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Abstract. This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions
in the case of inelastic rough granular collisions. First, in the angular cut-off case or hard sphere case, mild L'-solutions are
constructed as limits of the iterate functions and boundedness of higher velocity moments are discussed in the case of hard
inverse power collisions or hard sphere collisions. Furthermore, convergence of solutions to a stationary state, when time goes
to infinity, is discussed, using a generalized H-theorem.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical modelling in physics, (e.g. for describing the
neutron distribution in reactor physics, cf. [1]—-[3]). In our earlier papers [4]-[6] we have studied the linear Boltzmann
equation (different from the linearized equation), both in the angular cut-off case and the infinite range case, for a
function f(x,v,t) representing the distribution of particles with mass m undergoing elastic binary collision with other
particles with mass m, and with a given (known) distribution function Y (x,v.). In recent years there has been a
significant interest in the study of kinetic models for granular flows, mostly with the non-linear Boltzmann equation;
see ref. [7] for an overview, with many further references, and also [8]-[9]. Our papers [10]-[14] consider the time-
dependent and the stationary linear Boltzmann equations for inelastic (granular) collisions, all papers in the angular
cut-off case, but the paper [15] studies the (granular) infinite range case.

The purpose of this paper is to generalize our earlier results to the case of rough granular collisions with spin, cf.
[16]-[18]. (For details, see our earlier papers, e.g. [10].)

So we will study collisions between particles with mass m and particles with mass m.., such that momentum is
conserved, mv +m, v, = mv’ +m,v,, where v,v, are velocities before and v’, v/, are velocities after a collision,
and such that also the angular momentum for the two particles are conserved, cf. [16]-[18].

In the elastic case, where also kinetic energy is conserved, one finds that the velocities after a binary collision
terminate on two concentric spheres, cf Figure 1 in [4].

In the granular, inelastic rough case we assume the following relation between the relative velocity components
normal to a plane of contact of the two particles,

w . u=—a(w-u), (1

where a is a constant, called the normal restitution coefficient, 0 < a < 1,and w = v —v,, w’ = v/ — v/, are the relative
velocities before and after the collision, and u is a unit vector, with @ = 1 in the elastic case.
Furthermore, in the rough granular case, the vector product satisfies the relation

w xu=—b(wxu) )
with the tangential restitution coefficient b, —1 < b < 1, where b = —1 for smooth collisions. Let also the unit vector
u be given in spherical coordinates,

u = (sinfcos¢,sinfsing,cosf), 0<0<7w/2, 0<¢<2m. 3)

In the case of hard sphere collisions, cf. [18], with for simplicity equal masses m, = m, then the pre-collisional contact
velocities are
V=Vv—-uxs, Vi =Vi+UuXs, “4)
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and the corresponding relative velocity
W=w-—-ux(s+s,) 5)

with spin vectors s = pw,s, = pw., where w,w. are the angular velocity vectors and p is the radius of the spheres.
Then the post-collisional velocities will be, cf. [16]-[18].

v=v-4 vl =v,+9, 6)

where mé is the impulse of particle 1 on particle 2, so the post-collisional relative velocity and contact relative
velocities are, cf. [18], w' = w — 28 and

2
W =w—-26+"=(ux(ux?d)) 7)
K
with a constant x = 2/5 for spheres with uniform masses. One finds, cf. [18], that

d=a(w-w)u+b(w—(w-u)ju—ux(s+s,)) ®)

with constants @ = (1+a)/2,b = g((ifl’; , and finally for the normal and tangential relative velocities after and before
collision, that }
u-w =-a(u-w), uxw =—buxw). )
Moreover, if we change notations and let 'v,” v, be the velocities before, and v, v, the velocities after a binary
rough inelastic collision, then by (8)

'v=v—-6 Ve =Vi+0, (10)
e (1+a) (1t
5 +a k(1 +
o= % (W-u)u—i—m(w—(w~u)u—u><(s—i—s*))7 (11)
of. [18].
PRELIMINARIES

We consider the time-dependent transport equation for a distribution function f(x,v,s,t), depending on a space
variable X = (x1,22,23) in a bounded convex body D with (piece-wise) C*-boundary I' = 9D, and depending on a
velocity variable v = (vq,v2,v3) € V = R3, a spin variable s = (s1, 52,53) € S, and a time variable t € R ;. Then the
linear Boltzmann equation is in the strong form

2{ (x,v,s,t)+v-grad, f(x,v,s,t) = (Qf)(x,V,s,t),
xeD, veV=R3 sec8, teR,,

(12)

supplemented by initial data
f(x,v,s,0) = fo(x,v,8), x€D, veV, seSb. (13)

The collision term can, in the case of inelastic (granular) collision, be written, cf. [7]-[12],

(Rf)(x,v,s,t) = /V/s/n [Ja7b(9,w)Y(x,'v*,/s*)f(x,/v,'s,t)—Y(x,v*,s*)f(x,v,s,t)}B(G,w) dv.ds,dfdo
' (14)

with w = |v — v,|, where Y > 0 is a known distribution, B > 0 is given by the collision process, and finally J, ; is
a factor depending on the granular process (and giving mass conservation, if the gain and the loss integrals converge
separately). Furthermore, 'v, 'v, in (10) are the velocities before and v, v, the velocities after the binary collision, cf.
(10)-(11), and Q = {(0,4) : 0 < 0 < 0, 0 < ¢ < 2} represents the impact plane, where 6 < % in the angular cut-off

case, and 0 = % in the infinite range case. The collision function B(0,w) is in the physically interesting case with

inverse k-th power collision forces given by

ol

)

B(0,w) =b(0)w", v= —

L w=lv-v.l, (15)

ol
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with hard forces for k > 5, Maxwellian for £ = 5, and soft forces for 3 < k < 5, where b(6) has a non-integrable
singularity for = 7, of order « = —(k+1)/(k — 1). But in the case of hard sphere collisions, then (for v = 1) the
collision function is given by

B(0,w) = const. wsinf cosf (16)

So in the angular cut-off case one can choose 6 < 5, and then the gain and the loss terms can be separated
Q) (x,v,s,t) = (QF ) (x,v,8,t) — (Q~ f)(x,V,s,t), where the gain term can be written (with a kernel K, p)
QT ) (x,v,8,t) = // Kop(x, 'v,'s > v,8)f(x,'v,’s,t) d'vd’s, (17)
vJs

and the loss term is written with the collision frequency L(x,v,s) as (Q~ f)(x,v,s,t) = L(x,v,s) f(x,V,s,t). In the
case of non-absorbing body we have that L(x,v,s) = [}, [¢ Ka5(x,v,s — v’,s’) dv’ds’. Furthermore, equation (12)
is in the space-dependent case supplemented by ( general) boundary conditions

B n-v| - N g e
f—(X7V7S7t) 7/ |n.V|R(X7vaS V,S)f+(X7V,S,t)dVdS, (18)

nv<0nv>0xecl=0D,tecR;,s€S5, s€S,

where n = n(x) is the unit outward normal at x € I' = 9D. The function R > 0 satisfies (in the non-absorbing
boundary case) |, [¢ R(x,V,§ — v,s)dvds =1, and f_ and f, represent the ingoing and outgoing trace functions
corresponding to f. In the specular reflection case the function R is represented by a Dirac measure R(x,Vv — v) =
d(v—v+2(n-V)n), and in the diffuse reflection case R(x,V — v) = |n-v|IW(x, v) with some given function W > 0,
(e.g. Maxwellian function).

Let tp, = tp(x,v) = infT€R+{T :x—7v & D}, and x, = xp(X, V) = x — tpv, where t;, represents the time for a
particle going with velocity v from the boundary point x;, to the point x.

Then, using differentiation along the characteristics, equation (12) can formally be transformed to a mild equation,
and also to an exponential form of equation in the angular cut-off or hard sphere cases.

CONSTRUCTION OF SOLUTIONS

We construct L!-solutions to our problems as limits of iterate functions f™, when n — oo. Let first f~1(x,v,s,t) =
0. Then define for given f"~! the next iterate ™, n > 0, first at the ingoing boundary (using the appropriate boundary
condition), and then inside D and at the outgoing boundary (using the exponential form of the equation),

-

fﬁ(x,v,s,t):/ R(x,v,8 —v,s) f1 ! (x,7,8,t)dvds, (19)
v/s \n'V|

fn(X,V,Sﬂf) = fn(x,v,s,t)exp |:—/(:L(X—77V7V7S)d’l7:|

(20)
t T
+/ exp[—/ L(x—nv,v,s)dn}//Ka,b(x—Tv, V)'s —v,s) " (x—1v, v,’s,t — ) d'vd'sdr,
0 0 vJs
where
£n _ fO(X_tV7V7S)7 Ogtgtb;
f (x,v,s,t)—{ P V8.t — 1), t> t, 1)

Let also f"(x,v,s,t) = 0 for x € R®\ D. Now we get a strong pointwise monotonicity lemma, f"(x,v,s,t) >
f"~(x,v,s,t), which is essential and can be proved by induction.

Then, by differentiation along the characteristics and integration (with Green’s formula), we find (using the equa-
tions above, cf. [10]), that

/D/V/an(xava&t) dXdVdSS/D/V/Sfo(X,ws) dxdvds, 22)
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so Levi’s theorem (on monotone convergence) gives existence of (mild) L*-solutions

to our problem with rough granular gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v,s)f(x,v,s,t) € L}(D x V x S), then we get equality in (22) for the limit function f, giving mass conservation
together with uniqueness in the relevant function space (cf [4]-[6], [10], [11], and also Proposition 3.3, chapter 11 in

(3D

Theorem 1. (Existence)

Assume for inelastic rough granular collisions (or elastic collisions) that the function B is given by (16), or (15) with
angular cut-off, and that K , 3, L and R are non-negative, measurable functions, such that L € L}OC(D x V x S). Then
Jorevery fo € LY(D x V x S) there exists a mild L*-solution f(x,v,s,t) to the problem (12)-(14) with (18), satisfying
the corresponding inequality in (22). Furthermore, if Lf € LY(D x V x S), then equality holds in (22) for the limiting
function f, giving mass conservation together with uniqueness in the relevant function space.

Remark 1 The assumption Lf € L'(D x V x S) is, for instance, satisfied for the solution f in the case of hard
inverse power forces or hard sphere collisions, together with e.g. specular or diffuse boundary reflections. This follows
from a statement on global boundedness (in time) of higher velocity moments, (cf. [12] and [14]), and see also the
results in the next section.

Remark 2 There holds also in the granular inelastic collision case an H-theorem for a general relative entropy
(Lyapunov) functional, cf [6],

f X,V,S,t)

Hﬁ(f)(t):/r)/\//gé(ﬁ)F(x’v’s) dxdvds, (24)

giving that this H-functional is non-increasing in time, if ® = ®(z), Ry — R, is a convex C!-function, and if there
exists a corresponding stationary solution F'(x,v,s) with the same total mass as the initial data fj(x,v,s); cf. Theorem
5.1 in [10]. By using this H-functional one can prove that every time-dependent solution f(x,v,s,t) converges to the
corresponding stationary solution F'(x,v,s), as time goes to infinity; cf. Remark 5.1 in [10] and further references.

BOUNDEDNESS OF HIGHER VELOCITY MOMENTS

In this section we will generalize a result on global boundedness of higher velocity moments to the case of rough
granular collisions with hard potentials or hard spheres. Then we start with some (old) velocity estimates for a binary
collision, and also give the corresponding moment estimates, cf. Propositions 1.1 and 1.2 in [4].

Proposition 2. [f v and v! (0,¢) are the velocities before and after a (granular) binary collision, then, with w =
|v —v.

s

Mx

Vo (0,0)° = v]* <2(a+1) weosh |3]v,| —

|v|cosé| .
m 4+ Mmy M+ My

Proposition 3. If'c > 0, there exist constants c; > 0, ca > 0 (depending on o, m, m.. and a) such that

o/2 o/2

a—1
2

—coweos®(1+|v[*) =

. o—2
max(l,cr—l)( 5=

(1+va(0,0)1%)

By using these propositions we have earlier got results on boundedness of higher velocity moments for hard inverse
collision forces, 0 <~ < 1, and also, by using a Jensen inequality to get the analogous results for hard sphere collisions,
v =1, in the space-dependent case with e.g. specular or diffuse reflection boundary.

We start with an elementary lemma (used in the theorem below) for the velocities in a binary collision, where
v =|v], v = |vi|, and w = |w|, cf. [10].

—(1+|v[*)”" < crweosO(1+ |v.) 1+ |v[?)

Lemma 4. For~ > 0 it holds that —w" ™! < (14v,)7T1 —277(1+02) 5% Wwhere w =v — v, is the relative velocity.
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In the case of rough granular collisions with hard spheres, then the collision change of total (translational and
rotational) kinetic energy, i.e. moment of order 2, is given by, cf. [18], AE = E' — E = AE}, + AE,,;, where

AFE, :f%(lfa?)(u-w)2 (25)
and .
Ay = =" (s )~ (w w)? (26)

with the total energy
mog,m o I o I,
F= 7V + 2v*+2w +2w*,
where s = pw is the spin variable (and [ is the moment inertia).

Then the total energy change in a collision is less or equal to the change of translational energy, AE < AE},., so we
will study boundedness of higher velocity moments, because AE,.,; < 0.

Now we can formulate our main result on global boundedness (in time) for hard potentials or hard sphere collisions,
i.e. with 0 < < 1, in the case of rough granular collisions, together with diffuse or specular reflection boundary
conditions, in the following theorem. Compare Theorem 4.1 in [4] for the case of hard inverse forces.

Let the velocity moments (for the iterate f™) be defined by

Mg(t)zMg(t):/D/V/S(1+UZ)"/?f"(x,v,s,t)dxdvds, 27

and let also (for simplicity) the spin variable be bounded.

Theorem 5. Assume for rough granular collisions with hard potentials or hard spheres, 0 < v < 1, that the function
B(0,w) is given by equation (15) or (16), and suppose that the function Y (x,V.,s,) satisfies the following conditions:

/ (1+0,)70%(29) sup V(x, v, 8, )dv, < 00

1% xeD (28)
/ inf Y(x,v.,s.)dv, > 0.

v x€D

Let the boundary conditions (18) be given by specular or diffuse (Maxwell) reflections.
Then the higher velocity moments belonging to the mild solution f(x,v,s,t) given by (23) are all bounded (globally
in time),

///(1+U2)”/2f(x,v,s,t)dxdvdsSC’U<oo, 0>0,t>0,0<a<1, -1<b<1 (29)
DJVJS

if (L+v2)°/2 fo(x,v,s) € LY(D x V x S), and the spin variable s € S is bounded.

Sketch of proof: Start from the definition of the iterate function f™(x,v,s,t) in equations (19)-(21), and differentiate
along the characteristics, using the corresponding mild form of the equation, and then multiply by (1 + v?)?/2, where
v = |v|, o > 0. Continuing in the same manner as in our earlier papers, see [12] and [14], where we used a Jensen
inequality in the case of hard spheres (for v = 1), then the theorem follows, if n — oo.

CONCLUSIONS

In the paper we generalize our earlier results for the Boltzmann equation on elastic or smooth granular collision (of
two different particles) to the case of rough granular collisions with spin. As a background we first study hard sphere
collisions, cf. ref. [16]-[18] for details. In our method construction of iterate functions, eq. (19)-(21), is essential,
giving a monotonicity lemma, which can be proved by induction. Then we get an existence result for our linear
Boltzmann equation with spin (almost in the same manner as in our earlier theorems) using Levi’s theorem on
monotone convergence. And we also get massconservation and uniqueness in the case of specular or diffuse (Maxwell)
boundary conditions, cf. [12] and [14]. Finally we study global boundedness in time for higher velocity moments
in the case of hard potentials or hard sphere collisions, using our old estimates for binary collisions (of elastic or
granular smooth particles). We also discuss the use of H-theorem for studying convergence to a stationary solution.
To summarizing, our earlier results for smooth granular collisions are generalized to rough collisions in a model with
similar collision functions.
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