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Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C+)
and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 11Π→
X1Σ+ and rovibrational transitions on the X1Σ+ and a3Π potentials. Semiclassical and classical methods
are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum
mechanical perturbation theory is used for comparison. A modified formulation of the classical method
applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is
fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of < 3%. The fit
parameters will be added to the online database KIDA. For a temperature of 10 to 250 K, the rate constant
is about 10−21 cm3s−1, rising toward 10−16 cm3s−1 for a temperature of 30,000 K.

I. INTRODUCTION

The fluoromethylidynium cation (CF+) has been ob-
served in the interstellar medium1,2. In a hydrogen abun-
dant environment the major contribution to its produc-
tion is the reaction HF + C+ → H + CF+, where HF is
produced by H2 + F → HF + H3,4. In this paper we in-
vestigate the possibility for production through radiative
association of the reactants C+ and F, which may be of
importance in H2-deficient environments.

Radiative association may occur when at least one elec-
tronic state of a system of two reactants has a potential
energy well below the dissociation energy. The system
can reside in a bound state supported in this well if the
collision and binding energies are expelled through the
emission of a photon. The emission is due to the transi-
tion dipole moment or permanent electric dipole moment
of the molecular complex during the collision. Magnetic
and higher electric moments are not accounted for here,
but do in general contribute. Radiative association of
two fragments can be important in sparse interstellar gas
where it can dominate over reactions due to many-body
collisions5,6 as the latter diminishes more rapidly with a
decreasing number density of reactants.

Modelling of the interstellar environment requires com-
putation of the collision reaction rate5,6

r = k(T )[A][B] (1)

for all relevant species A and B, which in turn requires
the rate constant k(T ) for the species. In this paper
we are concerned with finding the rate constant for the
reaction C+ +F→ CF+ +~ω through the three channels

a)e-mail: jonatan.ostrom@gmail.com
b)e-mail: magnus.gustafsson@ltu.se

C+(2P ) + F(2P )→
CF+(11Π) → CF+(X1Σ+) + ~ω (2a)

CF+(X1Σ+) → CF+(X1Σ+) + ~ω (2b)

CF+(a3Π) → CF+(a3Π) + ~ω. (2c)

Based on our electronic structure calculations (see
Sec. III), we claim that the reactions (2) are the most
important for the production of CF+ through radiative
association. There are 12 electronic states correlating
with ground state C+ and F7. Out of those only X1Σ+

and a3Π have significant wells. Of the remaining states
with dipole allowed transitions into the ground state, 11Π
allows for the closest approach.

The computational methods have been presented be-
fore, e.g. in Refs. 8–11 with the exception of changes to
the classical theory to account for dipole moments that
are non-zero at large separations. This paper is struc-
tured as follows. In Sec. II we outline the theory and
numerical implementations of the computational meth-
ods. In Sec. III the ab initio computations of potential
energy curves and electric dipole moment curves are de-
scribed. In Sec. IV the cross sections and rate constants
for the three reaction channels are presented, as well as
the fit of the total rate constant to the Arrhenius–Kooij
formula. In Sec. V conclusions are drawn.

II. METHODS AND THEORY

The reaction rate constant may be computed from the
reaction cross section σΛ′→Λ′′(E) through

kΛ′→Λ′′(T ) =

√
8

µπ

(
1

kBT

)3/2

×
∫ ∞

0

EσΛ′→Λ′′(E)e−E/kBT dE , (3)
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where µ = mC+mF/(mC+ + mF) is the reduced mass of
the system, kB is Boltzmann’s constant, E is the collision
energy, and T is temperature. A single prime refers to
the initial scattering state and a double prime to the final
state. Λ is the projection of the electronic orbital angular
momentum onto the internuclear axis, and will in general
denote different electronic states.

Potential energy curves for 11Π an a3Π (see Fig. 1),
may house bound vibrational states in wells below the
separation energy, and quasi-bound states behind barri-
ers above this energy. When the molecule is rotationally
excited, also X1Σ may support quasibound states, due
to the centrifugal barrier. In quantum mechanical the-
ory the reactants can tunnel in through the barrier and
reside in a quasibound state, which is not classically ac-
cessible. The lifetime of the quasibound state for a colli-
sion energy E, which is related to the magnitude of the
scattering wave function behind the barrier, strongly af-
fects the energy dependent cross section, creating sharp
peaks or resonances; these features will be referred to as
the resonance contribution to the cross section or rate
constant. Classical trajectories do not have this prop-
erty and instead produce a smooth cross section, usually
resembling a baseline of the spiky quantum mechanical
dito; this will be referred to as the direct contribution.

The radiative association cross section for each reac-
tion channel may be computed quantum mechanically for
a grid of collision energies. It is proportional to the prob-
ability for the system to emit a photon due to its electric
dipole moment and make a transition from the scatter-
ing state of the given collision energy into any bound
state. The cross section of this perturbation theory (PT)
method is used here only for verification of the cross sec-
tions obtained using other methods. The reason for this
is that unlike our other methods, PT produces a complete
cross section including the direct and the resonance con-
tribution; but when there are narrow resonances it may
not be reliable12,13, and is therefore not used to produce
the rate constant.

Two methods are used that are based on classical tra-
jectories. The classical method (CL) rely on the Larmor
power of the radiation from a time dependent dipole. The
semiclassical method (SCL) is deduced from the semi-
classical limit of the quantum mechanical optical poten-
tial method. Together they will be refered to as (S)CL.
These methods produce only the direct contribution to
which the resonance contribution can be added by using
Breit-Wigner (BW) theory. The BW method requires the
inverse lifetimes, or widths of quasibound states. These
are computed using the Level program14. The BW cross
section can be integrated analytically to produce a rate
constant which may in turn be added to the classical dito.

A. PT Method

In PT the wave functions for the initial and final states
must be obtained. Applying a partial wave expansion of

the total wave function yields the ordinary time indepen-
dent Schrödinger Equation(

− ~2

2µ

d2

dr2
+ Veff(r, J)

)
Ψ = EΨ . (4)

For E > 0, (with the energy in the dissociation limit

≡ 0) the scattering wave function Ψ = FΛ′

EJ′ is found for
a number of equally spaced collision energies E, using
the effective potential V ′eff(r, J ′) of the electronic state of
approach Λ′ and the rotational quantum number J′. The
wavefunction is energy normalized as in Ref. 15. The
integration of Eq. (4) is in this case done with Numerov’s
method. The effective potential is constructed as

Veff(r, J) = V (r) +
~2J(J + 1)

2µr2
, (5)

where V (r) is the ab initio potential (see Sec. III) and
the last term is the centrifugal energy.

For E < 0, Eq. (4) is an eigenvalue problem on the
target state effective potential V ′′eff(r, J ′′). It is solved
with the DVR method16,17 for the bound wave functions
Ψ = ΨΛ′′

v′′J′′, which are normalized to unity. v′′ is the
vibrational quantum number.

The Einstein A-coefficient for spontaneous emission
from the scattering state a to the bound state b is de-
rived from the perturbation Hamiltonian that couples the
electromagnetic field of the emitted photon to the molec-
ular dipole D under the dipole approximation; it can be
written as11

Aab =
ke
~

32π3

3

|Dab|2

λ3
ab

, (6)

and can be turned into a cross section

σab(E) = π2~3 PΛ′

µE
Aab

= ke~2 32π5

3

PΛ′

µE

|Dab|2

λ3
ab

, (7)

where ke = (4πε0)−1 is Coulomb’s constant, PΛ′ is the
probability of approach in state Λ′, and

|Dab|2 = SΛ′J′,Λ′′J′′|〈FΛ′

EJ′(r)|DΛ′Λ′′(r)|ΨΛ′′

v′′J′′(r)〉|2 . (8)

The Hönl–London factors18 SΛ′J′,Λ′′J′′ are drawn from
Ref. 19 and are listed with PΛ′ in Table I for each transi-
tion. DΛ′Λ′′(r) is the permanent (Λ′ = Λ′′) or transition
(Λ′ 6= Λ′′) electric dipole moment.

With λab = λEΛ′′v′′J′′, summation over all lower vibra-
tional and allowed rotational levels gives the total cross
section

σΛ′→Λ′′(E) = ke~2 32π5

3

PΛ′

µE

∑
J′;v′′,J′′

SΛ′J′,Λ′′J′′

λ3
EΛ′′v′′J′′

× |〈FΛ′

EJ′(r)|DΛ′Λ′′(r)|ΨΛ′′

v′′J′′(r)〉|2 . (9)
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TABLE I. Hönl–London factors, SΛ′J′,Λ′′J′′, and statistical
weights, PΛ′, for CF+. The Hönl–London factors are parity
averaged for the case 11Π→ X1Σ+.

SΛ′J′,Λ′′(J′−1) SΛ′J′,Λ′′J′ SΛ′J′,Λ′′(J′+1) PΛ′

11Π→X1Σ+ (J ′ + 1)/2 (2J ′ + 1)/2 J ′/2 2/36

X1Σ+ J ′ 0 J ′ + 1 1/36

a3Π (J′+1)(J′−1)
J′

2J′+1
J′(J′+1)

J′(J′+2)
(J′+1)

6/36

B. BW Method

According to Heisenberg’s uncertainty principle
∆E∆t ≥ ~/2, the finite lifetime τ = ∆t of a quasibound
state determined by v′J ′Λ′ at energy level Ev′J′Λ′, corre-
sponds to the total width Γtot

v′J′Λ′Λ′′ ≡ 2∆E = ~/τ . This
state can dissociate by tunneling back through the bar-
rier or a photon can be emitted resulting in a transition
into any lower-lying level. We set

Γtot
v′J′Λ′Λ′′ = Γtun

v′J′Λ′ + Γrad
v′J′Λ′→Λ′′ , (10)

where Γtun
v′J′Λ′ is the tunneling width and Γrad

v′J′Λ′→Λ′′ is
the radiative width corresponding to a transition into a
bound or lower-lying quasibound state, thereby neglect-
ing other processes (such as predissociation or radiative
transitions into lower-lying free states).

The BW cross section is11

σΛ′→Λ′′(E) =
π~2

2µE
PΛ′

∑
v′J′

(2J ′ + 1) Γtun
v′J′Λ′ Γrad

v′J′Λ′→Λ′′

(E − Ev′J′Λ′)2 + (Γtot
v′J′Λ′Λ′′/2)2 ,

(11)
and may be integrated analytically in Eq. (3) by assum-
ing for each resonance that Γtot

v′J′Λ′Λ′′ � Ev′J′Λ′ so that

e−Ev′J′Λ′/kBT may replace e−E/kBT . The resulting ex-
pression can be written

kΛ′→Λ′′(T ) = ~2

(
2π

µkBT

)3/2

PΛ′

×
∑
v′J′

(2J ′ + 1) e
−Ev′J′Λ′
kBT

1/Γtun
v′J′Λ′ + 1/Γrad

v′J′Λ′→Λ′′
. (12)

The BW method requires the knowledge of Γrad
v′J′Λ′→Λ′′,

Γtun
v′J′Λ′ and Ev′J′Λ′ for all quasibound states. These were

found with the computer program Level 8.014. The pro-
gram did not perform well for the double minima in the
effective potentials for reaction channels (2a) and (2c).
In these cases the radial distance was divided into two
overlapping intervals, each containing one of the minima.
The cross section produced in this way closely resembles
that from PT, which supports the taken approach.

C. SCL Method

The SCL method5,20 is derived as the semiclassical
limit of the cross section of the distorted wave optical

potential method21,22 by assuming small phase shifts and
applying the WKB approximation11. The SCL method is
applicable only to radiative association involving an elec-
tronic transition (reaction (2a) in this case). The cross
section is

σΛ′→Λ′′(E) = 4π

√
µ

2
PΛ′

∞∫
0

b

∞∫
rf

AEbΛ′→Λ′′(r)√
E − V ′eff(r, b, E)

drdb ,

(13)
where b is the impact parameter, i.e. the asymptotic
offset from a head on collision, rf is the classical (outer-
most) turning point and

AEbΛ′→Λ′′(r) =

 AΛ′→Λ′′(r)
if E < V ′(r)− V ′′(r)
and V ′′eff(r, b, E) < 0 ,

0 else ,

(14)

AΛ′→Λ′′(r) =
ke
~

32π3

3

(
2− δ0,Λ′+Λ′′

2− δ0,Λ′

)
︸ ︷︷ ︸
=1 for reactions (2)

D2
Λ′Λ′′(r)

λ3
Λ′Λ′′(r)

. (15)

The effective potentials and the optimal wavelengths are
constructed as

Veff(r, b, E) = V (r) + Eb2/r2 , (16)

λΛ′Λ′′(r) =
2π~c

V ′(r)− V ′′(r)
. (17)

This cross section is smooth and can be reliably inte-
grated in Eq. (3) and added to the BW result. Romberg
integration is used for the r integral in Eq. (13), and the
trapezoidal rule for b. Simpson’s 1/3 rule is used for the
E integral in Eq. (3), and rf is found using bisection.

D. CL Method

The CL theory is based on classical trajectories and the
Larmor power23 radiated by a time dependent dipole24.
The method applies only to non-electronic transitions,
i.e. reactions (2b) and (2c) in our case. A generalization
of the resonance free cross section derived in Ref. 10 is

σΛ(E) =
ke
~

4PΛ

3c3

∞∫
0

b

ωmax∫
E/~

1

ω

∣∣∣∣∣
∞∫
−∞

D̈(b, E, t)eiωtdt

∣∣∣∣∣
2

dωdb ,

(18)
where ~ωmax = E − min(Veff) is the maximum photon
energy that is possible between the collision energy and
the deepest minimum of the effective potential outside rf.
Applying the Fourier transform derivative property

|F (D̈)|2 = ω4|F (D)|2 , (19)

for asymptotically vanishing functions D(t → ±∞) = 0,
would yield the expression in Ref. 10. Since the per-
manent dipoles (see Fig. 1) asymptotically approach the
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dipole moment given by the position of the charged re-
actant C+ relative to the system center of mass, i.e.

Dr→∞ = −er mF

mC+ +mF
, (20)

Eq. (19) does not hold. Instead the squared expression in
Eq. (18) is evaluated as follows. (The arguments (b, E, t)
of variables D, D, Dx, Dy, r and θ are omitted for con-
ciseness.) The time dependent dipole

D =

[
Dx

Dy

]
=

[
D cos θ
D sin θ

]
(21)

is obtained by integrating the equations of motion

ṙ =

√
2

µ
(E − Veff(r, b, E)) (22)

θ̇ =
b

r2

√
2E

µ
, (23)

where the angle θ, being defined as the orientation of the
molecule, gives the dipole’s direction. The second time
derivative of the dipole is

D̈ =

[
D̈x

D̈y

]
=

[
(D̈ −Dθ̇2) cos θ − (2Ḋθ̇ +Dθ̈) sin θ

(D̈ −Dθ̇2) sin θ + (2Ḋθ̇ +Dθ̈) cos θ

]
(24)

where Eq. (23) yields

θ̈ = − ṙ

r3
2b

√
2E

µ
, (25)

and the first time derivatives ṙ and θ̇ are readily avail-
able in the numerical implementation. In the coordinate
system of Ref. 25 r(t = 0) = rf and θ(t = 0) = 0. Then

D̈x is symmetric in time and D̈y is anti-symmetric. The
squared Fourier transform of the dipole can thus be com-
puted as∣∣∣∣∫ ∞

−∞
D̈eiωtdt

∣∣∣∣2 =

(
2

∫ ∞
0

cos(ωt)D̈xdt

)2

+

(
2

∫ ∞
0

sin(ωt)D̈ydt

)2

. (26)

When computing Eq. (26) the derivatives Ḋ and D̈ in
Eq. (24) are evaluated with finite difference with the same
time step as the fourth order Runge-Kutta integration of
the trajectory. The Fourier transform is carried out with
sine and cosine FFTs from Ref. 26. The ω integral in
Eq. (18) is computed with Simpson’s 1/3 rule. Integrating
over b and E and finding rf is done as in the SCL case.

III. MOLECULAR POTENTIALS AND DIPOLE
MOMENTS

Data points for the potential energy curves (PECs) and
permanent and transition electric dipole moment curves

(DMCs) were determined with ab initio electronic struc-
ture calculations. The data points were inter- and extrap-
olated to give smooth functions for the required range in
internuclear distance.

A. Ab Initio Electronic Structure Calculations

All calculations were performed for internuclear dis-
tances from 1.5 to 7.0 a0 in steps of 0.1 a0. The molecu-
lar orbitals were constructed using the CASSCF method
with an active space consisting of 10 electrons in 8 or-
bitals, which at the dissociation limit correspond to the 2s
and 2p orbitals of the separate atoms. The averaging was
done over all 36 components corresponding to 12 elec-
tronic states (X1Σ+, 11Σ+, 11Σ−, 11Π, 21Π, 11∆,13Σ+,
23Σ+, 13Σ−, a3Π, 23Π, 13∆) correlating with the lowest
dissociation limit of the system: C+(2P ) + F(2P ). Then
the PECs and the corresponding DMCs were calculated
with the internally contracted MRCI method with David-
son correction using the CASSCF molecular orbitals as
a reference. The calculations were carried out with aug-
cc-pV5Z and aug-cc-pV6Z Dunning-type basis sets using
the standard contraction scheme. Furthermore, a cal-
culation was performed with the aug-cc-pV5Z-DK basis
set. In this case, the scalar relativistic correction was
accounted for by the second order Douglas–Kroll–Hess
(DKH) Hamiltonian. All calculations were carried out in
the C2v symmetry group. The MOLPRO 2010.1 package
was used.

Estimating the PECs in the complete basis set (CBS)
limit from the aug-cc-pV5Z and aug-cc-pV6Z calculations
and adjusting for the scalar relativistic correction, was
carried out using the extrapolation formula in the same
manner as in Ref. 27. The scalar relativistic correction
was estimated by the difference between the aug-cc-pV5Z
and aug-cc-pV5Z-DK calculations (it should be noted
that in our calculation this correction does not exceed
100 cm−1 in the interaction region). Identical DMC re-
sults were obtained in all three basis sets, and the aug-cc-
pV6Z result was used. The calculated PECs and DMCs
are shown in Fig. 1.

B. Inter- and Extrapolation of Ab Initio Data

The extrapolations toward zero and infinity of the ab
initio data were done using the two first and two last
data points respectively (as seen from the left in Fig. 1).
PECs were extrapolated toward zero by the function
Vmin +Ae−αr, where Vmin is the lowest data value for the
potential. Extrapolation toward infinity of the 11Π PEC
used the function (in a.u.)

V 11Π
r→∞(r) = −3.49/2r4 − c6/r6 + ∆E11Π , (27)

which assumes a long range polarizability constant28 α =
3.49 a3

0 for F, a dispersion term and an arbitrary energy
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FIG. 1. The ab initio potential energy curves of the three
electronic states in reaction (2). lower inset: The content of
the rectangle in the main plot, where potential barrier heights
are indicated. upper inset: The transient dipole moment
of the electronic transition in reaction channel (2a) and the
permanent dipole moments of (2b) and (2c).

offset in order to make the energy in the dissociation
limit zero. To keep the relative difference between the
potentials, the a3Π and X1Σ potentials reused the energy

offset ∆E11Π and a term −c8/r8 was added.

As no assumptions could be made about the behaviour
of the DMCs between 0 and 1.5 a0, the extrapolation to-
ward zero was the straight line connecting the first two
data points. This should be safe (cf. Fig. 2) as the
classical turning points for potentials X1Σ+ and a3Π at
E = 1 eV are located at rf = 1.63 and 1.78 a0 respec-
tively, and at rf = 1.66 a0 for 11Π at E = 10 eV. Those
energies are roughly the maximum relevant collision en-
ergies for each molecular state (see Sec. IV). Toward in-
finity the 11Π→ X1Σ transition DMC was extrapolated
with the function Ae−αr and the permanent DMCs with
−rmF/(mC+ +mF)+Ae−αr in a.u., where the first term
comes from Eq. (20).

Spin-orbit coupling was ignored as well as the lead-
ing induction term α/r2 in the permanent dipoles, the
leading Λ-dependent charge–quadrupole terms ∼1/r3 in
the potential energy curves, and higher order multipole
electrostatic and polarization terms30,31 (see Sect. V).

A cubic spline with the endpoint derivatives acquired
from the extrapolation was used for interpolation.

IV. RESULTS

Here we present the numerical results for the cross
section and the rate constant for the formation of CF+

through the reactions (2). The resulting cross sections
from (S)CL and PT are shown in the upper panel of
Fig. 2. Here it is apparent that the (S)CL cross sec-
tions resemble baselines of those obtained with PT. The
smaller the colliding species the more quantum mechan-
ical they are in nature, but, apart from the resonance
structure, C+ and F seem appropriately large for roughly
a 5% accuracy with the (S)CL methods.

We note that the dip in the a3Π cross section at
0.029 eV and the steep onset of the 11Π→ X1Σ cross sec-
tion at 0.45 eV correspond to the barrier heights of the
corresponding potentials in Fig. 1. The X1Σ potential
lacks a barrier and therefore has a smooth, monotonically
decreasing baseline. The PT and (S)CL+BW cross sec-
tions for transitions on a3Π are shown in the lower panel
of Fig. 2. This is the reaction channel where these two
methods yield the greatest relative difference. Still, the
similarity between the cross sections produced by these
two methods supports the general approach taken in the
present study, i.e. computing the rate constant as the
sum (S)CL+BW.

The reaction rate constant is shown in the upper panel
of Fig. 3, where strictly (S)CL and strictly BW rate con-
stants are also included for the comparison of the direct
and the resonant contribution. The resonance mediated
rate constant dominates over the direct for T < 20 and
400 < T < 1100 K. This appears to be due to the low
energy resonances housed behind the 0.029 eV a3Π bar-
rier, and the ∼0.45 eV resonances housed in the 11Π up-
per well, respectively. At T ≈ 560 K the BW result
is nearly six times that of the (S)CL. The strictly rovi-
brational transitions of reaction channels (2b) and (2c)
dominate at low temperatures up to T ≈ 400 K with a
combined rate constant k ≈ 10−21 cm3s−1. For increas-
ing temperatures the electronic transition of channel (2a)
rapidly dominates with k peaking below 10−16 cm3s−1

at T ≈ 30,000 K. This is qualitatively similar to other
systems like CO with a barrier on the upper state poten-
tial that suppresses the low energy cross section; see e.g.
Ref. 32.

The rate constant was fitted to the Arrhenius–Kooij
formula

k(T ) = A (T/300)
B
e−C/T (28)

in five intervals to adhere to the KIDA33 database. The
fit is very close to the total rate constant in the upper
panel of Fig. 3. The difference in percent can be seen in
the lower panel. The fit parameters are listed in Table II.



Radiative Association of CF+ 6

−12

−10

−8

−6

−4

E [eV]

log10 σ(E) [a2
0 ]

−11

−9

0.0001 0.001 0.01 0.1 1 100.029 0.45

11Π→ X1Σ
a3Π

X1Σ
(S)CL

a3Π
CL+
BW

}
CL

FIG. 2. upper panel: Cross sections for reactions (2) from
PT in color and from (S)CL in black. lower panel: Com-
parison of cross sections from CL+BW and PT approaches
for transitions on a3Π.
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FIG. 3. upper panel: Rate constants for reactions (2) from
(S)CL+BW. The total sum is shown in black. For compari-
son, strictly (S)CL and strictly BW contributions to the total
rate constant are shown as dashed grey lines. lower panel:
The relative difference of the Arrhenius–Kooij fits and the
computed rate constant.

V. CONCLUSION AND DISCUSSION

The production of CF+ through radiative association
has been studied. Cross sections and rate constants have
been computed with both classical and quantum me-
chanical methods. The previously published10 classical
(CL) theory has been modified to account for permanent

TABLE II. Arrhenius–Kooij fit parameters for Eq. (28)

T range [K] A [1e−17] B C
10→ 305 0.000149002 0.063154 −6.06328
305→ 500 1.47468e−13 20.4233 −6237.85
500→ 1700 0.571101 0.90067 3286.36
1700→ 19100 3.70502 0.174208 4372.76
19100→ 50000 683.555 −0.839364 23804.8

dipoles of unequally charged reactants. The formula ap-
pears to work as well as the corresponding formula for
radiative association of equally charged diatoms.

The cross section and rate constant for the radiative
association of CF+ was computed. According to Ref. 2
CF+ is produced in the Orion Bar by the reaction se-
quence

F + H2 → HF + H (29a)

C+ + HF→ CF+ + H (29b)

where the rate constants of both reactions (29a)
and (29b) are orders of magnitude larger3 than our cal-
culated rate constants for reactions (2). The radiative
association of CF+ might however be of importance in
environments where H2 is much less abundant than C+,
perhaps in metal rich ejecta of supernovae, similar to
what has been concluded for the production of CO34,35.

As indicated in Sect. III there is room for improve-
ment of the accuracy of the rate constant in the low-
temperature regime by taking into account spin-orbit
coupling29 and higher order asymptotic behaviors of the
potential energy curves and dipole moments30. We have
done some tests of including electric multipole and po-
larizabilitiy interactions (other than α/2r2). Our results
for high temperatures (and energies) corroborate the re-
sults presented here, suggesting, as expected, that in this
regime the results are insensitive to minor errors in the
potential while at low temperatures the rate constant
was off by up to a factor five. However, as we neglect
spin-orbit coupling there is an increased uncertainty in
the results below, say, ∼600 K, which is the equivalent
temperature of the spin-orbit splitting energy ∼0.05 eV
of the F atom.
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