
tive security (including monitoring and end-point validation).

Big data systems often employ machine learning to recog-
nize patterns and build business intelligence. The adaptability
of such systems could be exploited by attackers, e.g., by
means of evasion and poisoning attacks. A taxonomy of
attacks against machine learning algorithms has been proposed
Barreno et al. [25].

VII. CONCLUSIONS

Intelligent transportation systems rely on the availability of
high quality data in order to allow its multiple actors to make
correct decisions in diverse traffic situations. In this paper
we have studied the concept of data veracity, broken it down
into sub-concerns and presented the related concepts. We have
used the slippery road warning scenario as an example of
the kind of threats to data veracity that might exist in the
context of intelligent transportation systems. Finally we have
also presented the roadmap for the development of algorithms
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which will enable robust handling of big data with respect to
veracity threats.

In our current work we focus on interviews with the actors
in the Swedish transportation network to validate our models
and to provide more details to the veracity threats, namely
with the aim at designing a complete taxonomy of veracity
threats and their corresponding counter-measures. In the next
step we plan to design and implement a demonstrator for the
algorithms and to present the theoretical results of how robust
such algorithms are.
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