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There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and
dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes
such risks into account. In part, this is due to limited knowledge of environmental concentrations that might
exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex
microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate
upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective
concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory
Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest ob-
served MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted
for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations
(PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences
betweenMICs andminimal selective concentrations. The resulting PNECs ranged from8 ng/L to 64 μg/L. Further-
more, the link between taxonomic similarity between species and lowest MIC was weak. This work provides es-
timated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all
common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxico-
logical effects. The generated PNECs can guide implementation of compound-specific emission limits that take
into account risks for resistance promotion.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antibiotic resistance has in the last decades put an increasing
pressure on human healthcare globally, estimated to account for
700,000 deaths every year (Review on Antimicrobial Resistance,
2014). The environment has repeatedly been identified as a source for
resistance genes to pathogens (D'Costa et al., 2006, 2011; Finley et al.,
2013; Martinez, 2008; Pruden et al., 2013; Wright, 2010), however, it
is unclear to what extent antibiotics in the environment contribute to
this development. Furthermore, current regulatory systems on pharma-
ceutical pollution do not account for resistance (Ashbolt et al., 2013;
Boxall et al., 2012). In some cases, environmental concentrations close
to, or exceeding, the minimal inhibitory concentrations (MICs) of
Good manufacturing practice;
hibitory concentration; MSC,
entration; PNEC, Predicted no

-Palme),

. This is an open access article under
certain antibiotics have been measured, generally linked to pollution
from pharmaceutical production facilities (Larsson, 2014a), and often
with drastic consequences in terms of resistance gene enrichments
(Bengtsson-Palme et al., 2014b; Khan et al., 2013; Kristiansson et al.,
2011; Liu et al., 2012; Wang et al., 2015). It is, however, well-known
that antibiotic concentrations below the MICs can select for resistant
bacteria (Andersson and Hughes, 2012; Gullberg et al., 2011; Gullberg
et al., 2014; Liu et al., 2011). Although laboratory experiments have
provided important insights into resistance evolution and revealed a
previously unexplored landscape of sub-lethal resistance selection,
their use for implementation of mitigation strategies for environmental
releases of antibiotics is not straightforward. The reliability of the
minimal selective concentrations (MSCs) obtained from competition
experiments between two closely related strains is likely to be limited
when extended to more complex microbial communities, as stronger
selective forces, such as nutrient availability and predation, are likely
to dominate at low antibiotic concentrations, as observed for many of
other toxicants (Bengtsson-Palme et al., 2014a). In addition, the parallel
competition between many species and genotypes makes it difficult to
assess towhat extent resistant genotypeswill fill the nichesmade avail-
able by antibiotic selection. At the same time, a complex community
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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may contain species and genotypes that are considerablymore sensitive
than those investigated in laboratory-based competition experiments
with individual strains, creating opportunities formore tolerant bacteria
to take their place (O'Brien, 2002; Zhang et al., 2011). To experimentally
determine the MSCs in complex microbial systems is, however, labor-
intensive, and theMSCs obtained would be expected to vary depending
on the investigated test system. Nonetheless, attempts at determining
the MSCs of specific antibiotics in complex systems have been made
(Quinlan et al., 2011), but there is an urgent need for establishment of
predicted no-effect concentrations (PNECs) and emission limits based
on scientific data, and the consequences involved in not regulating re-
leases of antibiotics into the environment could further escalate a prob-
lem that already has reached very serious proportions (Bengtsson-
Palme and Larsson, 2015). In the light of this, attempts to theoretically
determine the MSCs of various antibiotics have been suggested
(Ågerstrand et al., 2015). Such approaches have previously been
employed for a limited set of antibiotics, revealing that certain environ-
ments may harbor concentrations of antibiotics high enough to exert a
selective pressure on clinically relevant bacteria (Tello et al., 2012). In
this work, we have therefore broadly estimated MSCs using the
EUCAST database (European Committee on Antimicrobial Susceptibility
Testing, 2014), containing data on the minimal inhibitory concentra-
tions of a range of clinically relevant bacteria. By taking advantage of
the fact that an antibiotic concentration that kills or inhibits growth of
at least some bacteria will, by consequence, be selective at the com-
munity level, we have determined the upper boundaries for MSCs,
and suggested individual safety margins for antibiotics based on
the extent of available MIC data. The resulting data can be used as
guidance in environmental risk assessment, for regulatory bodies
implementing emission limits of antibiotics into the external envi-
ronment, as input to proposed environmental certificates within
the good manufacturing practice (GMP) framework, and serve as a
comprehensive reference framework for future studies on environ-
mental antibiotic resistance.
2. Material and methods

2.1. Minimal inhibitory concentration data

Data on minimal inhibitory concentrations were obtained from
the EUCAST database on 2014–11-26, containing minimal inhibitory
concentration (MIC) data for 122 antibiotics/antibiotics combina-
tions (Table S1) and 170 species (Table S2). Note that for each
antibiotic, MIC data was only available for a subset of these 170 spe-
cies. For each antibiotic, the lowest minimal inhibitory concentration
was determined by: 1) removing all MIC values above the wildtype/
resistance cutoff (ECOFF), to exclude data from resistant isolates;
2) finding the lowest MIC value for which there were ten or more ob-
servations at this concentration or lower, to reduce the risk of includ-
ing individual, low values reported from determinations that might
have been flawed despite the standard protocols followed to gener-
ate data; and 3) reporting the MIC1%, MIC5%, MIC10% or MIC50% values,
corresponding to the value containing the bottom 1, 5, 10 or 50% of
the MIC values, respectively, while satisfying criteria 1 and 2. The
MIC1% value for each antibiotic will be referred to as the “observed
lowest MIC” throughout the paper. Finally, for combinations of
species and antibiotics where the lowest MIC value was 2 μg/L,
corresponding to the lowest reported concentrations in EUCAST,
the lowest MIC was predicted by calculating the average log2-
distance between the peak MIC value of the sensitivity distribution
and the lowest MIC value for that antibiotic across all other species.
Thereafter, the lowest MIC was extrapolated to be at the same log2-
distance below the peak MIC. In cases where this predicted lowest
MIC was higher than 2 μg/L, 2 μg/L was instead used as the “predicted”
lowest MIC.
2.2. Taxonomic inference

To evaluate the influence of taxonomic dissimilarity between two
species on the difference in lowest MIC values between the same
species pair, the average SSU rRNA pairwise dissimilarity and the differ-
ence in lowest MIC values were compared for each antibiotic and each
species. Species names from the EUCAST database were manually
matched to the species names in the SILVA database (Yilmaz et al.,
2014). All SSU rRNA sequences for each EUCAST species that could be
matched to a species name in SILVA (85.6%; Table S3) were extracted
from the SILVA SSU release 119 Ref (NR), as of 2014–12-01, resulting
in 12,762 sequences (Item S1). Sequences that were indicated as having
bad quality (SILVA sequence quality, alignment quality or pintail quality
scores below 75), as well as sequences shorter than 1200 bp, were
removed, resulting in 11,183 sequences that were downloaded for
further analysis (Item S2). Species that did not have any sequence in-
cluded after quality filtering (Clavispora lusitaniae and Moraxella
catarrhalis; both excluded due to low pintail quality) had their se-
quences re-included in the dataset, resulting in 11,198 sequences
in total (Item S3). Those sequences were run through Metaxa2
(Bengtsson-Palme et al., 2015b) version 2.0.2 (additional options
“–cpu 16 –align none”) to confirm their species identity, make sure
all sequences were oriented in the forward direction, and to extract
the SSU genes without their flanking regions from the sequences in
cases where these were present in the SILVA database. The extracted
SSU regions were clustered into 99% identity clusters using Usearch
version 7.0.1090 (Edgar, 2010) to discard sequences differing mainly
due to length variations and sequencing errors (options “-cluster_fast
input_file -id 0.99 -centroids output_file”). The resulting se-
quences were aligned using MAFFT version 7.130b (additional op-
tions “–reorder –auto”) and the pairwise sequence dissimilarities
were determined, measured as the number of non-identical base
pairs (including gaps) per total length.

2.3. Relating MIC difference to taxonomic dissimilarity

The influence of taxonomic divergence on the MSC upper bound-
aries was assessed using Pearson correlation between rRNA dissimi-
larity and difference in lowest MIC, calculated separately for each
antibiotic. In addition, linear models were fitted to these data using
iteratively reweighted least squares, to evaluate if rRNA dissimilarity
could predict lowest MIC differences between species. Each regres-
sion model was tested for heteroscedasticity using the Breusch-
Pagan (Cook-Weisberg) test as implemented in the R package car
(Fox and Weisberg, 2011) to further identify effects of rRNA dissim-
ilarity on lowest MIC distributions. The p-values for non-zero linear
relationships and heteroscedasticity were corrected for multiple
testing using the Benjamini-Hochberg false discovery rate with a sig-
nificance cutoff of 0.05 (Benjamini and Hochberg, 1995). Finally, the
taxonomic sampling coverage was estimated at the phylum, class,
order and family levels for each antibiotic in the EUCAST database,
to discern the degree of taxonomic bias for the MIC distributions of
different antibiotics.

2.4. Accounting for small MIC sample sizes

To evaluate the uncertainty of theMSC upper boundaries, each anti-
biotic with more than 30 tested species was subjected to a resampling
analysis, inwhich subsamples ranging fromone to 30 lowestMIC values
for different species were selected using the gdata R package (Warnes
et al., 2013), noting the lowestMIC obtained for each subset. The obtain-
ed resampled lowest MICs for subsamples were then used to calculate
size-adjusted lowest MICs for each antibiotic with less than 40 tested
species, using the following formula:

observed=predicted lowest MIC½ � � number of tested species½ �=41
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where 41 is a constant determined from the resampling data. This re-
sulted in size-adjusted lowestMICs, i.e. a prediction of the concentration
at which 99% of bacterial isolates would have a higher MIC (since this
number was derived from the MIC1% above). Finally, to arrive at a
PNEC, we applied a flat assessment factor of 10 to each size-adjusted
lowest MIC, to account for the difference between inhibitory concen-
tration and selective concentration of antibiotics (Andersson and
Hughes, 2012: see also the Discussion section). The obtained values
for size-adjusted predicted lowest MICs (upper MSC boundaries)
and PNECs were then rounded down to the closest concentration on
the EUCAST testing scale (in essence a two-fold dilution series corre-
sponding to a log2-scale). We finally compared our obtained MSC
boundaries and PNECs to the NOEC/EC50 and PNEC values reported in
FASS (http://fass.se; 2015–08-26), and to the highest reported concen-
trations of antibiotics in effluents from conventional sewage treatment
plants, as collected by Michael et al. (2013).

All analyses were carried out using Perl and R (R Development Core
Team, 2011). The Perl and R scripts used to analyze the data are avail-
able as a supplementary item (Item S4).

3. Results

3.1. Taxonomic coverage of the EUCAST database

Although the 170 species present in the EUCAST database cover
a wide range of microbial taxonomic groups, the vast majority of
those are of clinical origin, and are to some degree pathogenic
(Table S2). There is also apparent bias in terms of which antibiotics
that have been tested and how many isolates that have undergone
MIC testing (Fig. S1). Particularly overrepresented are the Bacilli,
encompassing e.g. Staphylococcaceae and Streptococcaceae, and the
Gammaproteobacteria, containing the Enterobacteriaceae family. This
sampling bias is most evident for the number of tested isolates; the
different types of antibiotics tested and reported in the EUCAST data-
base are more evenly distributed across taxa. Importantly, although
some antibiotics only have been tested against species from one or
two families, the majority has been tested against at least five different
families (Fig. S2). Particularly, the most commonly used antibiotics in
clinical settings also had among the widest distributions of tested
families (Fig. S3).

3.2. Observed lowest minimal selective concentrations

Lowest MIC values were obtained for 111 antibiotics and 11 antibi-
otics combinations in the EUCAST database (Table 1). For 13 antibiotics,
the lowest MIC corresponded to the lowest concentration tested
(2 μg/L) and for those, predicted lowestMICs were estimated by extrap-
olating the log2-distance below the peak MIC value and the lowest MIC
value for that antibiotic across all species (Table 1). This resulted in six
antibiotics having predicted lowest MICs slightly below 2 μg/L. Overall,
the lowest MICs ranged from 0.69 μg/L (predicted concentration for cef-
triaxone in Neisseria meningitidis) to 32,000 μg/L (clavulanic acid in
Acinetobacter baumannii; Fig. 1 and Table 1). Most lowest MICs were
in the range between 4 and 125 μg/L. The values reported here as the ob-
served lowest MICs correspond to that 1% of isolate observations were
at or below the reported concentration. However, the distributions of
lowest MIC values were relatively stable, regardless of whether a 1%,
5% or 10% cutoff was used (Fig. S4; Table S4).

3.3. Inhibitory concentrations are only weakly linked to taxonomic
divergence

Taxonomic distance between two species may be linked to the
difference in lowest MICs observed. Thus, the relationship between
rRNA dissimilarity (as a proxy for taxonomic divergence) and the
log2 difference in lowest MIC was investigated for each antibiotic,
and for all antibiotics together (Fig. 2). The overall link between
rRNA dissimilarity and lowest MIC difference was very weak (R2 =
0.02). Nonetheless, eleven individual antibiotics had significant relation-
ships between rRNA dissimilarity and lowest MIC (Table S5). However,
out of those eleven, five counter-intuitively had negative slopes
(cefepime, ciprofloxacin, clindamycin, gentamicin, and norfloxacin), sug-
gesting that more divergent species would have more similar lowest
MICs than closely related ones. For the remaining six antibiotics, the
degree to which lowest MIC differences could be explained by rRNA dis-
similarity was very different, with R2 values ranging from 0.23 to 0.97
(Table S5; Fig. S5).

Another possible consequence of a relationship between taxo-
nomic divergence and lowest MIC difference is that the difference
in lowest MIC would show more variation the larger the taxonomic
distance between species. This would show in the data as increasing
scattering (heteroscedasticity) when lowest MIC difference is plot-
ted against rRNA dissimilarity. We did, however, not find significant
heteroscedasticity for any antibiotic after correction for multiple
testing (Table S5). Taken together, this suggests that the link be-
tween taxonomic distance and lowest MIC is weak, although it may
exist to a minor degree for some antibiotics.

3.4. Predicted lowest minimal inhibitory concentrations

Since the number of species that each antibiotic had been tested
against differed substantially, we used subsamples of the lowest MIC
data for the antibiotics that had been tested against more than 30 spe-
cies to assess the effect of small sample size on the estimated MSC
boundaries (Fig. 3). The subsampling revealed that we consistently
overestimated the lowest MIC for small samples sizes, but that this ef-
fect was minor for samples of size 20 and larger. We used this result
to calculate how much lower the actual lowest MIC could be for antibi-
otics with small number of tested species, in case the EUCAST data hap-
pen to correspond to the upper part of the sensitivity distribution
(Table 1). Still, if an antibiotic has been tested against a limited diversity
of microorganisms, this may bias the lowest MIC estimate and PNECs,
andwe have therefore also provided the number of genera and families
that each antibiotic has been tested against in Table 1.

3.5. Predicted no effect concentrations (PNECs) for resistance

To predict no effect concentrations for resistance selection for each
antibiotic, we used the sample size adjusted lowest MICs and applied
an assessment factor of 10 to account for that the selective concentra-
tion must be lower than the MIC. The PNECs ranged from 0.008 μg/L
to 64 μg/L (Fig. 4), as compared to the observed/predicted lowest
MICs, ranging from 0.69 μg/L to 32,000 μg/L. Generally, the PNECs ob-
tained after sample size adjustment and application of the assessment
factor were about 16–32 times smaller than the observed lowest MICs,
although a large number of antibiotics had a 500-fold difference, as a
result of few empirical MIC values. Accordingly, the antibiotics that
had been tested against the largest number of species generally had
16-fold differences between PNEC and lowest MIC. Comparing these
estimated lowest MICs and PNECs to available data on lowest effect
concentrations (LOECs) or PNECs was in most cases not possible, since
LOEC data was present in FASS only for 21% and PNEC data for 17% of
the investigated antibiotics. Only in two cases (moxifloxacin and sulfa-
methoxazole), the size-adjusted lowest MICs were higher than the
LOECs currently presented in FASS based on ecotoxicological testing.
In five cases, the PNECs we report exceeded the corresponding PNECs
in FASS (clarithromycin, erythromycin, roxithromycin, sulfamethoxa-
zole, and telithromycin), while in 15 cases the PNEC reported in FASS
were higher (102 antibiotics lacked PNEC data in FASS).

We finally compared our PNECs to the concentrations of antibiotics
that have been measured in effluents from conventional sewage
treatment plants (Table 1). For the 32 antibiotics where such

http://creativecommons.org/licenses/bycd/4.0/


Table 1
Estimated minimal selection concentration boundaries (in μg/L) and predicted no-effect concentrations for 111 antibiotics and 11 antibiotics combinations.

Antibiotic N1
Observed
lowest MIC2

Predicted
lowest MIC3

Size-adjusted
lowest MIC4

PNEC (resistance
selection)5

Covered genera
(families)6

NOEC
(ecotox)7

PNEC
(ecotox)8

STP effluent
conc.9

Amikacin 28 250 125 16 15 (8)
Amoxicillin 29 4 2 0.25 19 (12) 0.05
Amoxicillin–clavulanic acid (fixed) 4 1000 64 8 4 (2)
Amphotericin B 1 8 0.125 0.016 1 (1)
Ampicillin 64 4 4 0.25 25 (15) N1,000,000 0.126
Ampicillin–sulbactam (fixed) 3 500 32 2 3 (1)
Ampicillin–sulbactam (ratio) 23 125 64 4 13 (6)
Anidulafungin 4 2 2 0.125 0.016 1 (1)
Avilamycin 6 1000 125 8 2 (2)
Azithromycin 12 16 4 0.25 6 (6) 0.38
Aztreonam 11 32 8 0.5 10 (5)
Bacitracin 2 2000 64 8 1 (1)
Benzylpenicillin 47 4 4 0.25 12 (11)
Capreomycin 1 1000 16 2 1 (1)
Cefaclor 11 32 8 0.5 7 (6) 1.8
Cefadroxil 7 125 16 2 5 (4)
Cefalexin 10 250 32 4 7 (5) 1.8
Cefaloridine 1 2000 32 4 1 (1)
Cefalothin 13 64 16 2 10 (4)
Cefazolin 18 32 8 1 12 (6)
Cefdinir 5 32 2 0.25 4 (4)
Cefepime 41 8 8 0.5 18 (10)
Cefepime–clavulanate 1 1000 16 2 1 (1)
Cefixime 11 4 1 0.064 7 (6)
Cefoperazone 13 16 4 0.5 10 (5)
Cefotaxime 33 2 1.8 1 0.125 19 (10) N500,000a 0.034
Cefotaxime–clavulanate 2 8 0.25 0.032 2 (2)
Cefoxitin 26 250 125 8 13 (5)
Cefpirome 9 4 0.5 0.064 7 (5)
Cefpodoxime 15 8 2 0.25 10 (7)
Cefpodoxime–clavulanic acid 3 250 16 1 2 (1)
Ceftaroline 8 4 0.5 0.064 5 (4)
Ceftazidime 23 16 8 0.5 17 (9) 13 1.3
Ceftazidime–clavulanate 1 8 0.125 0.016 1 (1) 13 1.3
Ceftibuten 16 8 2 0.25 13 (6) 600,000b

Ceftiofur 4 8 0.5 0.064 3 (3)
Ceftobiprole 39 4 2 0.25 17 (9)
Ceftriaxone 29 2 0.69 0.25 0.032 16 (10)
Cefuroxime 29 8 4 0.5 16 (8)
Chloramphenicol 29 125 64 8 18 (11)
Ciprofloxacin 70 2 1.2 1 0.064 29 (18) 1.2 1.2 0.742
Clarithromycin 15 8 2 0.25 10 (10) 2b 0.04 0.61
Clavulanic acid 1 32,000 500 64 1 (1)
Clinafloxacin 7 32 4 0.5 4 (4)
Clindamycin 37 16 8 1 12 (11) 0.07
Cloxacillin 1 64 1 0.125 1 (1) 0.7
Colistin 16 64 16 2 10 (4)
Daptomycin 16 32 8 1 6 (6)
Doripenem 39 2 2 1 0.125 18 (10)
Doxycycline 29 32 16 2 20 (11) 0.915
Enrofloxacin 4 8 0.5 0.064 4 (3) 0.05
Ertapenem 36 2 2 1 0.125 20 (12) 100,000 500
Erythromycin 39 16 8 1 14 (13) 10.3 0.103 0.62
Ethambutol 1 1000 16 2 1 (1)
Faropenem 1 8 0.125 0.016 1 (1)
Fidaxomicin 1 8 0.125 0.016 1 (1)
Florfenicol 9 125 16 2 6 (5)
Fluconazole 3 64 4 0.25 1 (1)
Flumequine 3 64 4 0.25 3 (2)
Fosfomycin 13 125 32 2 9 (6)
Fusidic acid 9 32 4 0.5 4 (4) 4300 4.3
Gatifloxacin 21 4 2 0.125 14 (10) 0.056
Gemifloxacin 16 2 2 0.5 0.064 11 (10)
Gentamicin 68 16 16 1 27 (14) 1.3
Imipenem 53 2 2 2 0.125 23 (14) N78,000a 78
Isoniazid 1 64 1 0.125 1 (1) 406b

Itraconazole 1 4 0.064 0.008 1 (1) 1,000,000 1000
Kanamycin 13 125 32 2 10 (7)
Ketoconazole * 4 * * 0 (0)
Levofloxacin 43 4 4 0.25 24 (16) 7400b 7.4
Lincomycin 2 500 16 2 2 (2) 0.3
Linezolid 29 125 64 8 9 (9)
Loracarbef 10 125 16 2 8 (4)

(continued on next page)
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Table 1 (continued)

Antibiotic N1
Observed
lowest MIC2

Predicted
lowest MIC3

Size-adjusted
lowest MIC4

PNEC (resistance
selection)5

Covered genera
(families)6

NOEC
(ecotox)7

PNEC
(ecotox)8

STP effluent
conc.9

Mecillinam 9 64 8 1 6 (2)
Meropenem 50 2 0.88 0.5 0.064 22 (14) 3.6 1.5
Metronidazole 6 16 2 0.125 3 (3) 2030c 40.6 0.561
Micafungin * 4 * * 0 (0)
Minocycline 24 32 16 1 15 (8) b0.03
Moxifloxacin 53 2 2 2 0.125 21 (14) 1.8 0.18 0.017
Mupirocin 4 32 2 0.25 2 (2) 1,000,000
Nalidixic acid 17 500 125 16 13 (5) 0.45
Narasin 2 125 4 0.5 1 (1)
Neomycin 8 125 16 2 6 (5)
Netilmicin 14 16 4 0.5 9 (8)
Nitrofurantoin 8 4000 500 64 5 (4)
Norfloxacin 15 16 4 0.5 12 (8) 0.32
Ofloxacin 26 8 4 0.5 20 (14) 4.82
Oxacillin 24 32 16 1 5 (5) 0.008
Oxytetracycline 2 125 4 0.5 2 (2) 0.07
Pefloxacin 1 4000 64 8 1 (1)
Phenoxymethylpenicillin 8 4 0.5 0.064 5 (5) 2
Piperacillin 30 8 4 0.5 18 (11)
Piperacillin–tazobactam 43 4 4 0.25 20 (13)
Quinupristin–dalfopristin 17 64 16 2 4 (4)
Retapamulin 4 8 0.5 0.064 2 (2) 100
Rifampicin 19 2 1.7 0.5 0.064 12 (12) 3,300,000b 3300
Roxithromycin 14 32 8 1 7 (7) 10 0.047 0.54
Secnidazole 1 500 8 1 1 (1)
Sparfloxacin 23 2 1.8 1 0.064 17 (13)
Spectinomycin 8 2000 250 32 5 (4)
Spiramycin 2 125 4 0.5 1 (1) 0.454
Streptomycin 32 250 125 16 14 (9)
Sulbactam 12 1000 250 16 10 (5)
Sulfamethoxazole 8 1000 125 16 6 (4) 5.9 0.59 0.964
Teicoplanin 19 16 4 0.5 4 (4)
Telithromycin 11 4 1 0.064 8 (8) 2.38 0.0024
Tetracycline 66 16 16 1 30 (18) 0.62
Thiamphenicol 1 500 8 1 1 (1)
Tiamulin 1 500 8 1 1 (1)
Ticarcillin 16 250 64 8 9 (5)
Ticarcillin–clavulanic acid 14 64 16 2 9 (5)
Tigecycline 54 16 16 1 26 (16)
Tilmicosin 2 250 8 1 2 (1)
Tobramycin 31 16 8 1 15 (8) 51 5.1
Trimethoprim 22 16 8 0.5 15 (7) 5600 56 2.4
Trimethoprim–sulfamethoxazole 36 8 4 0.5 22 (13) 5.9 0.59
Trovafloxacin 3 8 0.5 0.032 3 (3)
Tylosin 1 2000 32 4 1 (1) 3.4
Vancomycin 42 125 125 8 10 (9) 0.04
Viomycin 1 1000 16 2 1 (1)
Virginiamycin 5 250 16 2 3 (3)
Voriconazole * 2 2 * * 0 (0)

Notes: All concentrations are given in μg/L.
1 These numbers correspond to the number of different species present in EUCAST that could be matched to a valid species name in SILVA. Thus, this number is sometimes zero (in-

dicated by *), and in those cases we only report the observed/predicted lowest MIC (corresponding to the MSC upper boundary).
2 The lowest MIC value observed for any species in the EUCAST database.
3 Predicted lowest MIC values in cases where the lowest MIC in the EUCAST database equaled the lowest concentration tested (2 μg/L).
4 The size-adjusted lowest MIC prediction, corresponding to the estimated upper boundary for the MSC (rounded down to the closest concentration on the EUCAST testing scale).
5 The PNEC corresponds to the size-adjusted lowest MIC divided by an assessment factor of 10 (rounded down to the closest concentration on the EUCAST testing scale).
6 The number of different genera and families tested against the antibiotic in the EUCAST database.
7 NOEC in FASS derived from ecotoxicological data. The NOEC column also represents LC50, EC50 and EC10 data when NOEC data was not available (see notes).
8 Current PNEC present in FASS, based on ecotoxicological data.
9 The highest concentration observed in effluents from conventional STPs as reported by Michael et al. (2013).
a LC50.
b EC50.
c EC10.
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measurement data was available, we found that in nine cases the
highest measured effluent concentration exceeded the PNEC for that
antibiotic, indicating that in some occasions effluent from sewage treat-
ment may have the potential to be selecting for antibiotic resistance. In
the majority of these cases, there were no LOEC or PNEC data available
in FASS. Additionally, in the cases of ciprofloxacin, ofloxacin and
phenoxymethylpenicillin the measured concentrations were close to
the observed MICs for these antibiotics, suggesting that effluent
concentrations of these antibiotics could be high enough to inhibit
growth of or kill bacteria.

4. Discussion

In this work we provide an extensive number of theoretically
determined selective concentrations, based on observed lowest MICs
from the EUCAST database. These estimated upper boundary MSCs



Fig. 1. Distribution of predicted and observed lowest MICs for all antibiotics.
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can be seen as analogous to LOEC (Lowest Observed Effect Concentra-
tion) values used in environmental risk assessment for different
chemicals. We have accordingly estimated PNECs (Predicted No Effect
Concentrations) for resistance selection in microbial communities to
be applied in regulatory contexts. These PNECs can eventually be re-
fined or supplemented with data on experimentally derived selective
concentrations inmicrobial communities as suchdata becomeavailable.
Specifically, the PNECs can be used for antibiotic-producing companies
to assess and manage risks for resistance selection associated with
their owndischarges (Murray-Smith et al., 2012), or for local authorities
to define emissions limits of such factories. The PNECs also fill an
important knowledge gap in order to make proposed environmental
certificates within the good manufacturing practice framework for
antibiotics concrete (Larsson, 2014a; Swedish Medical Products
Agency, 2009, 2011; Pruden et al., 2013). Similarly, further development
of the environmental criteria during public procurement processes for
antibiotics, as already implemented by Sweden (Laurell et al., 2014)
and considered by theWHO (SPHS Secreteriat, UNDP Istanbul Regional
Hub, 2015), will eventually require defined discharge limits. With
regards to environmental monitoring programs, PNECs can provide
input to acceptable detection limits, and comparisons between PNECs
and predicted or measured environmental concentrations can identify
Fig. 2. Linear regression between rRNA dissimilarity and difference in lowest MIC for all
antibiotics together.
antibiotics of particular concern. The latter comparison can also provide
input to possible regulations of antibiotics in surfacewaters, as currently
consideredwithin thewater framework directive (Carvalho et al., 2015)
and to improve the environmental risk assessment of pharmaceuticals
(Ågerstrand et al., 2015).

4.1. Estimating MSCs and PNECs

The upper boundaries for MSCs we report in this work are based on
the simple assumption that an antibiotic concentration that inhibits
growth of some bacteria will by consequence have selective effects
on the community level, at least in some bacterial communities
(Ågerstrand et al., 2015). The estimation of MSC data from the MICs
reported in EUCAST is influenced by at least three major factors; a
possible connection between taxonomic divergence and antibiotic
susceptibility, limited taxonomic sampling coverage for many antibi-
otics in EUCAST, and the fact that antibiotics have selective effects at
sub-inhibitory concentrations (Chow et al., 2015; Gullberg et al., 2011,
2014).

The PNECs of this study are based on the assumption that the
species present in the EUCAST database are to some extent represen-
tative of the diversity of sensitive bacteria in nature. It is therefore
important to quantify the relationship between taxonomic diver-
gence and the degree of similarity in terms of antibiotic susceptibility.
We found that the degree to which susceptibility can be explained by
taxonomic similarity of the species covered in the database is limited.
Such links may still exist for certain antibiotics, but might be obscured
since completely insensitive species are not included in the database.
The absence of a strong relationship suggests that our results may
hold for a majority of the antibiotics evaluated, and we have therefore
chosen not to include any assessment factor for the taxonomic span
for which different antibiotics were tested against. It should be noted
that many antibiotics have narrow spectra and cannot be expected to
have been tested against a broad range ofmicrobial taxa, as such testing
would inmany cases be clinically irrelevant. For our approach, including
such presumably insensitive species would not lead to lower minimal
MICs.

Many antibiotics have been tested against a very limited number
of species, and there is indeed an inverse correlation between the
number of tested species and the observed lowest MIC, suggesting
that smaller number of tested species would result in a bias toward
greater MSCs and PNECs. As a remedy, we used data from resampling
of the antibiotics tested against more than 30 species to determine to
which degree we over-estimated the lowest MIC at different sample
sizes. In this way, we arrived at size-adjusted predicted lowest MICs
(upper boundaries for MSCs), accounting for limited diversity in
terms of tested species. Nevertheless, we expect the PNEC estimate
to be more accurate the more genera and families an antibiotic has
been evaluated against.

Finally, antibiotics tend to have selective ability at concentrations
below their MICs, and since our PNECs are derived from MIC data,
this factor also needs to be taken into account. Risk management al-
ways involves dealing with uncertainties while trying to strike a bal-
ance between the probability for an event to occur, the severity of
the potential outcome and the costs or consequences involved in
managing the risk (Chapman et al., 1998). The size of an assessment
factor is therefore context dependent, and will be a reflection of how
far one wants to enforce the precautionary principle. Gullberg et al.
(2011) report the MSCs to be in the range of 1/230 to 1/4 of the
MIC for different antibiotics in experiments with two competing
bacterial strains. Based on these findings, an assessment factor of
up to 230 could be warranted. However, establishing a PNEC by
selecting the lowest MIC of the most sensitive species in EUCAST,
adjusting that concentration for limited sampling size, and then as-
suming the maximal described difference between the size-
adjusted MIC and MSC could be overly conservative. Instead, we

Image of &INS id=
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Fig. 3. Degree of lowest MIC over-estimation for subsampled datasets. (a) Subsamples of size one to five, (b) subsamples of size five to thirty. The dashed line represents the median of
observations.
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propose a more modest assessment factor of 10 – corresponding ap-
proximately to the median MIC/MSC ratio reported by Gullberg et al.
(2011). We acknowledge that the relationship between the MIC and
the MSC is the most uncertain factor in the estimation process and
that wemay very well underestimate this difference for some antibi-
otics. Depending on the context, additional safety margins could be
employed, for example if there are reasons to believe that certain en-
vironments need particular protection, or if there is experimental
data suggesting high selective potency for certain antibiotics. Given
the moderate assessment factor proposed, we do not think limits
on environmental exposure should exceed the PNECs unless there
are strong and relevant experimental evidence for lack of effects at
higher concentrations.

4.2. Ecological relevance of the PNECs

Environmental concentrations of antibiotics have been shown to
vary substantially. For example, ciprofloxacin has been detected at a
concentration of 0.026 μg/L in surface water in Italy (Calamari et al.,
2003), 0.009 μg/L in Germany (Christian et al., 2003), 0.11 μg/L in
Chinese river water (Luo et al., 2011), and up to 2.5 μg/L in Indian well
water close to pharmaceutical industries (Fick et al., 2009). Our PNEC
for ciprofloxacin is 0.064 μg/L, meaning that in the Chinese and Indian
cases, surface water concentrations may be selective over extended
time periods. The predicted no-effect concentration for ciprofloxacin
that can be derived from Tello et al. (2012) is around 0.1 μg/L, which
Fig. 4. Distribution of size-adjusted lowest MICs (MSC upper boundarie
is only somewhat higher than our PNEC, but ten times lower than our
estimate for the upper MSC boundary. This can be compared to the
concentrations measured in effluent from pharmaceutical production
(31,000 μg/L (Larsson et al., 2007)), the receiving river (2500 μg/L
(Fick et al., 2009)), and in lakes subjected to dumping of pharmaceutical
waste (6500 μg/L (Fick et al., 2009)). In all these cases, the measured
concentrations are readily above the estimated MSC upper boundary,
and many times well above the MICs for ciprofloxacin for most investi-
gated species.

Municipal sewage treatment plants (STPs) are considered to be im-
portant point sources of antibiotic releases into the environment
(Michael et al., 2013). When we compared chemical data from STP ef-
fluents to our PNECs, we discovered that in 28% of cases the highest re-
ported effluent concentration exceeded the PNEC. However, measured
concentrations were generally well below the MSC upper boundary
estimates, even in the worst cases. This suggests that conventional
STPs could, in some cases, facilitate selection for antibiotic resistance
genes, and indicates that there is a need to evaluate advanced treatment
strategies to avoid resistance gene enrichment. It should be noted,
though, that the dilution of the effluent in the recipient will often be
large, and hence disinfection of effluents, rather than removal of selec-
tive agents, might be amore importantmeasure. The PNEC data provid-
ed in this study could aid in decisions on international, national and
local levels onwhich extended treatment processes thatwould be desir-
able to implement, and if there is a need for disinfection, or other sani-
tary interventions, of STP effluents.
s) (a) and predicted no-effect concentrations (b) for all antibiotics.
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MIC tests measure acute effects on bacteria rather than long-term,
and also measure growth inhibition under high nutrient availability.
Thus, nearly all selection in the environment will occur during much
longer timescales than under laboratory conditions, and the longer gen-
eration timesmay potentially narrow the sub-MIC selective window for
many antibiotics. On the other hand, antibiotics such as tetracyclines
and fluoroquinolones are not readily degraded in the environment
and may persist for extended time periods, thus exerting a chronic se-
lection pressure onmicrobial communities (Kümmerer, 2009), with un-
known consequences for resistance development. Further complicating
the issue of environmental selection is the limited knowledge of the
influence of sorption of antibiotics to particles and whether adsorbed
antibiotics may still exert an effect (Boxall et al., 2012; Chander et al.,
2005; Córdova-Kreylos and Scow, 2007). In addition, bacteria in the en-
vironment are likely to be exposed tomixtures of antibiotics rather than
single substances, which may further lower the MSCs (Gullberg et al.,
2014). Although there is a growing body of research on combination ef-
fects of antimicrobial substances on bacteria (Backhaus, 2014; Brosché
and Backhaus, 2010; Christensen et al., 2006), the understanding of
such effects on selection for resistance in microbial communities is lim-
ited. Furthermore, biocides andmetals may also contribute to the selec-
tion of antibiotic resistance genes (Pal et al., 2014). It is also possible that
antibiotics may disturb ecosystem services such as sewage treatment,
nitrogen fixation and nutrient fluxes (Larsson, 2014b), although there
is little evidence that the levels of antibiotics present in the environment
can have any significant effect on such processes. Indeed microbial
communities seem to uphold a surprising degree of resilience even to
high antibiotics exposure over long timeframes, possibly in part due
to sharing of resistance factors through horizontal gene transfer
(Bengtsson-Palme et al., 2014b; Flach et al., 2015; Jernberg et al.,
2007; Lewis, 2007; Relman, 2012).

In addition to exerting a selection pressure for resistant strains, sub-
inhibitory concentrations of antibiotics can have several other effects on
bacterial communities (Rodríguez-Rojas et al., 2013). For example,
effects on the mutation and recombination rates of bacteria have been
observed for beta-lactams (Cortes et al., 2008; Gutierrez et al., 2013),
ciprofloxacin (López et al., 2007; Morero et al., 2011), and many other
antibiotics (Chow et al., 2015; Thi et al., 2011). Furthermore, sub-
inhibitory concentrations of antibiotics have the potential to induce
horizontal transfer of genetic material (Johnson et al., 2015; López and
Blázquez, 2009; Prudhomme et al., 2006). These effects have partially
been attributed to the bacterial SOS response (Beaber et al., 2004;
Guerin et al., 2009). The SOS response can also lead to increased muta-
tion rates through induction of error-prone DNA-polymerases, trig-
gered by a range of antibiotics (Briales et al., 2012; Thi et al., 2011).
The degree towhich the SOS response is activated depends on antibiotic
concentration (Dörr et al., 2009; Torres-Barceló et al., 2015), however,
to our best knowledge studies establishing the minimal concentrations
for its activation are lacking. For ciprofloxacin, concentrations demon-
strated for induction (N1 μg/L) are several times above the PNEC we
predict for resistance selection. Finally, antibiotics promote biofilm
formation (Balaji et al., 2013; Hoffman et al., 2005), which may further
enhance persistence during antibiotic selection. All these processes are
to some degree involved in antibiotic resistance development, and it
would thus be very valuable to establish the minimal concentrations
of antibiotics that induce mutagenesis, transfer of genetic material
between bacteria, mobilization of chromosomal DNA, and biofilm
formation, as a complement to the determining concentrations that
are directly selective for resistance.

4.3. Implications for regulation of antibiotic emissions

This work represents an approach to theoretically determine MSCs
using observed MIC values, providing comprehensive data as a starting
point for regulatory agencies. Our data suggests that emission limits for
antibiotics must be set individually for each compound, and that
different antibiotics have very different potential to be selective.
Furthermore, some antibiotics, such as ciprofloxacin, can be detected
in surface water at concentrations that our PNECs indicate would
have potential to be selective. In this context it is important to recall
that the transfer of a novel resistance determinant from an environ-
mental bacteria to a human pathogen only need to occur once
(Bengtsson-Palme and Larsson, 2015; Larsson, 2014b); given sufficient
selection pressure dissemination and maintenance of this resistance
factor may then be facilitated by human and veterinary drug use,
insufficient hygiene standards, as well as global travel and trade
(Ashbolt et al., 2013; Bengtsson-Palme et al., 2015a; Larsson, 2014a).
Clearly, there are strong incentives to introduce evaluation based on
available MSC data in the environmental risk assessment of antibiotics
within guidelines of, for example, the European Medicine's Agency.

Importantly, current data available to decision makers to form a
basis for regulatory efforts is very scarce. Few antibiotics have gone
through ecotoxicological testing, and as seen in this study, even the
PNECs reported in FASS are sometimes above the observedMICs for cer-
tain antibiotics, revealing an important discrepancy between ecotoxico-
logical testing and clinical data on toxicity in specific pathogenic
bacteria. Only in two cases (moxifloxacin and sulfamethoxazole) were
our estimated MSC upper boundaries higher than the LOECs reported
in FASS. In addition, only 21% of the antibiotics investigated in this
work had any ecotoxicological data available. Establishment of MSCs
for antibiotic resistance in environmental bacterial communities is
therefore crucial to enable proper risk assessment to underpin regulato-
ry interventions. In the absence of experimentally determined MSCs in
complex microbial communities, the theoretical MSC boundaries and
PNECs presented in this work can function as guidance. We would rec-
ommend regulators to consider the PNECs reported here as a basis for
implementation of emission limits. Preferably, legislation should in the
future be refined including experimental data directly assessing the
MSCs as such data become available. Thus, experimental studies of es-
tablishment of complex microbial communities under different antibi-
otic exposure, followed by analyses of changes in taxa, resistance
patterns or increasing mobility of genetic material, are desirable to fur-
ther refine discharge standards. In the meantime, the PNECs we report
here can be used to better focus mitigation strategies on environments
where risks for resistance promotion are particularly high. Factors
such as sanitation, hygiene, urbanization, sewage treatment, and phar-
maceutical manufacturing have been identified to be important for the
ecological footprints of pharmaceuticals in the environment (Kookana
et al., 2014), and the same set of factors are likely to be involved in resis-
tance development as well. However, to mitigate resistance dissemina-
tion, not only the discharges of antibiotics must be managed. Resistant
pathogensmay be released from sewage treatment processes, and resis-
tant bacteria may also emerge from e.g. industrial processes. In these
cases, management strategies need to involve both limits on antibiotic
levels, based on concentrations that do not promote maintenance of
resistant strains, as well as sanitary efforts to remove bacteria from
effluents.
5. Conclusions

In this work, we have presented compound-specific estimates for
minimal selective concentrations and predicted no-effect concentra-
tions for antibiotics based on MIC data derived from the EUCAST
database. The data presented can serve as guidance for efforts by indus-
tries, regulatory agencies or purchasers of medicines to define accept-
able environmental emissions of antibiotics that take into account
risks for resistance promotion. The data can also aid in the implementa-
tion of environmental monitoring programs, directing mitigations, and
for prioritizing future studies on environmental antibiotic resistance.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.envint.2015.10.015.
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