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Abstract 

Fourier transform can be effectively used for processing of sparsely 

sampled multidimensional data sets. It provides possibility to acquire 

NMR spectra of ultra-high dimensionality and/or resolution which allow 

easy resonance assignment and precise determination of spectral 

parameters e.g. coupling constants. In this chapter, the development and 

applications of non-uniform Fourier transform is presented. 
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1 Introduction  

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the 

most important tools in structural studies of chemical compounds, 

ranging from small molecules up to medium-sized proteins. The 

NMR spectra provide valuable information about molecular 

structure, interactions and dynamics. However, there is still a need 

for more robust and more effective methods of acquisition and 

processing of NMR data. 

The early Nuclear Magnetic Resonance (NMR) spectroscopy 

utilized the Continuous Wave (CW) detection technique. It was 

based on continuous sweeping of the B0 field strength or the 

frequency of electromagnetic wave, through the resonance 

conditions of nuclei in the assumed spectral range. The main 

drawbacks of CW detection were low sensitivity and loss of time 

needed for sweeping through empty spectral regions. The 

breakthrough in NMR spectroscopy was the development of pulse 

excitation for generation of the Free Induction Decay (FID) signal, 

and the observation that the time dependent FID signal and the NMR 

spectrum can be converted one into another by applying the Fourier 

transform (FT) [1]. This method greatly shortened spectral 

acquisition times and enabled the development of thousands of pulse 

sequences for numerous emerging applications. New experimental 

methods allowed the more accurate determination of parameters 

which were earlier difficult to obtain or inaccessible.  

Despite considerable progress in the field, NMR spectroscopy still 

has the two significant limitations: the intrinsically low sensitivity, 

due to the low Boltzmann polarization of nuclear spins in thermal 

equilibrium, and the low dispersion of observed frequencies, due to 

a small differences in a nuclear shielding by surrounding electrons 

for nuclei of the same kind. The first problem is continuously 

circumvented by the technological developments, i.e. construction of 

higher field magnets, cryogenically cooled probe-heads and pre-

amplifiers, modern electronics, cleaner RF sources, and recently, 

introduction of Dynamic Nuclear Polarization (DNP) technique 

enabling sensitivity gain of even two orders of magnitude. The new 

generations of NMR spectrometers feature higher sensitivity and 

allow studies of large molecules at lower concentration. The 
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problem of resolving overlapped resonances is more severe. Even 

spectra of simple molecules often exhibit a peak overlap. 

Additionally, the assignment of signal frequencies to the respective 

nuclei could be difficult and sometimes impossible. To some extent, 

in simple cases, the problem can be solved by employing a higher 

magnetic field, but the general approach to resolve the resonances is 

to spread them in a different frequency dimensions of 

multidimensional spectra. The idea was practically implemented by 

the indirect sampling of the spins evolution and referred to as the 

two-dimensional NMR spectroscopy [2, 3]. This development not 

only allowed resolution of individual peaks by introducing 

additional spectral dimensions, but also facilitated spectral 

assignment by detecting groups of mutually interacting nuclei which 

give rise to correlation peaks. The application of multiple 

polarization transfer revealed other important aspects of 

multidimensional spectroscopy: sensitivity enhancement by 

excitation and observation of FID signal of sensitive, high- spins, 

and observation of directly undetectable multiple quantum 

coherences. At the beginning, the two-dimensional NMR techniques 

were demonstrated to be useful for examination of small organic 

molecules. Soon, homonuclear 2D NMR experiments were 

successfully applied for studies of biological macromolecules in 

solution [4]. Later, with increasing availability of isotopically 

enriched proteins, significant improvement was achieved by 

introduction of triple-resonance three- and four-dimensional 

experiments utilizing scalar couplings for polarization transfers [5-

9]. However, due to the reasons given below, acquisition of 

multidimensional NMR spectra with a sufficient resolution in all 

frequency dimensions can be an extremely time consuming task. 

The indirect sampling of spin coherences evolution, the key concept 

of multidimensional NMR experiments, is realized in a parametric 

way. This means: to sample a point of indirect time space a specific 

delay (or delays) in a pulse sequence should be set to achieve 

desired evolution time, and then one directly observed FID signal is 

acquired. As a consequence, in order to acquire a multidimensional 

spectrum one needs to record many single FID signals. The overall 

measurement time grows rapidly with a number of indirectly 

sampled dimensions and a desired resolution. A conventional N-
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dimensional experiment requires acquisition of 12`

1 ...2 

  N

N kkk  

single FID signals (where iii tswk max , is the number of points in 

the i
th

 dimension, swi and tmax i are the required spectral width and 

maximum evolution time respectively, and the 2
N-1

 is the number of 

components needed for quadrature detection). The conventional 

sampling is performed with points placed on a Cartesian grid. In 

each dimension, spacing between points is related to the expected 

range of frequencies by the Nyquist Theorem (see Section 3.2.4). 

Thus, fulfilling the Nyquist theorem implicitly limits the maximum 

evolution time and, therefore, the obtainable resolution for the given 

duration of experiment. In a case of directly detected dimension the 

above limitation is insignificant. Here, data points are successively 

sampled by conversion of a voltage in a receiver circuit into 

numbers reflecting signal amplitude. The acquisition of a whole 

signal has to be performed in one step, and it usually takes from a 

fraction of second to a few seconds, until signal decays below the 

noise level. This does not significantly extend the experiment 

duration. Thus, the best possible resolution is almost always 

achievable at no additional cost. Moreover, in modern NMR 

spectrometers usually oversampling is employed, i.e. more points 

than necessary are sampled in order to improve spectral dynamic 

range and enable digital filtering [10].  

The sampling limitations have more severe consequences in the case 

of indirectly sampled dimensions, where acquisition of each 

sampling point takes up to a few seconds. Even in 3D NMR 

experiments of proteins, featuring relatively fast transverse 

relaxation, it is almost impossible to reach the natural (determined 

by relaxation) line width in a reasonable experimental time. Limited 

experiment duration causes signal truncation and results in 

broadened spectral peaks, according to the Fourier Uncertainty 

Principle [11]. 

The problem of sampling requirements in multidimensional NMR is 

becoming relatively more severe with increasing B0 fields. The 

stronger magnetic field increases proportionally separation between 

resonances, however, in the same time it broadens of spectral 

regions of interest. Hence, an x-fold increase in B0, causes the 

necessity of x
N-1

-fold extension of time required for N-dimensional 

experiment, in order to preserve the peak width. This effect, 
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although usually of minor importance for 2D experiments, became 

significant for the larger number of dimensions.  

In the recent decade many approaches were proposed to overcome 

the sampling limitation problem. The most straightforward one is the 

modification of pulse sequences to allow increased repetition rate of 

FID signal acquisition, which leads to reduction of the experiment 

time [12-14]. It was also shown that the spatial encoding of spectral 

frequencies can be employed for measurement of multidimensional 

spectra in a single scan [15-20]. However, most of the efforts to 

accelerate acquisition of multidimensional NMR spectra were 

dedicated to the reconstruction of so called “sparsely sampled” 

spectra, i.e. with less data points than required by Nyquist condition. 

Both experiment duration and desired resolution can be optimized 

by the use of sparse sampling. The simplest version of sparse 

sampling is a straightforward signal truncation. In such a case it is 

possible to attempt signal extrapolation using linear prediction [21] 

or filter diagonalization method [22-24]. Enhanced spectral 

resolution can be also achieved from relatively highly truncated data 

sets employing Covariance Spectroscopy [25-30], and some variants 

of the maximum entropy method [31]. Another simple approach to 

undersampling is increasing of the distance between points which 

leads to shortened experiment duration, at the expense of peak 

aliasing. Thus, if chemical shifts are known from other experiments, 

assignment of cross-peaks is still possible [32]. The sparse sampling 

can also be applied in order to extend the sampled space in several 

ways. Among them, two are of the particular importance: sampling 

at constant intervals, but along the radius in a time domain [33]; or 

randomly [34]. The former option is utilized in projection 

spectroscopy, and requires the algebraic decoding of peak 

frequencies [35-39], or the reconstruction of multidimensional 

spectrum [40-43]. The latter enables to reconstruct a fully-

dimensional spectrum featuring improved resolution and/or acquired 

faster than conventionally. The sparsely and randomly sampled data 

sets can be processed using FT [44-46], maximum entropy [47-49] 

or multidimensional decomposition [50-52] methods. 

In this review we will focus on applications of FT to processing of 

non-uniformly (sparsely) data sets devoted to the reconstruction of 

high-resolution multidimensional NMR spectra. 
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2 Fourier Transform – basics 

2.1 Definition 

Fourier Transform (FT) is a mathematical operation, that converts 

function s(t) into function S(f) according to the formula: 

 dtetsfS ift






 2)()(  (1) 

Which, for convenience, may be denoted as a linear operator “FT” 

acting on s(t): 

    )(tsFTfS   (2) 

Function ifte 2 that multiplies signal s(t) is often referred to as a 

transform kernel. 

Both t and f are real variables, while s(t) and S(f) may be complex in 

general. In many fields of signal processing (including NMR 

spectroscopy), the two variables correspond to time and frequency 

domains. Function s(t) is a time-domain signal recorded in the 

experiment. Function S(f) is its frequency representation, i.e. it 

shows how a signal can be decomposed into oscillatory functions of 

frequencies f. Knowing frequency representation of a signal, one can 

retrieve s(t) by applying Inverse Fourier Transform (IFT): 

 

dfefSts ift






 2)()(

 (3) 

Hence, s(t) and S(f) are equivalent representations of a signal and are 

often referred to as a Fourier pair. For the simplest infinite 

oscillatory signal of frequency  the Fourier pair is: 
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)(2  



fe

IFT

FT

ti

 (4) 

where )(  f is the Dirac delta, and can be informally thought of 

as an infinitely narrow and infinitely high peak centered at  : 

 













ffor

ffor
f

0
)(

 (5) 

The result can be explained by the orthogonality of oscillatory 

exponentials, that are basis functions for FT i.e.: 

 



















ffor

ffor
dtee iftti

0

22

 (6) 

Thus, as the result of FT one obtains function that reaches high 

values for coordinates corresponding to frequencies present in a 

signal. This function, called spectrum is of particular interest, 

especially in scientific tasks. Representing oscillatory time-domain 

signal as a peak in frequency domain often provides better insight 

into physical phenomena, as discussed in the next section.  

Description of measured signals based on complex numbers may be 

quite confusing and requires brief explanation. Notably, complex 

signal is artificially constructed from actually measured real-valued 

signals of the same frequencies and amplitudes, but shifted in phase 

by 
2


: 

 
   tiststs sincos)( 

 (7) 

e.g. tiets 2)(  consists of   )2cos(cos tts  , and 

  ).2sin(sin tts   

Equivalently, one may use two-dimensional vector to describe 

complex signal: 
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 
 










ts

ts
ts

sin

cos
)(

 (8) 

This notation will be used in discussion of multidimensional FT in 

the next section. Variants of FT featuring real-valued kernel i.e. 

Cosine FT (Cos-FT) and Sine FT (Sin-FT), can be defined as: 

 

 dtfttsfS 




 2cos)()(cos

 (9a) 

 

 dtfttsfS 




 2sin)()(sin

 (9b) 

Again, for convenience, operator notation can be introduced:  

 
   )(coscos tsFTfS 

 (10a) 

 
   )(sinsin tsFTfS 

 (10b) 

Complex FT of a complex signal can be described as a sum of 

Cosine FT and Sine FT: 

         )()()()()( sincoscossinsinsincoscos tsFTtsFTitsFTtsFTfS  (11) 

This notation allows easy visualization of the essence of complex FT 

(see Figure 1). 
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Fig. 1. Idea of complex FT. Two signals of the same frequency and amplitude, shifted in phase 

by /2 scos(t) and ssin(t) are transformed with cosine and sine FT and added. This may be 
described as one complex operation on one complex signal s(t)=scos(t)+issin(t). 

2.2 Multidimensional FT 

Fourier Transform can be extended to N dimensions: 

 

   
 
 

 
 

 
 







































N

td
tf

tf

tf

tf

tf

tf
tsfS

NN

NN 













2sin

2cos
...

2sin

2cos

2sin

2cos

22

22

11

11

 (12) 

Where f


, t


, are N-dimensional vectors:  

 Nffff ,...,, 21


  
 Ntttt ,...,, 21


 

It is noteworthy, that transform kernel is represented by direct 

product ( ) of one-dimensional complex functions. The kernel is 

thus an 2
N
-dimensional vector: 

One can represent both signal  ts


ˆ  and spectrum  fS


ˆ
 in a similar 

fashion: 

       Ntstststs  ...ˆ
21


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       NfSfSfSfS  ...ˆ
21


 

where,     .ii tsFTfS 
 

First element of  fS


ˆ  corresponds to the real part of a spectrum.  

The FT of simplest multidimensional signal is thus multidimensional 

delta function, i.e.: 

 

 
 

 
 

 
 

 NNIFT

FT

NN

NN
fff

t

t

t

t

t

t












































,...,,

2sin

2cos
...

2sin

2cos

2sin

2cos
2211

22

22

11

11

 (13) 

where 

       ....,...,, 22112211 NNNN ffffff  

 

Again, signal frequency (frequencies) is clearly visualized in the 

spectral domain as a “peak” centered at  N ,...,, 21 . Its position 

informs about correlated frequencies present in the multidimensional 

signal, which is usually the most essential experimental information. 

2.3 FT – two basic features 

In the end of this section, we would like to mention two of the most 

important features of FT, which will be helpful in the analysis of 

specific case of NMR signal. These are: 

1. Linearity: 

     )()()()( tgFTtfFTtgtfFT    (14) 

2. Convolution Theorem: 

          tgFTtfFTtgtfFT   (15) 

where   denotes convolution, defined as (see also Figure 2a,b): 
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       dyxyvxuxvxu  


  (16) 

Two above features of FT will help us to evaluate how simple 

manipulations of the signal, like multiplication and addition affect 

its spectrum. Notably, using only these two kinds of operations 

allows to change from monochromatic, non-decaying, perfectly 

continuous and infinite signal discussed above to actually measured 

NMR signal. 

3 Fourier Transform of the NMR signal 

3.1 Perfect FID 

Free Induction Decay (FID) signal is a time-domain function 

resulting from NMR measurement. Although it is quite complicated, 

one can easily separate its features and discuss how they manifest 

themselves in frequency representation, i.e. a spectrum. These 

features are: relaxation, signal amplitude and multiple components 

(see Figure 2). 

3.1.1 Relaxation 

NMR signal decays exponentially with time (or with “times”, in 

multidimensional case). This can be represented by element-wise 

multiplication of a signal    Ttititi NNeeets
 222

0 ,...,ˆ 2211 



by 

decaying exponential: 

 
     TtRtRtR NNeeetsts


 ,...,ˆˆ 2211

01 


 (17) 

The FT of  ts


1̂  is, according to statements from the section 2.3, a 
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convolution of multidimensional peak  NNfff   ,...,, 2211  

(i.e.   tsFT


0
ˆ ) and Lorentzian function (being FT of a decay 

function): 

 

     











NN

NN
ifRifRifR

ffftsFT
1

,...
1

,
1

,...,,ˆ
2211

22111 


 (18) 

The result is Lorentzian peak centered at  N ,...,, 21 . 

3.1.2 Amplitude 

 NMR signal has certain amplitude. This can be represented by 

multiplying  ts


1̂  by some constant A: 

    tsAts


12
ˆˆ   (19) 

Obviously, multiplying signal by constant is equivalent to 

multiplication of spectrum by the same constant: 

      tsFTAtsAFT


12
ˆˆ   (20) 

3.1.3 Multiple components  

NMR signal consists of multiple components, corresponding to 

groups of equivalent spin systems. Each of the components has its 

own amplitude and relaxation parameters: 

 

   
i

i tsts


23
ˆˆ

 (21) 
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Fig. 2. The main features of FID signal and its spectrum: (a) Relaxing NMR signal (bold line) is 
product of decaying exponential function and oscillatory function (thin lines). (b) Spectrum of 
relaxing NMR signal (bold line) is convolution of Lorentzian function and a delta peak (thin 
lines). (c) Relaxing NMR signal of some amplitude A (bold line) is decaying sinusoid (thin line) 
multiplied by constant A. (d) Spectrum of relaxing NMR signal of some amplitude A (bold line) is 
Lorentzian peak (thin line) multiplied by constant A. (e) Multi-component NMR signal (bold line) 
is a sum of decaying components of different amplitudes (thin lines). (f) Spectrum of multi-
component NMR signal (bold line) is a sum of spectra of individual components (thin lines). 

To summarize, as a model of multidimensional FID signal one can 

use an oscillatory function consisting of multiple, decaying 

components of various amplitudes. Spectrum of such signal is built 

of Lorentzian peaks centered at frequency coordinates corresponding 

to component frequencies. Peak heights are proportional to 

component amplitudes in time domain. Peak half-widths are inverse 

of signal decay rates.  

3.2 Measured FID 

Above model gives an idea, how perfect signal and its spectrum look 

like.  

The real output of an NMR experiment is quite far from the model. 

Three factors are most important here, namely: noise, finite 

measurement time and sampling. 
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3.2.1 Noise 

NMR signal contains some random noise (t). Its spectrum is thus 

the sum of two FTs: 

 
       tFTtsFTfS


 3

ˆˆ
 (22) 

Fig. 3. Peak amplitude, noise level and signal-to-noise ratio for spectrum of non-decaying signal 
of frequency 10 Hz, sampled with: a) 512, b) 256, c) 128 pts. Noise is white and Gaussian. 

 Assuming that the noise is white and Gaussian i.e. its amplitude is 

independent of frequency and described by Gaussian distribution, 

the signal to noise ratio is proportional to the square root of the 

number of measurements (see Figure 3). 

3.2.2 Finite measurement time 

Obviously, maximum time of spin evolution cannot be infinite 

(which would be pointless anyway, because of relaxation). This limit 

can be represented by multiplying signal by step function 

 mttt ..., 21 : 

 

 


 


otherwise

mitt
ttt

ii

m
0

,...1,1
...,

max

21

 (23) 

where timax is a maximum evolution time set in i
th

 spectral 

dimension. Signal  tst


max

ˆ , i.e. time-limited noiseless NMR signal 

can be described as: 
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     mt ttttsts ...,ˆˆ

213max 


 (24) 

The effect of multiplication in time domain is, according to 

Convolution Theorem, the convolution in frequency domain: 

 
        mt tttFTtsFTtsFT ...,ˆˆ

213max 


 (25) 

The FT of step function is a sinc function of width inversely 

proportional to timax (see Figure 4): 
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 (26) 

Thus, finite acquisition time causes a convolution of NMR spectrum 

with sinc function. This manifests itself in peak broadening and 

presence of sinc “wiggles”. The broadness of the NMR peak is thus 

dependent not only on relaxation rate but also on the maximum 

evolution time. Both effects correspond to Fourier Uncertainty 

Principle [53] stating that, in general, the “broadness” of time 

representation and frequency representation are inversely 

proportional to each other.  
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Fig. 4. Signal truncation and spectral line width (real and imaginary parts marked with solid and 
dashed lines appropriately). a) signal truncated to 250 ms b) signal truncated to 125 ms c) 
spectrum of a signal truncated to 250 ms – sinc function d) spectrum of a signal truncated to 
125 ms – sinc function. 

3.2.4 Sampling 

NMR signal is measured in discrete manner i.e. sampled. This may 

be represented by sampling function, being a multidimensional train 

of K delta pulses: 

 

   



K

k

k

NN

kk

m tttttttttIII
1

221121 ,...,,..., 
 (27) 

Discrete sampling can be thus represented by multiplication of 

continuous signal by  mtttIII ..., 21 . 

In general, one can distinguish between two kinds of sampling: 
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uniform (or conventional) i.e. with sampling coordinates 

 k

N

kk ttt ,...,, 21  corresponding to full Cartesian grid and non-uniform 

i.e. with coordinates chosen arbitrarily, according to one of the 

sampling schedules (see section 4).  

Conventional discrete sampling influences spectrum in quite 

straightforward way, because of simplicity of corresponding Fourier 

pair: 

 

 mmIFT

FT

m

m fffIII
ttt
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...,..., 2211
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1
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 (28) 

As a result, an infinite number of “copies” are produced in spectral 

domain, with the distance 








m
1...1,1

21

 between “copies” (see 

Figure 5 and 6a,b). If the distance is greater than half of signal 

bandwidth, then copies do not overlap. This leads to well known 

Shannon-Nyquist Sampling Theorem [54], saying that spectrum of 

band-limited signal can be perfectly recovered from discrete samples 

if sampling frequency is at least twice higher than highest frequency 

present in the signal. Obviously, if spectrum is perfectly recovered, 

then continuous signal is recovered as well, meaning that discrete 

points are interpolated with sinc functions. 

Usually, the sampling frequency is set basing on predicted spectral 

width of a signal. Assuming, that the frequency band is limited, one 

can take the central, low-frequency spectrum “copy” that is 

equivalent to perfect spectrum (see Figure 5b). Actually, this is done 

by default by standard FT algorithms, e.g. Fast Fourier Transform 

(FFT). In the case, when the prediction is wrong, i.e. sampling 

interval is higher than required by Shannon-Nyquist criterion, the 

“copies” of spectrum overlap, which leads to phenomenon known as 

peak folding or aliasing. This phenomenon manifests itself by 

presence of peaks at false frequency coordinates in the spectral 

region of interest.  
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Fig. 5. Aliasing phenomenon. (a) Train of delta pulses representing sampling with=0.03 s 
(sampling rate 33.33 Hz); (b) Continuous signal - multi-component oscillatory function; (c) Train 

of delta pulses representing sampling with=0.066 s (sampling rate 15 Hz); (d) Train of delta 
pulses in frequency domain being FT of sampling schedule (a); (e) Spectrum of continuous signal 
(b); (f) Train of delta pulses in frequency domain being FT of sampling schedule (c); (g) 
Convolution of (d) and (e) corresponding to FT of signal (b) sampled according to (a). Properly 
sampled spectral bandwidth with central spectrum “copy” marked with dashed line. No 
aliasing; (g) Convolution of (f) and (e) corresponding to FT of signal (b) sampled according to (c). 
Properly sampled spectral bandwidth with central spectrum “copy” marked with dashed line. 
Aliasing due to insufficient sampling rate. 

It should be noted, that upper limit for the sampling interval results 

in lower limit for peak width. This becomes especially significant in 

the multidimensional NMR experiments, where each sampling point 

takes few seconds of experimental time (see Scheme 1). Moreover, 

the requirements of regular sampling grow exponentially with the 

number of dimensions and despite hours- or days-long 

measurements natural, relaxation-determined peak widths are rarely 

obtained even in 3D spectra.  

Coupling between peak width and number of sampling points (i.e. 

experimental time) is the main reason for the use of non-uniform 

sampling in NMR. 
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Scheme 1. Scheme illustrating limitations associated with conventional sampling 

i.e. coupling between experimental time and line width. 

For non-uniform sampling the Fourier Transform of sampling 

schedule (sometimes referred to as Point Spread Function, PSF) is 

not a simple train of delta pulses, but becomes more complex 

function (see section 4 and Figure 6). This, in general, leads to three 

conclusions: 

1. For arbitrary, non-uniform sampling it is no longer possible to obtain 

spectrum that is equal to spectrum of continuous signal, even if it is 

strictly band-limited. Spectral artifacts, depending on the sampling 

schedule appear as a part of Point Spread Function.  

2. Aliasing, however, is caused only by presence of sampling grid, from 

which sampling points are taken. For purely off-grid sampling aliasing 

does not appear (notably, NMR hardware allows very fine 

approximation of off-grid sampling). This means, that one can use non-

uniform sampling to remove coupling between sampling rate and line 
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width and obtain high spectral resolution in relatively short 

experimental time (see Section 8). 

3. The negative effect of non-regular sampling, i.e. presence of artifacts, 

is separate from all other spectral effects associated with various signal 

features e.g. relaxation, amplitude etc. and can be discussed 

independently. In other words, FT of irregularly sampled signal has the 

same features as FT of conventionally sampled signal, differing only in 

PSF.  

4 Non-uniform sampling schemes 

Conventional (Cartesian grid) sampling scheme is an obvious 

method of choice, when experimental time and/or line width 

expense is acceptable. However, when especially narrow spectral 

lines or high dimensionality are required, an irregular sampling 

should be employed. As stated above, it can make peak widths 

independent of experimental time. Nevertheless one should always 

remember about cost of irregularity i.e. introduction of spectral 

artifacts, whose pattern and level is dependent on a sampling 

scheme. 
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Fig. 6. Point Spread Functions of various sampling schemes (presented in the upper left part of 
each panel): a) conventional sampling (t1max=t2max=50 ms), b) conventional sampling 
(t1max=t2max=5 ms), c) radial sampling with one sampling line, d) radial sampling with five 
sampling lines, e) concentric rings sampling, f) spiral sampling, g) purely random sampling, h) 
Poisson disk sampling. Number of points in each sampling scheme is equal to 100. For panels c-
h t1max=t2max=50 ms.  
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4.1 Radial sampling 

Radial sampling was the first sparse sampling scheme introduced to 

NMR. Apart from FT [44, 55, 56], other techniques of data 

processing were proposed. These include: reduced dimensionality 

[57], projection-reconstruction [41], multi-way decomposition [58]. 

Radial sampling scheme consists of points placed on a set of lines in 

time domain (see Figure 6c,d). The coordinates of i
 th

 point, lying on 

j
 th

 line can be described in polar coordinate system as: 

 
ji

rit cos1   (29a) 

 ji
rit sin2   (29b) 

PSF of radial distribution is a set of ridges (see Figure 6c,d). Each 

pair of ridges is FT of one sampling line and they are oriented at  j
 

and  j
 +/2 angles.  

4.2 Concentric rings sampling 

Concentric rings sampling was proposed by Coggins and Zhou [59]. 

Sampling scheme is depicted in Figure 6e. Importantly, the number 

of points situated on each ring increases linearly with a ring’s radius 

(linearly increasing concentric ring sampling, LCRS). The 

coordinates of i
 th

 time point, lying on j
 th

 ring are: 

 
)cos( 01

jji
irt  

 (30a) 

 
)sin( 02

jji
irt  

 (30b) 

In LCRS 0
j 
is the same for all rings. If this phase is chosen 

randomly for each ring independently, the scheme is called RLCRS 

(randomized LCRS). PSF of LCRS takes form of a set of ring-
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shaped ridges, and for RLCRS this pattern is slightly disturbed, 

covering the spectral space more evenly. 

4.3 Spiral sampling 

Point coordinates in spiral sampling scheme [44] are defined as: 

 )cos(1

ji
irit   (31a) 

 )sin(2

ji
irit   (31b) 

Notably, both radial and LCRS schemes can be considered as special 

cases of spiral sampling scheme. PSF of this distribution is the 

combination of two above PSFs. The artifacts form ring-shaped 

ridges, but the intensity is not constant along the rings, but varies 

with angle (see Figure 6f) [60]. 

4.4 Random sampling 

As can be clearly seen from the above examples, regularity in time 

domain results in regularity in frequency domain. This suggests that 

very irregular, random sampling schemes can be particularly useful 

(see Figure 6g). In this case the artifacts are “spread” evenly over the 

spectral space, their level is thus reduced comparing to more regular 

sampling schemes and consequently it is less probable for false 

peaks to come up. 

Optimization of such purely random distribution can be done by 

introducing certain constraints which protect against choosing one 

point too close to another. A few algorithms of generation of such 

semi-random sampling schemes were investigated [60, 61]. Among 

them Poisson disk sampling was found to be the most optimal (see 

Figure 6h). It directly assumes a minimal distance between time 

points. The artifact level is not as even as in purely random case. It 

is lower in the vicinity of the peaks. Moreover, by slight 
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modification of the restraints one can adjust the shape of the “clean” 

region to spectral widths or to compensate for different maximum 

evolution times in different dimensions. Another variant of distance-

restrained sampling, referred to as Poisson-gap sampling, was 

presented by Hyberts and coworkers and  used with forward 

maximum entropy processing [62]. 

4.5 Weighted samples and weighted probability 

In a conventional case, usually certain weighting function is applied 

in each dimension for improving signal-to-noise ratio or reduce 

effect of signal truncation (sinc “wiggles”). This procedure is called 

Weighted Samples (WS) and can be performed also for random 

sampling schemes. In the case of irregular sampling, however, also 

an alternative solution can be employed. Instead of applying 

weighting function to a sampled signal, the function may be used as 

a probability distribution during generation of randomized sampling 

scheme. Such approach is referred to as Weighted Probability (WP). 

The two procedures (WS and WP) result with spectra of the same 

line shape and S/N for non-decaying signal (i.e. if S/N is constant in 

time) [63], see Figure 7. However in the case of a real, relaxing and 

noisy FID signal more effective is the WP method, as more points of 

higher S/N (from the beginning of FID) are measured [60]. 
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Fig. 7. Comparison of simulated spectra obtained using Weighted Probability (exponential 
distribution, solid line) and Weighted Samples (exponential weighting, dashed line) methods. 
The signal was simulated without a thermal noise. Both methods give spectra with the same 
signal to artifact ratio and line widths. 

5 Methods of integration 

FT is an integral operation. In a real case the transformed function is 

discrete, thus the integral has to be replaced by a sum. Therefore, for 

irregular points distributions unequal distances between sampling 

points can be taken into account by applying certain weights. In 

analogy to 1D numerical integration employing a rectangular or 

trapezoidal rule, for multidimensional case one can obtain weights 

by Voronoi tessellation [60, 64] or Delaunay triangularization [46]. 

These methods, although helpful in the case of polynomials 
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integration or rational functions, are rather unsuitable for rapidly 

oscillating functions. When the sampling density is lower than 

density determined by Sampling Theorem (i.e. always, when non-

uniform sampling is justified) introduction of mentioned weights 

diminishes the signal-to-artifact ratio (see Figure 8). Therefore, for 

oscillatory functions more appropriate is simple summation i.e. 

Monte Carlo integration [65, 66]. It does not affect signal-to-noise 

ratio and the result converges to the exact value with n .  

Fig. 8. The plot of spectral signal to artifact ratio of simulated spectrum 

)5030023002exp(),( 2221121 tHztHzitHzittf    in 

function of relative density of time domain points )/( N comparing: WP method 

and surface integration procedure (512 evolution time points of Gaussian PDF: 

5.0),/exp( 22  t ). Spectral widths and maximum evolution times were equal sw1 

= sw2, t1max = t2max = tmax = 0.02 s. Θ was changed by varying both spectral widths (and 

N consequently) keeping constant number of points and evolution time surface tmax
2 (and 

  consequently). Reprinted with permission from Ref. [46]. 
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6 Sparse sampling and FT as a linear algebra issue 

One-dimensional FT of a sampled signal (or its spectrum), may be 

thought of as a solution to a system of equations: 
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Or, more briefly: 

 sSA


ˆ
 (33) 

Where Â  is an inverse FT matrix with number of rows n equal to 

the number of time points and number of columns m equal to the 

number of frequency points, S


is an m-element vector representing 

spectrum and s


represents vector of n signal samples: 

 N

e
A

ijtfi

ij

2



 (34a) 

 
 ii fSS 

 (34b) 

 
 jj tss 

 (34c) 

Thus, the usual spectral processing task is to find unknown S


 that 

agrees with known s


(fulfills the system of equations). The possible 

situations are: 

1. n=m and matrix Â is full rank. Then, the system of equations has 

unique solution and it may be obtained by multiplying both sides 

by FT matrix, which is Hermitian transpose (conjugate and 
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transpose) of matrix Â : 

   sAS
T 

*ˆ  (35) 

 

 

In the case of equally spaced sampling, matrix Â  is highly 

symmetric and FFT algorithms may be employed to reduce 

computational time. 

The number of samples taken from the signal (n) determines the 

number of frequency points that are possible to be determined. 

Adding zero-valued, “artificial” sampling points at the end of the 

signal allows to calculate increased number of spectral points. 

This procedure (known as zero filling) is equivalent of 

interpolation in the spectral domain [67]. 

2. n>m. The system of equations is overdetermined and strictly 

speaking there is no solution. However, the number of equations 

may be reduced and solution can be obtained with additional 

gain on signal-to noise ratio. This is achieved by various digital 

filtering techniques. The situation corresponds to oversampling 

and in practice exists only in directly detected signal. 

3. n<m. The system of equations is underdetermined and there are 

many possible solutions. This corresponds to sparse, non-

uniform sampling. 

Among the spectral vectors, that fulfill the system of equations, 

there is an optimal one i.e. spectrum of a signal sampled in an 

uniform manner. Finding it, however, is not a simple task (even 

if thermal noise could be neglected). Many approaches were 

presented, differing in type of constraints, that limits the number 

of solutions. Some of these include: 

Maximum Entropy Methods - the solution with highest entropy is 

found. Various “entropy” functions were used in the past [49, 

68]. 

Integration of frequency and time domain information [69] by 

assuming that some of the frequency points are equal to zero. 

l1-norm minimization, the solution with smallest l1-norm (sum of 
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absolute values of spectral points) is found [70, 71]. It was 

proved recently that for signals featuring “dark” spectra (small 

number of non-zero frequencies) l1-norm should lead to optimal 

solution by convex minimization [72]. This approach, has been 

successfully employed in many branches, including MRI [73, 

74]. Reconstruction of NMR spectra with this method is very 

costly (days-long calculations [70]) or suffers from spectral 

disturbances [71]. 

Interpolation or gridding of sparse dataset may help to recover 

missing data points and use conventional FT processing. This, 

however, may lead to significant disturbances if simplest, 

polynomial interpolation is [75]. More advanced gridding 

techniques are helpful here [76]. 

Non-uniform FT (nuFT) employing equation identical to (35), 

but with non-quadratic matrix Â  (or with full m×m matrix Â  and 

zeros at non-sampled points of m-long vector s


). The obtained 

solution features minimum l2-norm (power), which can be easily 

proved, considering that FT is an unitary operation and thus l2-

norms of signal and spectrum are equal (Parseval’s theorem). 

Although, the solution is not the optimal one, the processing is 

fast and was successfully employed in many applications [77-

82]. Moreover, the spectrum can be additionally improved by 

application of various artifact-cleaning algorithms [60, 81, 83]. 

7 Suppression of sampling artifacts in FT spectra 

7.1 The principle of CLEAN algorithm 

7.1.1 The model of “dark” spectrum 

As mentioned in Section 6, in the case of sparse sampling there is 

insufficient data to uniquely determine the Fourier representation of 

the measured signal. Therefore, sampling artifacts observed in nuFT 
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spectra can be regarded as an unavoidable consequence of missing 

data. However, more accurate spectral estimates can be obtained by 

incorporating a priori knowledge about the nature of sampled signal. 

For a certain class of signals it might be assumed that the continuous 

Fourier spectrum consists of small number of well-localized 

components (peaks) and relatively weak flat (frequency 

independent) noise: 

 
 

i

i ffSfS )()(ˆ)(ˆ



 (36) 

This general model, usually referred to as “dark” spectrum, allows a 

variety of reconstruction methods to be employed (see Section 6). 

The CLEAN algorithm, proposed originally for the reconstruction of 

two-dimensional maps in radio-astronomy [84], utilizes essentially 

the same signal properties. It is noteworthy that the “dark spectrum” 

model is especially well-suited to multidimensional NMR 

spectroscopy. 

7.1.2 Description of the CLEAN procedure 

The starting point of the procedure is a discrete FT spectrum 

 )]()([)(ˆ)(ˆ )0( tIIItsFTfSfS


  (37) 

which is a convolution of continuous spectrum with the FT of 

sampling function (Point Spread Function). The latter is usually 

termed “dirty mask” in this context. 

The aim of the procedure is to identify well-localized sources of 

artifacts present in FT spectra. Intuitively, one may suppose, that 

they can be found by computing the convolution of FT spectrum and 

the PSF: 

 )()(ˆ)(ˆ fIIIfSfC


  (38) 

Following the convolution theorem (see Section 2.3) one obtains 

that this convolution is the FT spectrum itself: 
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)(ˆ)]()(ˆ[)]()()(ˆ[)()(ˆ)(ˆ fStIIItsFTtIIItIIItsFTfIIIfSfC




 (39) 

Not surprisingly, it appears that one can use discrete FT spectrum to 

find the most probable sources of spectral artifacts. 

In the first step, one shifts the centre of PSF (normalized to one at 

maximum) to the point where )(ˆ fS


 has a maximum absolute value 

maxI (see also Figure 9). Then one subtracts a fraction 10    

(called “loop gain”) of the shifted PSF: 

 
)()(ˆ)(ˆ max

)()1( ffIIIfSfS ii


 
 (40) 

The extracted component gives rise to so-called “replica”, G(f), 

which is hoped to reproduce the perfect spectrum S(f) at the end of 

the procedure: 

 max

)(

max

)1(

max )(ˆ)(ˆ IfGfG ii  


 (41) 

Providing that the peak at the selected point was a real feature, one 

obtains a new spectrum 
)1()(ˆ ifS


with decreased level of artifacts. 
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Fig. 9. The principle of CLEAN algorithm visualized on a simulation of 3 signals of relative 
amplitudes 1:5:10 and equal decay rates. The sparsely sampled signal (a) is Fourier transformed 
(b), then the mask (c) is subtracted to yield residual spectrum. Reconstruction after the first 
iteration is shown (d). The final result of CLEAN procedure (e) can be used to obtain 
reconstruction of time-domain signal (f). 

In the next iteration, one can repeat the steps of (i) finding the most 

intense spectral amplitude and (ii) subtraction of shifted PSF. The 

whole procedure should be continued until there are no significant 

peaks in the spectrum. This condition can be formulated as follows: 

 iI  max  (42) 

where σi is the estimated noise level in the i-th iteration, and α is 

usually a small integral value (3-5). It should be noted, that σi is a 

measure of both remaining  artifacts and usual thermal noise ).( f


  

Finally, the residual spectrum may be added to “replica” in order to 

retain smaller features that might have been omitted by the CLEAN 

algorithms, or to reintroduce usual noise ).( f


  The latter might be 

useful to judge which peaks selected during the iterations are false 

[85]. It was emphasized that displaying the “replica” without the 

addition of residual spectrum is merely a “cosmetic” operation and 

does not improve the sensitivity at all [86]. 

It is noteworthy that the uncertainty of peak amplitudes caused by 
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the presence of noise )( f


  limits the capability of CLEAN 

algorithm to improve the quality of spectrum [87]. This, however, 

should apply for the most of reconstruction algorithms, e.g. similar 

conclusions were drawn for the maximum entropy method [88]. 

7.1.3 Discussion of the parameters of CLEAN 

Apparently, CLEAN has two parameters which can affect both 

efficiency (in terms of computational effort) and accuracy of the 

final results. Loop gain, , determines how fast are the artifacts 

removed from the spectra in each iteration. Generally, it should 

reflect the probability that the selected peak is true (not an artifact 

nor a noise peak) and that the intensity observed in the spectrum Imax 

comes entirely from the component centered at maxf


. Therefore, 

small values should be used for spectra containing overlapped peaks 

[89], peaks broader than PSF [85, 89] or noisy ones. Alternatively, 

loop gain can take a variable value depending on the ratio iI /max . 

Clearly, only the infinitesimally small value of loop gain ensures 

maximum safety of the procedure [84]. However, decreasing the 

loop gain causes a serious efficiency penalty, and the compromised 

values between 0.25 and 0.5 are typically used [86]. It has been 

pointed out that larger values can result in false splittings, especially 

when there is a mismatch of the “mask” line widths and the 

experimental ones [89]. 

The second parameter is the intensity threshold, which can be 

determined by the operator in advance and kept fixed, or evaluated 

dynamically on the basis of the current noise level in the spectrum. 

The former option requires a prior knowledge of noise amplitude, 

whereas the latter needs a robust method of measuring of the noise 

level. 

Regarding the termination criterion, one should comment that there 

is a trade-off between the safety of peak identification and 

completeness of artifact suppression [89]. For example, the 

threshold of 5σi gives a great confidence that only genuine peaks are 

extracted, however, it also limits the benefits of the CLEAN 

procedure as the artifacts originating from less intense components 

remain in the spectrum. 
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It has been also agreed that a fixed number of iterations is difficult to 

apply in practice for NMR spectra and could lead to 

misinterpretations of the results of CLEAN algorithm [87]. 

Therefore, one should rather use the intensity threshold as the 

stopping condition. 

Other authors [86] also noted that it is advantageous to use fine 

digitization in the frequency domain as it enables to precisely 

position the “mask” (PSF). On the other hand, this does not seem 

critical for the results and may unnecessarily increase the 

computational burden. 

7.2 Development of the CLEAN algorithm 

As noticed by Coggins and Zhou [81], if CLEAN is employed to 

suppress artifacts originating from irregular sampling, the artifact 

level varies greatly in the multidimensional spectrum along directly 

detected dimension. Consequently, it is impractical to use a fixed 

intensity threshold in this case. Apart from the commonly used 

dynamic threshold of 5 i , it was suggested to employ the noise 

stabilization criterion, which stops the iteration if CLEAN does no 

longer efficiently remove artifacts. The condition was quantified as 

follows: 

 ijiforij  25)1(   (43) 

where j  denotes the average noise level measured in the j-th 

iteration. The tolerance for noise stabilization τ of approximately 

0.05 was suggested. One may consider this condition a practical 

optimization of CLEAN algorithm in terms of numerical efficiency, 

not necessarily improving the quality of the final spectra. 

In contrast to other implementations, Coggins and Zhou used the 

mask computed directly from the sampling function, without the 

knowledge of minimal signal line width. It was argued that such 

approach is more general, as broad or overlapped peaks can be 

represented sufficiently accurate by a superposition of narrow peaks. 

Indeed, frequently the resolution of spectra of biomolecules is 
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mostly determined by signal truncation, and the natural peak line 

widths can be neglected when using CLEAN in these applications. 

A different approach to CLEAN processing was suggested by 

Kazimierczuk and co-workers [60]. In their implementation, peaks 

are manually fitted in the initial spectrum using assumed shapes (e.g. 

Lorentzian or Gaussian, depending on the decay of sampling density 

employed). The list of peaks and their line widths, which can be 

considered the analytic equivalent of “replica”, is then provided to 

the processing program. In the following, the artifacts generated by 

the peaks in the list are computed and subtracted from the initial 

spectrum, except for the peak positions and their vicinities. The 

procedure can be repeated if advantageous, e.g. if a significant 

number of (new) medium and small peaks were found after 

subtraction of the artifacts. 

It should be noted, that the use of an appropriate analytic function 

instead of discrete “replica” may be beneficial as this (i) is less 

influenced by noise and (ii) allows to reproduce the “wings” of the 

resonances, which are neglected in the original CLEAN algorithm 

due to intensity threshold. On the other hand, if the line widths in the 

Fourier domain are mainly due to signal truncation, the fitted 

parameters poorly reflect the true signal properties, and this may 

affect the performance of described procedure. 

A remedy for this was proposed by Stanek and Koźmiński [83]. In 

their significantly modified version, referred to as Signal Separation 

Algorithm (SSA), peaks are automatically found and fitted using the 

mono-exponentially decaying functions in the time domain. As a 

consequence, the simulated line shapes in the Fourier domain are 

affected by sampling process in the same manner as the real peaks in 

the spectrum. The advantages of this approach over the original 

CLEAN were demonstrated [83] (see also Figure 10). Another 

modification proposed by these authors regards the case of 

overlapped peaks or when decay parameters cannot be reliably 

established. It was suggested to find a replica that reproduces the 

observed peak shape in the iterative process. The idea to vary the 

amplitudes in replica until the desired peak shape is obtained clearly 

alleviates the problem of the appropriate value of loop gain. 
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Fig. 10. Comparison of the efficiency of CLEAN (b) and SSA (c) shown on a simulated signal 
containing 6 components of relative amplitudes 1:2:4:8:16:32 and equal decay rates of 20 s-1. 
Additionally, white Gaussian noise of σ=0.02 was present. Both algorithms started from the 
same initial nuFT spectrum (a), and the same threshold for peak detection equal to 5σi was 
used. Spectral width of 4kHz, and max. evolution time of 70ms were set. 70 out of 280 points 
were sampled, yielding relative sampling density of 0.25. 

7.3 The early applications of CLEAN to NMR spectroscopy 

The original CLEAN algorithm was indented to effectively 

deconvolve the Fourier spectrum from the PSF. In the 

radioastronomy it was either impossible or impractical to arrange 

detectors on a regularly spaced grid due to malfunctioning of the 

part of equipment, occultations caused by the Moon or if telescopes 

were operating on a large area to provide high resolution maps [84]. 

The aim of CLEAN was to convert the map obtained from irregular 

and/or coarse grid of interferometers to that which would be 

obtained from the fine and complete grid. 

As pointed out by Davies and co-workers [89] many high-resolution 

2D spectra are not sparse and suffer rather from signal overlap or 

line shape distortions caused by several reasons (twisted-shape, 

truncation artifacts, inhomogeneous broadening). Although these 

difficulties seem quite different from those in radioastronomy, it 

became possible to employ essentially the same algorithm to 

alleviate these problems. 

The idea was to construct the “mask” similar to undesired shape 

observed in the spectra, and use CLEAN to replace distorted peaks 

with those of a perfect Lorentzian shape. Shaka and co-workers [86] 

showed that the algorithm is capable to convert twisted-shape to 

double-absorbtion in 2D phase-sensitive J spectra of complex 

organic molecules. This was achieved by (i) locating the twisted-
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shape peaks, (ii) simulating double-dispersion signals of the same 

line width at the same frequency coordinates, and (iii) subtraction of 

the latter from the original spectrum. Effectively, the most intense 

peaks were in double-absorbtion while those ignored by CLEAN 

remained in twisted-shape. 

Similar approach was presented by Keeler in application to  

heteronuclear J spectra with highly truncated echo modulation [85]. 

Truncation of signal, used for sensitivity reasons, results in “sinc 

wiggles”. These artifacts can be suppressed by apodization, 

however, at the expense of resolution. Keeler showed that CLEAN is 

an inexpensive alternative to maximum entropy method, which also 

can remove truncation artifacts without degrading resolution. 

The difficulty that has arisen in both applications was to adjust the 

line width of the mask, in order to fit all signals. It has been 

suggested that if there is a mismatch of the line widths between the 

mask and experimental line shapes, one has to decrease loop gain 

and represent broad peaks as a superposition. 

Davies and co-workers alleviated the problem of the optimal mask, 

by using experimental line shape of a well separated singlet 

resonance [89]. This was showed to enhance resolution of spectra 

more effectively than when simulated Lorentzian mask is employed. 

Additionally, CLEAN was compared to maximum entropy method, 

giving similar results in considerably shorter computational time. 

One should note, that the use of experimental aperture shape to 

compensate for spatial inhomogeneity of magnetic field is limited to 

the cases of high S/N, otherwise the mask is heavily biased by noise. 

In all cases described above the fixed threshold (of a few per cent of 

the tallest peak) was used to terminate processing. This was possible 

as the noise level does not significantly vary during the iterations. 

The latter does not hold in the case of irregular sampling and more 

careful termination criteria have to be applied when deconvolving 

the PSF [87]. It has been showed on both experimental data and 

simulations that similar results can be obtained by CLEAN and 

maximum entropy method, and that CLEAN performs much better 

in recovery of missing samples than in extrapolation of a truncated 

signal [87]. As mentioned above, the success of CLEAN was limited 

by S/N. 
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Fig. 11. F2/F3 projections (along F1(C’) dimension) of 3D HNCO-TROSY spectra for maltose 
binding protein (371a.a., uniformly-deuterated, 0.5mM D2O/H2O 1:19 solution), obtained using 
sparse on-grid sampling, nuFT (a), and SSA processing (b). The data were recorded at the Varian 
700 MHz spectrometer, assuming the spectral widths of 2.8 and 2.5 kHz in F1(C’) and F2(N) 
dimensions, respectively. 1750 sampling points were generated using decaying sampling 
density (exp(-t2/2σ2), σ=0.5). Maximum evolution times of 30 and 50 ms were set, yielding 
relative density of θ=16.7%. 

According to these observations, the power of CLEAN algorithm 

was utilized in high-dimensional (3D and 4D) NMR spectroscopy of 

proteins (see Figure 11), where sparse sampling has to be employed 

due to practical limitation on experiment time (see Section 9.4). 

In conclusion, the application of CLEAN algorithm to sparsely 

sampled data is especially beneficial if (i) the technique features 

good thermal sensitivity and (ii) a high dynamic range of peak 

amplitudes is expected. Otherwise, artifact suppression is hampered 

or irrelevant in view of the general noise level. 

7.4 Algorithms related to CLEAN 

It is noteworthy to mention that the principle of CLEAN algorithm 

was also utilized in several other processing methods [40, 70]. 

Kupče and Freeman adapted the processing scheme to remove ridges 

and false peaks present in the projection-reconstruction of 3D 

spectra [40]. As noted by the authors, it can be confidently assumed 
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that the tallest peak in the reconstruction is genuine. It is then 

possible to extract it from the projections and reconstruct the full 

spectrum again. As usual, the process can be repeated to further 

suppress projection-reconstruction artifacts until no significant peaks 

are present. At the final stage, the extracted peaks are reintroduced to 

the full spectrum. 

Hyberts and co-workers described a “distillation” procedure which 

improves the quality of Forward Maximum entropy (FM) and l1-

norm reconstructions [70]. The purpose of this processing scheme is 

to divide FID signal into two components, one containing “tall” and 

another “small” spectral information. The division is performed in 

the Fourier domain according to the relative amplitude of each pixel 

to the most intense one, and both parts “small” and “tall” are 

inversely transformed to the time domain. The advantage is that FM 

performs the reconstruction on a sub-spectra of decreased dynamic 

range of peak amplitudes. This was shown to improve both linearity 

of the method and suppression of sampling  artifacts. This is in 

analogy to CLEAN processing, where time domain signal is 

effectively split to the contributions from strong and weak signals. It 

is noteworthy, that the “distillation” procedure does not require any 

parameters and usually up to 8 iterations are sufficient. 

8 FT as a tool for large evolution time domain 

8.1 Features of “sampling noise” 

As mentioned above, the nuFT does not find the optimal solution 

that fits to the experimental data. Spectra obtained by nuFT suffer 

from additional artifacts, which, in the case of random sampling, 

take a noise-like form. Luckily, they reveal also similar properties as 

thermal noise, i.e. artifact level is proportional to N  (see Figure 

12) and does not depend on a dimensionality of a signal, maximum 

evolution times nor spectral widths [45]. This fact may be proved in 

various ways (two of them were presented in [45]), below we will 
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present a new, simpler proof, based on known properties of Monte 

Carlo integration [66].  

Discrete multidimensional Fourier transform of randomly sampled 

signal may be considered as an estimation of continuous 

multidimensional integral (Eq. 12) with Monte Carlo procedure. 

According to properties of Monte Carlo integration, associated with 

the law of large numbers and the central limit theorem, the 

approximate value of an integral with some finite integration volume 

V: 
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with an expected value equal to the value of continuous integral 

(unbiased estimator): 
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and the variance decreasing with N: 
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Thus, the error of approximation is decreasing with N . The only 

difference between signal processing and numerical integration is 

the way how samples are obtained. Instead of calculating the values 

of function at randomly selected points, as it is done in the Monte 

Carlo procedure, the integrated function is experimentally measured 

at these points (or, more strictly, measured and multiplied by the 

transform kernel). Nevertheless, the way how points are obtained 

does not affect general conclusions, i.e.: that the estimator is 

unbiased and converges to the perfect, artifact-free spectrum with 
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growing number of sampling points and that the relative error of the 

result (S/A ratio) is inversely proportional to N . Notably, the 

estimation error does not depend on parameters that cause sampling-

related problems (i.e. limited resolution) in conventional approach 

e.g. dimensionality of a signal and maximum evolution time (see 

Figure 13). This feature makes random sampling a perfect tool for 

high-dimensional (4D,5D,6D etc.) NMR experiments [45] with quite 

high absolute number of sampling points (not necessarily meaning 

high sampling density!). For the same reasons, Monte Carlo is 

known to be a favorable method for integration of high-dimensional 

functions [66]. It is also noteworthy, that other features of random 

sampling processed with nuFT have their equivalents in Monte 

Carlo method. For instance, stratified sampling is known to reduce 

variance of an integral estimation [66]. 

Fig. 12. Peak amplitude, artifact level and signal-to-artifact ratio for spectrum of non-decaying 
signal of frequency 10 Hz, sampled with: a) 512, b) 256, c) 128 points. Uniform random 
sampling was used. 

Besides the absolute number of points, the artifact level is also 

inherently associated with a number of peaks and their intensities (as 

artifacts are “part” of Point Spread Function, see Figure 14). Thus, 

the more peaks in a spectrum, the lower is the average signal-to-

artifact ratio. This makes nuFT processing more challenging when 

applied to spectra featuring large number of signals with high 

dynamic range of peak intensities (e.g. NOESY). In this case 

artifact-cleaning algorithms may be employed (see Section 7).  
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Fig. 13. 2D cross-sections from simulated: (a) 3D, (b) 4D, (c) 5D spectra. The threshold was set 
at 10% of peak intensity; 256 time points were generated randomly with uniform distribution 
and maximum evolution time of 0.4 s (panel a), 0.8 s (panel b) and 1.6 s (panel c), in all 
dimensions. The distance between spectral points was set to the reciprocal of maximum 
evolution time in order to hide the effect of signal truncation. The insets showing a spectral line 
narrowing obtained by MFT using higher digital resolution. Simulation was repeated for the 
conventional set of 256 points, with the Nyquist rate of 16 × 16 (panel a), 8 × 8 × 4 (panel b), 
and 4 × 4 × 4 × 4 (panel c). Peaks obtained in such way are shown with grey line. Reprinted with 
permission from Ref. [78]. 

Fig. 14. Decrease in signal-to-artifact ratio with growing number of peaks: a) 2, b) 4, c) 8. S/N 
was calculated using “true” peak amplitude (not influenced by artifacts). 

8.2 Sparse MFT (SMFT) 

According to Eq. (12) it is possible to arbitrarily choose frequency 

points for FT, e.g. to calculate just an interesting region(s) of a 

spectrum. This approach is of a particular use when dimensionality 

and/or resolution is high and the full spectral matrix would be of an 

extremely large size. There are various possibilities for restricting 

spectral space to the regions of interest, depending on the type of 

spectrum and type of information to be extracted [78]. All of them 

base on prior examination of other (simpler) spectra. The restriction 

not only allows to save disk space, but also accelerates calculations 
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and facilitates data analysis. 

8.2.1 “Slice” MFT 

In spectra of high dimensionality peak coordinates in some of 

spectral dimensions are usually known from the spectrum of lower 

dimensionality (later called “basic spectrum”). The complete and 

regular frequency grid is not needed in these dimensions and they 

may be reduced to a set of frequencies corresponding to the tops of 

peaks [79] (see Figure 15). The number of lower-dimensional (e.g. 

2D) cross-sections obtained with this approach is equal to the 

number of peaks found in the basic spectrum. Noteworthy, the basic 

spectrum, used for frequency selection, should be also recorded with 

high resolution, as an accuracy in determination of peaks 

frequencies is crucial here. Such a procedure dramatically reduces 

the amount of data to be stored. In general, the size of data matrix of 

N-dimensional spectrum is equal to: 

 Nmmmsize  ...21  (48) 

where: mi is a number of spectral points in i-th dimension. 

If the frequencies of first k dimensions are “reduced” during FT, the 

data matrix size becomes: 

 Nkk mmmnssize   ...21  (49) 

where: ns is a number of frequency sets obtained from a lower-

dimensional spectrum used for SMFT. For instance, let us assume 

that number of spectral points in each dimension of 5D data set is 

equal to 128 and SMFT is performed on the basis of a 3D spectrum 

containing 150 peaks. In this case, the total size of resulting set of 

2D planes will be 13981150/128128128   times smaller than the 

size of full 5D spectrum, which in practice means reduction of the 

file size from about 100 GB to approximately 10 MB. Moreover, a 

set of lower-dimensional spectra is easier to handle than one 

spectrum of high dimensionality (see Section 9). 
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Fig
. 15. The idea of a “slice” SMFT. a) A scheme of a 3D spectrum. Frequency coordinates of peaks 
from this spectrum (labeled A-E) are used as the basis for SMFT calculation. b) A scheme of a 5D 

spectrum. Three frequency dimensions 1, 2 and 3, which correspond to nuclei observed in 

3D spectrum are symbolized by one axis, two other dimensions (4 and 5) are shown on 

separate axes. Only 2D (4–5) cross-sections that contain peaks (marked with colors) are 
calculated in SMFT. Reprinted with permission from Ref. [78]. 

8.2.2 “Cube” MFT 

Using techniques of extraordinary resolution, it is possible to 

efficiently measure peak splitting (E.COSY pattern) associated with 

internuclear couplings [77]. By increasing maximum evolution times 

one can reach peak width determined practically only by relaxation 

rate. However, ultra-narrow peaks require enhanced digital 

resolution (number of points per Hz) to be properly visualized. This 

often causes the need to use another procedure employing reduced 

frequency space. 

Prior to processing of such a high-resolution data, positions of peaks 

should be roughly determined from an equivalent decoupled (i.e. 

with singlets) spectrum (or spectra) of lower resolution. Afterwards, 

the spectrum of high resolution is calculated only in a close vicinity 

of these peaks positions, resulting in a set of full-dimensional 

“cubes” (see Figure 16). In each “cube” the numerical resolution 

should be sufficiently high to visualize the multiplets and determine 

coupling constants. Again, reduction of the required disk space is 

significant. The size of data matrix is reduced from that defined by 

Eq. (48) to the following value: 
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where: ns is a number of frequency sets used for SMFT, swi is 

spectral width in dimension i of full spectrum, and swi
loc

 is spectral 

width in dimension i of a single “cube”. 

For example, in case of 4D spectrum, when spectral width of a 

“cube” is in each dimension 10 times smaller than full spectral width 

in this dimension, and number of “cubes” is 150, the data set is 

reduced about 40000 times. Typically, it can result in reduction of 

disk space requirement from tens of TB to the order of GB.  

 

 

Fig. 16. The idea of a “cube” SMFT. a) A scheme of a full 3D spectrum, containing peaks 
revealing E.COSY multiplet structure. The digital resolution is too low to properly approximate 
narrow components of multiplets. b) A scheme of a set of “cubes”, calculated just in vicinities of 
peaks, featuring much higher digital resolution. Determination of small coupling constants is 
possible. Reprinted with permission from Ref. [78]. 

9 Applications 

The interpretation of one- and two-dimensional spectra of large 

biomolecules such as proteins and nucleic acids is usually 

impossible due to a large number of highly degenerated peaks. 

Hence, even for the medium-sized molecules, it is necessary to use 
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isotopic enrichment with 
13

C and 
15

N nuclei, and to perform triple-

resonance 3D NMR experiments for resonance assignment and 

extraction of structural constrains. However, as we pointed out 

above, the resolution of conventionally acquired 3D spectra, is 

limited by sampling requirements. Therefore, it is rarely possible to 

obtain line widths close to the natural ones in a reasonable time, 

even for very fast-relaxing molecules. The conventional 4D spectra, 

as for example 
15

N,
13

C or 
13

C, 
13

C-edited NOESY experiments, are 

rarely employed owing to the low evolution times achievable. On 

the other hand, NMR spectra of biomolecules feature relatively 

narrow and well-defined spectral regions as for example HN, NH, C’, 

Cα and CαCβ in proteins. This feature allows the development of 

numerous multidimensional experiments, which correlate spin 

interactions in different dimensions. Thus, the most important 

applications of sparse sampling techniques are focused on the 

important field of structural studies of biomolecules in solution. 

Sparse non-uniform sampling and Fourier transform enable 

acquisition and processing of multidimensional NMR spectra 

featuring extraordinary resolution, as for example 4-6D NMR 

spectra dedicated to resonance assignment, techniques for precise 

determination of coupling constants from 3-4D experiments and 

proton-proton contacts from well-resolved NOESY spectra.  

9.1 Development and implementations 

The early applications of sparse sampling and FT processing were 

devoted rather to demonstrate the features of proposed methods than 

for cases of a really demanding nature. Kazimierczuk and coworkers 

compared 3D HNCO spectra of human ubiquitin employing radial 

and spiral sampling, showing significant advantages of the latter 

[44]. Shortly after that, Marion demonstrated FT processing in polar 

coordinates in application to radially sampled 3D HNCO of human 

ubiquitin [55]. The next was the work of Coggins and Zhou [56], 

who formulated the expression for polar FT and applied it for 3D 

TROSY-HNCO for 
13

C/
15

N/
2
H-labeled OTU protein. In the 

consecutive works all three groups concentrated on the reduction of 

the  artifact level . The Koźmiński’s and Marion’s groups switched 
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to random sampling, motivating it by the lower intensity and noise-

like nature of artifacts in randomly sampled spectra. In the following 

works, the issue of approximation of Fourier integral was discussed. 

Kazimierczuk and co-workers [46] demonstrated that the surface 

integration using Delaunay triangulation improves S/A only for 

sampling above the Nyquist density. It was also shown that in the 

case of unweighted FT the S/A ratio does not depend on the relative 

samples density (see Figure 8). The usability of the method was 

verified on 3D HNCA, HNCACB and 
15

N-edited NOESY 

experiments on ubiquitin, using random sampling with exponential 

and Gaussian distributions of sampling points. Later on, the same 

authors [60] showed that the simple regularization of the samples 

distribution reduces artifacts in the signal vicinity. Moreover, it was 

demonstrated that this effect is more pronounced in comparison with 

Voronoi tessellation used as an integral quadrature rule. Additionally, 

in this work the usability of a simple variant of CLEAN algorithm 

(see Section 7) was demonstrated on 3D 
15

N-edited NOESY 

spectrum of ubiquitin. Pannetier and coworkers [64], for the first 

time applied random sampling and FT processing for intrinsically 

unstructured protein, namely 60-residue NTAIL (443–501) fragment 

of nucleoprotein N from the paramyxovirus Sendai. They obtained 

backbone resonance assignment using two 3D CBCANH and 

CBCA(CO)NH experiments with 6.5-fold undersampling. In the 

same time, Coggins and Zhou introduced concentric ring sampling, 

demonstrating its advantages over initially used radial alternative, 

and employed it for 3D HNCO of uniformly 
13

C, 
15

N labeled 

spectrum of the B1 domain of protein G (GB1) [59]. The next 

development in Zhou’s group was concentric shell sampling 

adjusted to a fine grid which was employed for the 4-D HCCH-

TOCSY [81]. In this work artifact suppression was accomplished by 

an adaptation of CLEAN algorithm (see Section 7).  

The influence of different constrained random sampling schedules 

on Point Spread Function was further investigated by Kazimierczuk 

and coworkers considering both artifact level and distribution [61]. 

It was shown that Poisson disk sampling provides the largest low-

artifact area in the signal vicinity. The new sampling schemes were 

verified by application to the 3D HNCACB and 
15

N-edited NOESY-

HSQC acquired for human ubiquitin. The analysis of signal-to-

artifact ratio with respect to relative sampling density and 
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dimensionality was analyzed in the next work from the same group 

[45]. It was proven that for random sampling S/A ratio depends 

neither on sampling density nor dimensionality of the experiment. 

These results were experimentally confirmed by acquisition of 5D 

HC(CC-TOCSY)CONH, performed for doubly labeled human 

ubiquitin within 0.0054 % of time necessary for analogical 

conventional experiment. 

9.2 Easy resonance assignment in proteins using the spectra of 

high dimensionality  

High resolution and dimensionality achievable in spectra acquired 

with the use of sparse random sampling and processed by FT feature 

a significant improvement in peak dispersion. This facilitates 

resonance frequency assignment especially in demanding cases such 

as, intrinsically disordered proteins. The first such example, 

mentioned above, was the backbone assignment of intrinsically 

unstructured 60-residue NTAIL (443–501) fragment of nucleoprotein 

N from the paramyxovirus Sendai using the 3D experiments [64].  

After the feasibility of 5D experiments acquired by random 

sampling and SMFT processing by Kazimierczuk et al. was 

demonstrated [45], the same group proposed a set of 4D (HNCOCA, 

HNCACO, HNCACACB, HN(CA)NH and HabCabNH) [79], and 

later 5D (HN(CA)CONH, HabCabCONH) experiments [78] 

dedicated to the effective protein backbone signal assignment. All of 

these techniques employ sparse random sampling and FT processing 

to achieve high resolution spectra in a tiny fraction of time needed 

conventionally. The 4D experiments were tested on two proteins 

differing in size, i.e. a protein interacting with NIMA-kinase from 

Cenarcheaum symbiosum (96 a.a. residues) and maltose binding 

protein (371 a.a. residues) (see for example Figure 17). 
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Fig. 17. Example of application of 4D HNCACO technique: (Panel A) Pulse sequence, evolution 

for CO is in the real-time mode, and for N and CA in semi-constant-time mode (ai = (ti + )/2, bi 

= ti(1 - /tmaxi )/2, ci = (1 - ti/tmaxi )/2) or constant-time mode (ai = (+ ti)/2, bi = 0, ci = ( - ti)/2), 

where  stands for N–CA and CA–CO, respectively, ti is the evolution time in i-th dimension and 

tmaxi is the maximal length of evolution time delay. Delays were set as follows: N–H = 5.4 ms N–

CA = 22 ms CA–CO = 6.8 ms. (Panel B) Coherence transfer in the peptide chain. Amide nitrogen 
and proton frequencies (filled colored rectangles) are fixed during Fourier transformation. Each 
plane contains CO–CA peak for i and i - 1 residue. (Panel C) 2D spectral planes for CsPin protein 
obtained by SMFT procedure performed on the 4D HNCACO randomly sampled signal (Poisson 
disk sampling) with ‘‘fixed” frequencies obtained from 3D HNCO peak list. (Panel D) 2D spectral 
planes for MBP obtained in the same manner. Reprinted with permission from Ref. [79]. 

The feasibility of the 5D techniques was demonstrated using the 

sample of 5–79 fragment of bovine Ca
2+

-loaded Calbindin D9K 

P47M mutant [79]. However, the true test of the new assignment 

strategy was performed on the particularly demanding case of  

subunit of RNA polymerase from Bacillus subtilis containing a 

disordered C-terminal region of 81 amino acids with a highly 

repetitive sequence [90]. While the backbone assignment of this 

protein appeared to be unachievable using conventional 3D 

techniques, the strategy based on the new, 5D experiments 

(HN(CA)CONH, HabCabCONH and HC(CC-TOCSY)CONH), 

provided a complete backbone and side-chain assignment (see 

Figure 18). 
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Fig. 18.  1H,15N-HSQC spectra of RNA polymerase d subunit (A, B, C) Panel A entire spectrum and 
Panel B with the central region expanded. Central region of 1H,15N-HSQC spectrum (C) and the 
corresponding region of a 2D cross-section extracted from the 5D HN(CA)CONH spectrum 

(right). The 2D cross-section was obtained by fixing frequencies in 3, 4, and 5 dimensions to 
the values of chemical shifts of 13C’ of I157, 15N of I158, and 1HN of I158, respectively. Peaks 
corresponding to the sequential and intraresidual correlations are displayed in black and red, 
respectively. Experiment was acquired within 20 hrs on 700 MHz spectrometer using RT-probe. 
Only a fraction of 0.00034 % points was collected in indirect time domains. See Ref. [90] for 
further details. 
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9.3 Determination of coupling constants in proteins 

Backbone scalar couplings are widely used in NMR studies of 

structure and dynamics of biomolecules [91]. Additionally, there is 

also a substantial interest in precise determination of residual dipolar 

couplings for structural studies of weakly oriented biomolecules. 

Most of the relevant coupling constants in proteins are rather small – 

of the magnitude from a few to hundred hertz. Therefore, in order to 

achieve the sufficient resolution in indirectly measured dimensions, 

the majority of traditional methods devoted to coupling constants 

determination in biomolecules are limited to two-dimensional 

techniques, which frequently suffer from peak overlap. However, the 

random sampling of evolution time domain allows one to obtain 

spectra of resolution that is limited only by transverse relaxation and 

suffices to differentiate multiplet components. Moreover, when 

couplings with passive spins are resolved in two or more 

dimensions, the E.COSY [92] multiplet patterns provide valuable 

information about relative signs of coupling constants. 

Kazimierczuk and co-workers [77] showed an example of a 3D 

HNCO-C-coupled spectrum of ubiquitin protein. Each peak in this 

spectrum reveals 3D E.COSY pattern due to couplings with two 

passive C spins. Thus, six coupling constants of HN, N and C’ with 

intra- and inter-residual C spins can be determined. The resolution 

achieved in this experiment would require over a month of 

conventional acquisition, making it impractical. The coupling 

constants measured from 3D HNCO-C-coupled experiment 

revealed correlation with υ and ψ protein backbone torsional angles. 

Later on, a feasibility of determination of a 4D E.COSY patterns 

was also shown and exemplified with the 4D HNCACO-{H} 

experiment for the sample of 5–79 fragment of bovine Ca
2+

-loaded 

Calbindin D9K P47M mutant [78], see Figure 19. In this experiment 

the “cube”-SMFT procedure was employed in order to achieve 

extraordinary disc space savings.  
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Fig. 19. The experimental example of ultra-high resolution multidimensional NMR spectra 
obtained by the proposed technique: I74 intra-residual resonance from 89-h 4D HNCACO-{Hα}-
coupled experiment acquired for 5-79 fragment of bovine Ca2+-loaded Calbindin protein. 
Depicted cross-sections of 4D “cube” 50 × 450 × 40 × 100 Hz surrounding the peak allow 
determination of coupling constants from resolved 4D E.COSY pattern. 1JCαHα = 135.9 Hz, 3JHNHα = 
5.8 Hz, 2JC`Hα = -5.0 Hz, 2JNHHα = -1.0 Hz with numerical resolution of 0.4 Hz/point, 1.7 Hz/point, 
0.2 Hz/point and 0.7 Hz/point in dimensions F1, F2, F3 and F4, respectively. Reprinted with 
permission from Ref. [78]. 

9.4 Heteronuclear-edited NOESY experiments 

NOESY experiments are still the primary source of structural 

information. The presence of the cross-peaks in NOESY spectra 

indicates spatial proximity of nuclei, and their integral is 

proportional to the r
-6

, where r denotes internuclear distance. 

However, NOESY spectra are significantly more difficult to obtain 

in comparison with other NMR techniques. The most important 

differences are: a large number of correlation peaks, dependent on 

the number of interacting proton nuclei, and a high dynamic range of 

peak amplitudes up to two-three orders of magnitude. Consequently, 

NOESY spectra require an excellent sensitivity and almost perfect 

suppression of spectral artifacts. Moreover, in order to preserve 

relationship between peak integral and internuclear distances, the 

linearity of the method should be maintained. Thus, this type of 

applications is very demanding for all sparse NMR techniques. In 
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the case of nuFT processing effective artifact suppression is 

necessary. 

Kazimierczuk and co-workers applied their semi-automatic CLEAN 

procedure to suppress  artifacts in randomly sampled 
15

N-labelled 

NOESY-HSQC spectrum of ubiquitin [60]. It was demonstrated that 

the process does not systematically influence relative peak 

amplitudes, and is therefore applicable to NOESY spectra. Similar 

conclusions were later drawn by Stanek and Koźmiński [83], and by 

Werner-Allen and co-workers [82], who compared their 

reconstructions with conventionally sampled three-dimensional 

spectra of the same spectral resolution. The algorithm proposed by 

Kazimierczuk and co-workers was later applied also to higher-

dimensional experiments [78]. 

Coggins and Zhou implemented the CLEAN algorithm to process 

four-dimensional spectra [81], with only slight modifications with 

respect to the original procedure from radioastronomy. The 

advantages of CLEAN processing in conjunction with Randomized 

Concentric Shell Sampling were demonstrated on 4D HCCH-

TOCSY spectrum of 56 a.a. GB1 protein. In this experiment, 1.2% 

of samples were used, and CLEAN was shown to decrease the 

apparent noise from 2.4 to 1.4 of thermal noise level on average. 

The same program was later used to process 4D amide-amide 

diagonal-suppressed TROSY-NOESY-TROSY (ds-TNT) spectrum 

of 23kDa C13S Sssu72 protein [82]. The largest decrease in 

apparent noise level due to CLEAN process was 22%. The 

application of sparse sampling and FFT-CLEAN processing allowed 

a more than 10-fold reduction in experimental time in comparison 

with the conventional approach to acquisition. The experiment was 

shown to provide valuable information on distance restraints 

between amide protons, by avoiding the ambiguities and frequent 

resonance overlap typical for 3D NOESY spectra of large proteins 

(see Figure 20). 
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Fig. 20. F1 (HN) / F2 (N) cross-sections from 4D amide-amide ds-TNT spectrum of C13S Ssu72 
protein. Residual diagonal peaks of Ile176 (panel A) and overlapped Leu72 and Asn92 (panel B) 
are enclosed with green boxes. Corresponding strips in each panel, plotted from conventionally 
sampled 3D ds-TNT spectra, show severe overlap of the amide-amide cross-peaks. On the 
contrary, in the sparsely sampled 4D ds-TNT spectrum the peaks were clearly resolved and 
assigned. Reprinted with permission from Ref. [82]. 

A more challenging example was demonstrated by Stanek and 

Koźmiński [83], who applied their algorithm to 3D 
15

N- and 
13

C-

labelled NOESY spectra of ubiquitin without suppression of 

diagonal peaks. The efficiency of  artifact suppression was 

investigated by comparison of the reconstruction with the 

conventionally acquired reference spectrum. Less than 2% of peaks 

were missing, and about 1.5 % false peaks were reported. The 

correlation coefficient between peak volumes of R
2
=0.998 was 

obtained. 

9.5 3D spectra of complex organic compounds 

Comparing to the progress and a variety of new multidimensional 

methods proposed in the area of biomolecules, in the field of organic 

molecules the development is slower, what is mainly caused by less 

demanding applications and additional experimental limitations. 

However, in the case of complex organic molecules it is sometimes 

necessary to add the third dimension to separate crowded, 

overlapping signals, in order to avoid ambiguities in the spectral 

assignment. The use of unconventional approaches to the acquisition 

of multidimensional NMR signal makes it possible to record 3D 
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NMR spectra of small molecules in shorter experimental time. So far 

there are only very few examples of using 3D NMR experiments 

dedicated to the spectral assignment [93-97] and the measurement of 

coupling constants [98].  

Generally, in organic chemistry two-dimensional spectra are widely 

used, while 3D NMR spectra of small molecules were hardly 

achievable, because of very long measurement time required in the 

conventional approach. In contrast to proteins, organic compounds 

at the natural isotopic abundance are more demanding due to the low 

sensitivity and the necessity of sampling the wide frequency range 

especially in 
13

C dimension. On the other hand the slower transverse 

relaxation rates allow to achieve narrow peaks, which again is 

limited by sampling. That is why in many cases these problems 

precluded the full assignment of NMR signals and the evaluation of 

coupling constants of organic compounds. Due to the employment 

of non-uniform sampling the application of multidimensional NMR 

spectra in the structure investigation of organic molecules became 

practically possible.  

Recently, the method employing Dynamic Nuclear Polarization for 

the recording heteronuclear 2D NMR spectra of small drug-like 

molecules was proposed by Ludwig and coworkers [99]. This 

method ensures significant improvement in sensitivity due to the 

high spin polarization, but limits the number of points sampled in 

indirectly detected dimension, so the combination with non-uniform 

sampling scheme was necessary. 

Three-dimensional NMR spectra based on random sampling of the 

evolution time space followed by MFT processing were successfully 

applied by Misiak and Koźmiński in the structural analysis of 

complex organic compounds [93]. A three new 3D NMR techniques 

(TOCSY-HSQC, COSY-HMBC and HSQMBC), which allow the 

spectral assignment have been proposed. The comparison of 3D 

spectra of strychnine recorded in the conventional way with that 

acquired using randomly distributed data points in the evolution 

time space revealed that by using this new approach it is possible to 

acquire 3D spectra in the reasonable experimental time, while 

retaining high resolution in indirectly detected domains (see Figure 

21). The use of 3D TOCSY-HSQC and 3D COSY-HMBC allowed 

for the complete assignment of 
1
H and 

13
C chemical shifts of natural 

abundance prenol-10 [94], what was earlier impossible by 
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employing 1D and 2D spectra, mostly because of the signal 

overlapping caused by similarity of the ten isoprene units. The 

application of 3D HSQC-TOCSY spectra with E.COSY- type 

multiplets enabled the accurate determination of heteronuclear 

coupling constants of organic molecules in an overnight experiment 

[98].  

In the case of natural abundance complex organic compounds 

playing important biological roles, the detailed structural analysis is 

very important. We believe that in the future recording of sparsely 

sampled 3D NMR spectra should become a routine procedure also 

for the structural analysis of complex organic molecules. 

Fig. 21. Comparison of 3D COSY-HMBC F1/F2 cross-sections for F3 (1H) = 3.904 ppm, i.e. 
resonance frequency of the H16 atom of the strychnine molecule: (a) conventional and (b) 
random sampling of t1/t2 evolution time space. The spectra were recorded in the same 
experimental time, and transformer with the resolution of 128 x 256 x 1024 points in F1, F2 and 
F3, respectively. The vertical arrows indicate the positions of the extracted traces. Reprinted 
with permission from Ref. [93]. 
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10 Conclusions  

The application of sparse sampling for the acquisition of 

multidimensional NMR spectra causes the presence of spectral  

artifacts. They appear in a regular form (e.g. ridges, rings) for the 

regular sampling, and resemble noise for the case of random 

sampling. The spectral reconstruction aims to obtain spectrum with 

minimized artifact level. Among a variety of reconstruction methods 

the Fourier Transform has favorable computational requirements. 

The important feature of off-grid random sampling and FT 

processing is the independence of artifact intensity of the degree of 

sparseness, and decreasing of  artifacts with the square root of 

number of sampled points. Therefore, it should not be applied for the 

acceleration of experiments attributing conventional resolution, 

which is a usual task of “fast NMR” techniques. FT is rather the 

method of choice for the acquisition and processing spectra of high 

dimensionality (4-6D) or of high resolution approaching natural 

line-width. Frequently, the artifact level in such spectra is low 

enough to allow their interpretation without further processing. 

However, for the analysis of high dynamic range spectra featuring a 

large number of signals, as for example NOESY experiments, 

additional artifact “cleaning” is required. Until now, the number of 

such applications is still minor, however, we expect that it will grow 

systematically in parallel with dissemination of the necessary 

software. We believe that the random sparse sampling and FT 

processing could be aimed for a variety of new applications, 

especially in the field of NMR-based structural studies of 

biomolecules. 
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