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Diffeomorphic Density Matching by Optimal Information Transport∗
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Abstract. We address the following problem: given two smooth densities on a manifold, find an optimal
diffeomorphism that transforms one density into the other. Our framework builds on connections
between the Fisher–Rao information metric on the space of probability densities and right-invariant
metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport,
and modifications thereof, allow us to construct numerical algorithms for density matching. The
algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic
registration. Our methods have applications in medical image registration, texture mapping, image
morphing, nonuniform random sampling, and mesh adaptivity. Some of these applications are
illustrated in examples.
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1. Introduction. In this paper we study the problem of finding diffeomorphic (bijective
and smooth) transformations between two densities (volume forms) on an n–manifold M
equipped with a Riemannian metric g and volume form vol. This has applications in many im-
age analysis problems and is an extension of the classical image registration problem. Specific
applications of density matching include medical image registration [17, 37, 39, 16], texture
mapping in computer graphics [10, 41], image morphing techniques [42, 33], random sampling
in Bayesian inference [29, 34], and mesh adaptivity in computational methods for PDEs [9].
A more extensive list of applications and algorithms is given in [32].

The difference between classical image registration (cf. [40]) and density matching is the
way transformations act. In image registration, transformations act on positive scalar func-
tions (images) by composition from the right. In density matching, transformations act by
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pullback of volume forms: if the density is represented by a function I : M → R
+, the action

is given by

(1a) (ϕ, I) �→ |Dϕ|I ◦ ϕ,

where ϕ : M →M is the transformation and |Dϕ| is its Jacobian determinant.
When studying geometric aspects of density matching, it is convenient to use the frame-

work of exterior calculus of differential forms. A density is then thought of as a volume form
μ = Ivol, and the action (1a) is given by pullback

(1b) (ϕ, μ) �→ ϕ∗μ = (|Dϕ|I ◦ ϕ)vol.

Notice that the function I is the Radon–Nikodym derivative of μ with respect to vol. For
convenience, we use both the function and the exterior calculus point of view throughout the
paper; the relation between functions and volume forms is always understood to be μ = Ivol.
Pullback (1) is a right action. Sometimes, we shall instead use the corresponding left action,
given by pushforward

ϕ∗μ := (ϕ−1)∗μ.

Let Diff(M) and Dens(M), respectively, denote diffeomorphisms and normalized, smooth
densities on M . Both Diff(M) and Dens(M) are infinite-dimensional manifolds (see section 2
for details). Let G denote a Riemannian metric on Diff(M) with corresponding distance
square function

d2(ϕ,ψ) := inf
γ(0)=ϕ,γ(1)=ψ

∫ 1

0
Gγ(t)

(
γ̇(t), γ̇(t)

)
dt.

Likewise, let Ḡ denote a Riemannian metric on Dens(M) with distance square function d̄2.
We are interested in special cases of the following two, generally formulated density matching
problems.

Problem 1 (exact density matching). Given μ0, μ1 ∈ Dens(M), find ϕ ∈ Diff(M) minimiz-
ing d2(id, ϕ) under the constraint

μ1 = ϕ∗μ0.

Equivalently, using intensity functions I0 and I1, the constraint is

I1 = |Dϕ−1|(I0 ◦ ϕ−1).

Problem 2 (inexact density matching). Given μ0, μ1 ∈ Dens(M), find ϕ ∈ Diff(M) mini-
mizing

(2) E(ϕ) := σd2(id, ϕ) + d̄2(ϕ∗μ0, μ1), σ > 0 .

The first term in (2) is a regularity measure, the second term is a similarity measure. The
parameter σ is balancing the two criteria.

There is no intrinsic choice of G and Ḡ; they are free to be specified and evaluated in the
specific application. The following choices are, however, typically considered.
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(i) For Problem 1, the standard choice is distance-squared optimal mass transport (OMT),
corresponding to the noninvariant L2 metric

Gϕ(U, V ) =

∫
M

g(U, V )μ0, U, V ∈ TϕDiff(M) ,

=

∫
M

g(u, v)ϕ∗μ0, u := U ◦ ϕ−1, v := V ◦ ϕ−1 .

This choice of metric induces the Wasserstein distance on Dens(M) [31, 38].
(ii) For Problem 2, a common choice [35, 20] is the right-invariant Hk

α metric

Gϕ(U, V ) =

∫
M

g
(
(1− αΔ)ku, v

)
vol ,

where Δ is the Laplace–de Rham operator lifted to vector fields (see subsection 2.1
for details), and, as a similarity measure, the L2 norm

d̄2(μ0, μ1) = ‖μ0 − μ1‖2L2 :=

∫
M
|I0 − I1|2vol .

This setting is similar to large deformation diffeomorphic metric matching (LDDMM)
[21, 26, 35], but with the density action (1) instead of the composition action.

Both choices (i) and (ii) are computationally challenging, as they require the numerical
solution of nonlinear partial differential equations (the Monge–Ampere and EPDiff equations,
respectively). See [32] and [40] for efficient and stable implementations.

In this paper we consider metrics for Problems 1 and 2 that reduce the computational
challenge to solving Poisson equations, allowing significantly faster, semiexplicit algorithms.
Our approach is based on connections between information geometry and geodesic equations
on diffeomorphism groups (cf. topological hydrodynamics [2, 23]).

For the similarity measure on the space of densitites Dens(M), we consider the infinite-
dimensional version of the Fisher–Rao metric (also called Fisher’s information metric), pre-
dominant in information geometry. For a pair of tangent vectors α = a vol and β = b vol at
the base point μ = Ivol, it is given by

(3) ḠFμ (α, β) =
1

4

∫
M

α

μ

β

μ
μ =

1

4

∫
M

ab

I
vol.

It can be interpreted as the Hessian of relative entropy, or information divergence. This metric
is a canonical metric on the space of densities, as it can be defined without using any additional
structure of the base manifold M .

On the group of diffeomorphisms we focus on the information metric introduced in [27]:

(4) GIϕ(U, V ) =

∫
M

g(−Δu, v)vol + λ
k∑
i=1

∫
M

g(u, ξi)vol

∫
M

g(v, ξi)vol,

where λ > 0, Δ is the Laplace–de Rham operator lifted to vector fields, and ξ1, . . . , ξk is an
orthonormal basis of the harmonic vector fields on M . Because of the Hodge decomposition
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theorem, GI is independent of the choice of orthonormal basis ξ1, . . . , ξk for the harmonic
vector fields. Note that the information metric depends on the finite-dimensional background
metric on the manifold M .

What makes the information metric special? Building on work by Khesin et al. [22], Modin
[27] showed that GI induces the Fisher–Rao metric on the quotient space Diffvol(M)\Diff(M)
of right cosets, identifiable with Dens(M). Here, Diffvol(M) ⊂ Diff(M) denotes volume-
preserving diffeomorphisms with respect to vol. Generically, all right-invariant metrics descend
to left cosets. The information metric, however, not only descends to left cosets, but also to
right cosets. The right-invariance is thereby not exhausted when taking the quotient to right
cosets, which implies that the induced metric on the right cosets remains right invariant. It
is this property that makes the geometry associated with the information metric remarkable,
and more intricate than for other right-invariant metrics.

The geometric setting studied previously in [22, 27] has a limitation in that the back-
ground metric on the manifold has to be compatible with the densities being matched. For
many applications in image analysis, this limitation is severe as the background metric reflects
properties of the ambient space and cannot be chosen freely. This is the motivation and start-
ing point for the theory described in section 5. The aim is to construct a geometric framework,
that still allows for efficient numerical computations, while, at the same time, allowing the
freedom to prescribe a background metric that is independent of the densities being matched.
Towards this goal we extend the theory of [22, 27] to the case of a noncompatible background
metric. To retain efficiency of the algorithms we slightly modify the optimality condition. The
computational complexity of the resulting algorithms is significantly lower than those based
on OMT or LDDMM. Numerical examples are given in section 6.

Contributions of the article. The emphasis of the paper is on new mathematical ideas
for density matching rather than highly developed applications. The examples in sections
4 and 6 are therefore kept simple and illustrative. Our first contribution, in section 3, is
the reduction of the infinite-dimensional geometry setting in [22, 27] to efficient numerical
algorithms. Our second contribution, in section 5, is a new infinite-dimensional geometric
framework that overcomes the requirement of a compatible background metric. Furthermore,
in section 5 we also reduce this new geometric setting to efficient numerical algorithms.

2. Geometric foundation.

2.1. Notation. Throughout the paper, the word “metric” always means “Riemannian
metric” and “distance” always means “Riemannian distance.”

LetM be an n–dimensional orientable manifold with metric g. Oriented local coordinates
are denoted x1, . . . , xn. We refer to g as the background metric, to distinguish it from metrics
on infinite-dimensional spaces. The background metric g induces a volume form onM , denoted
volg. The expression for volg is

volg =
√
|g| dx1 ∧ · · · ∧ dxn,

where |g| denotes the determinant of the metric tensor. When the background metric g is
clear from the context, we write vol instead of volg. The total volume of M with respect to
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vol, for now assumed to be finite, is denoted

vol(M) :=

∫
M

vol.

The space of smooth, real valued functions onM is denoted C∞(M). The space of smooth
vector fields on M is given by

X(M) =

{
ui

∂

∂xi
; ui ∈ C∞(M)

}
.

If u, v ∈ X(M), we sometimes use the notation u · v instead of g(u, v). The space of smooth
1–forms (covectors) and n–forms on M are given, respectively, by

Ω1(M) = {ωi dxi; ωi ∈ C∞(M)}

and
Ωn(M) = {f dx1 ∧ · · · ∧ dxn; f ∈ C∞(M)}.

The background metric g induces the musical isomorphism � : X(M)→ Ω1(M) by

u� := uigij dx
j.

Its inverse is denoted 
 and given by

ω� := ωig
ij ∂

∂xj
,

where gij are the elements of the inverse metric tensor.
An n–form can (noncanonically) be identified with a smooth function on M : if

α = f dx1 ∧ · · · ∧ dxn ∈ Ωn(M)

and μ = ρdx1 ∧ · · · ∧ dxn is a volume form (ρ is strictly positive), then α
μ is defined by

α

μ
:=

f

ρ
.

Notice that this notation is used in the definition of the Fisher–Rao metric (3).
The infinitesimal action of a vector field u on a volume form μ is given by the Lie derivative

Luμ = divμ(u)μ ,

where divμ(u) is the divergence of u with respect to μ, given by

divμ(u) =
1√|g|

∂

∂xi

√
|g|ui.

When μ = vol, we write div(u) instead of divvol(u).
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The gradient of a function f on M with respect to g is defined by

gradg f = (df)� =
∂f

∂xi
gij

∂

∂xj
,

where d is the natural differential. Again, if g is clear from the context we write grad f .
Recall the Laplace operator Δ, defined by Δf = div grad f . We also use Δ to denote the

lifted Laplace–de Rham operator on the space of vector fields. To define the Laplace–de Rham
operator we need the codifferential operator δ. It is the generalization of the divergence
operator and defined as the adjoint of the differential operator, i.e., 〈ω,dv〉L2 = 〈δω, v〉L2

(assuming M has no boundary) and depends on the background metric g. The Laplace–
de Rham operator is then defined as Δu = −(δdu� + dδu�)�. We sometimes denote the
Laplacian by Δg when the dependence on g needs to be stressed. If (M, g) is flat, then Δg on
vector fields is the standard Laplacian on functions applied elementwise. In R

3 the Laplace–
de Rham operator on the space of vector fields is defined using the notion of curl (unlike grad
and div, the operator curl does not generalize to arbitrary Riemannian manifolds). Indeed,
the Laplace–de Rham operator on R

3 is given by

Δu = curl curlu− grad div u.

The formula is valid also in the case when R
3 is equipped with a non-Euclidean metric (in

which case curlu = (�du�)�, where � is the Hodge star).
The space of harmonic vector fields is given by

H(M) = {ξ ∈ X(M);Δgξ = 0}.
If M is a closed manifold (compact and without boundary), then H(M) is finite dimensional.
IfM = T

n, then H(Tn) consists of the vector fields generating translations. By mutual orthog-
onality between the subspaces in the Hodge decomposition, it follows that the information
metric GI in (4) is independent of the choice of orthonormal basis ξ1, . . . , ξk for H(M). For
more details on the Hodge decomposition see, e.g., [27, section 1.1] for manifolds without
boundary, or [24, section 3] for manifolds with boundary.

Throughout the paper we use both left and right quotient sets: if G is a group and H ⊂ G
a subgroup, then by right cosets we mean the quotient set

H\G := {H · g; g ∈ G},
and by left cosets we mean the quotient set

G/H := {g ·H; g ∈ G}.
2.2. Space of densities and the Fisher–Rao metric. The space of densities Dens(M)

consists of smooth volume forms with total volume vol(M):

Dens(M) =

{
μ ∈ Ωn(M);

∫
M
μ = vol(M), μ > 0

}
.

We like to think of Dens(M) as an infinite-dimensional manifold. To make this rigorous, first
observe that if M is compact, then the space of top forms Ωn(M) is a Fréchet space with the
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topology induced by the Sobolev seminorms (see Hamilton [18, Example 1.1.5] for details).
Let c ∈ R. Then the set Ωnc (M) = {α ∈ Ωn(M);

∫
M α = c} is a closed, affine subspace of

Ωn(M), and Dens(M) is an open subset of Ωnvol(M)(M). Therefore, Dens(M) is a Fréchet

manifold (cf. [18, Chapter 4]). The closure of Dens(M) is a Fréchet manifold with boundary,
given by

Dens(M) = {α ∈ Ωnvol(M)(M);α ≥ 0}.
Since Dens(M) is an open subset of a closed, affine subspace of a vector space, its tangent
space at μ is given by

TμDens(M) = Ωn0 (M).

Notice that TμDens(M) is independent of μ, so the tangent bundle is trivial TDens(M) �
Dens(M)× Ωn0 (M).

As an alternative to the Fréchet topology discussed here, one might work with the com-
pletion of Dens(M) in the Sobolev Hs topology for a differentiability index s. This space,
denoted Denss(M), then becomes a Banach manifold (see [27] for details). The results in this
paper are valid in both the Fréchet and the Banach category.

In the case when M is not compact, an infinite-dimensional manifold structure can still
be given, as discussed in subsection 2.6.

Recall the Fisher–Rao metric ḠF on Dens(M) given by (3). This metric is weak in
the Fréchet (or Banach) topology. Nevertheless, its geodesics are well-posed. Indeed, the
astonishing property of the Fisher–Rao metric is that its geodesics are explicit. Following [14],
we introduce the W–map

(5) W : Dens(M)→ C∞(M), μ �→
√

μ

vol
.

The infinite-dimensional sphere S∞(M) = {f ∈ C∞(M);
∫
M f2 vol = vol(M)} is a submani-

fold of C∞(M) and the image of W is an open subset of S∞(M) [22, Theorem 3.2]. Indeed,
if μ ∈ Dens(M), then

vol(M) =

∫
M
μ =

∫
M

μ

vol
vol =

∫
M
W (μ)2vol =: ‖W (μ)‖2.

Let α ∈ TμDens(M) and let p := TμW · α = α
2vol

√
vol
μ . Then

‖p‖2 =
∫
M

1

4

( α

vol

)2 vol

μ
vol =

1

4

∫
M

(
α

μ

)2

μ = ḠFμ (α,α).

We have thus showed that W is an isometry between Dens(M) with the Fisher–Rao metric
and an open subset of S∞(M). Since the geodesics of the infinite-dimensional sphere S∞(M)
are explicitly known, we obtain the geodesics on Dens(M). Indeed, the Fisher–Rao geodesic
between μ0 and μ1 is given by

(6) [0, 1] 
 t �→
(
sin ((1− t)θ)

sin θ
f0 +

sin (tθ)

sin θ
f1

)2

vol, θ = arccos

(〈f0, f1〉L2

vol(M)

)
,

where f0 =W (μ0) and f1 =W (μ1).
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A direct consequence of formula (6) is an explicit formula for the induced geodesic distance.
Indeed, if d̄F denotes the distance function of the Fisher–Rao metric, then

(7) d̄F (μ0, μ1) =
√

vol(M) arccos

(
1

vol(M)

∫
M

√
μ0
vol

μ1
vol

vol

)
.

As already mentioned, this formula for d̄F (μ0, μ1) is the key ingredient for our density matching
algorithms. It is a spherical version of the Hellinger distance [22]. In Appendix B we compare
the geodesic distance of the Fisher–Rao metric to other commonly used distance functions on
the space of probability measures.

Remark 2.1. Recall that the Fisher–Rao metric ḠF on Dens(M) is canonical: it does not
depend on the choice of background metric. For the W–map in (5), this implies that vol can
be any volume form, as long as μ is absolutely continuous with respect to it. In particular, as
in Example 3.7 below, it does not have to be the volume form associated with the background
metric.

Remark 2.2. In information geometry [1], a finite-dimensional submanifold Γ ⊂ Dens(M)
is called a statistical manifold. The Fisher–Rao metric on Dens(M) induces a metric on Γ; in
local coordinates θ = (θ1, . . . , θk) ∈ R

k it is given by

GΓ
ij(θ) =

1

4

∫
M

∂ ln p(x, θ)

∂θi

∂ ln p(x, θ)

∂θj
p(x, θ)vol(x),

=
1

4
E

[
∂ ln p(x, θ)

∂θi

∂ ln p(x, θ)

∂θj

]

=

∫
M

∂
√
p(x, θ)

∂θi

∂
√
p(x, θ)

∂θj
vol(x),

where θ �→ p(·, θ)vol ∈ Dens(M) is the local coordinate chart. The tensor field GΓ
ij(θ) is the

classical information matrix of Fisher [13].

2.3. Group of diffeomorphisms and the information metric. The set of diffeomorphisms
on M is denoted Diff(M); it consists of smooth bijective mappings M → M with smooth
inverses. This set has a natural group structure, by composition of maps. If M is compact,
then Diff(M) is a Fréchet Lie group [18, section I.4.6], i.e., a Fréchet manifold where the group
operations are smooth mappings. The Lie algebra of Diff(M) is given by the space X(M) of
smooth vector fields (tangential if M has a boundary). There is a natural choice of an L2

inner product on X(M), given by

(8) 〈u, v〉L2 :=

∫
M

g(u, v)vol.

The tangent space TϕDiff(M) consists of maps U : M → TM with U ◦ ϕ−1 ∈ X(M).
As with the space of densities, one can also chose to work in the Sobolev completion

Diffs(M). For large enough s, the set Diffs(M) is a Banach manifold. It is, however, not
a Banach Lie group, because left composition is not smooth, only continuous—an issue to
be carefully addressed when deriving rigorous existence results for geodesics equations on
Diffs(M) (see, for example, [12, 27]). The case of noncompactM is discussed in subsection 2.6.
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Recall that we are interested in the information metric GI on Diff(M), defined in (4).
Again, this metric is weak in the Fréchet (or Banach) topology. Nevertheless, the geodesics
are well-posed: local existence and uniqueness of the geodesic equation on Diffs(M) with the
Banach topology is given in [27, section 3]; the result is extended to Diff(M) with the Fréchet
topology by standard techniques as in [12].

The metric GI has the property of right invariance: if U, V ∈ TϕDiff(M) then

GIϕ(U, V ) = GIϕ◦ψ(U ◦ ψ, V ◦ ψ) ∀ψ ∈ Diff(M).

This property implies that the geodesic equation can be stated in terms of the reduced variable
u = ϕ̇ ◦ ϕ−1 ∈ X(M), the so called EPDiff equation [19] given by

d

dt
m+ Lum+m div u = 0, m� = Au,

where A : X(M)→ X(M) is the inertia operator associated with the inner product GIid(·, ·) on
X(M). Explicitly,

(9) Au = −Δu+ λ

k∑
i=1

ξi

∫
M

g(u, ξi)vol,

where ξ1, . . . , ξk is a basis for the space of harmonic vector fields H(M), orthogonal with
respect to the L2 inner product (8). Since GI is a nondegenerate metric, the operator A is
invertible. Let us now compute its inverse.

First, it follows from the Hodge decomposition of 1–forms that the space of vector fields
admits the L2-orthogonal decomposition X(M) = E(M) ⊕ H(M), where E(M) is the image
of the Laplace–de Rham operator Δ: X(M) → X(M). The inertia operator is diagonal with
respect to this decomposition: if u = w + ξ are the components, then

A(w + ξ) = Δw + λξ, Δw ∈ E(M), λξ ∈ H(M).

Since Δ is an automorphism on E(M), the inverse Δ−1 : E(M)→ E(M) is well-defined, so

A−1(w + ξ) = Δ−1w +
1

λ
ξ.

To compute the components w and ξ of u ∈ X(M), it suffices to first compute

ξ =

k∑
i=1

〈u, ξi〉L2ξi

and then set w = u − ξ. We have thus computed the inverse A−1 : X(M) → X(M). In the
case M = T

n one can use FFT-based numerical algorithms for computing A−1u, as we do in
section 6.

2.4. Moser’s principal bundle structure. Recall from section 1 that the diffeomorphism
group Diff(M) acts from the right on the space of densities Dens(M) via (1). This action is
not free: the isotropy subgroup Diffμ(M) of μ ∈ Dens(M) (also called stabilizer of μ) consists
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of those diffeomorphisms that are volume preserving with respect to μ, given by

Diffμ(M) := {ϕ ∈ Diff(M);ϕ∗μ = μ}.
The action is, however, transitive, proved by Moser [30] for Diff(M) and Dens(M) and by
Ebin and Marsden [12] for Diffs(M) and Denss−1(M); for any pair of densities ν, μ there exists
a diffeomorphism ϕ such that ϕ∗ν = μ. If we fix a reference density μ ∈ Dens(M), we can
therefore identify Dens(M) with the quotient space of right cosets

[ϕ] := Diffμ(M) ◦ ϕ ∈ Diffμ(M)\Diff(M).

Indeed, if ψ ∈ [ϕ], then ψ∗μ = ϕ∗μ, so the map

Diffμ(M)\Diff(M) 
 [ϕ] �−→ ϕ∗μ ∈ Dens(M)

is well-defined. It is injective, by construction, and surjective, by Moser’s transitivity result.
The projection map

πμ : Diff(M) 
 ϕ �−→ ϕ∗μ ∈ Dens(M)

thereby provides a principal bundle structure

(10) Diffμ(M) � � �� Diff(M)
πµ
��

Dens(M) .

That is, the preimage π−1
μ (λ) of each λ ∈ Dens(M) is a fiber in Diff(M), and each fiber is

parameterized by the left action of Diffμ(M) on Diff(M); see Hamilton [18, section III.2.5]
for details. When μ = vol, we write π instead of πvol.

Remark 2.3. In subsection 2.2 we mapped Dens(M) to a subset of S∞(M) via the W -
mapping in (5). The reason for this map was the simple interpretation of the Fisher–Rao
metric in this representation (as the sphere metric). Through this map, Diff(M) also acts on
S∞(M). Indeed, for f ∈ S∞(M) and ϕ ∈ Diff(M) the action is given by

f � ϕ :=
√
|Dϕ|(f ◦ ϕ) .

As required, W (ϕ∗μ) =W (μ) � ϕ.

2.5. Riemannian submersions and descending metrics. In this section we show how
the information metric GI and the Fisher–Rao metric ḠF give a Riemannian structure to
the principal bundle (10). This Riemannian structure is the key to our density matching
algorithms in sections 3 and 5.

Moser’s result on transitivity implies that π : Diff(M) → Dens(M) is a submersion: it is
smooth and its derivative is surjective at every point. Following the work in [27, section 4],
we now show that π is, in fact, a Riemannian submersion with respect to ḠF and GI .

Let Vϕ ⊂ TϕDiff(M) denote the vertical distribution given by the tangent spaces of the
fibers of the principal bundle structure (10):

U ∈ Vϕ ⇐⇒ Tϕπ · U = 0.
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The horizontal distribution Hϕ ⊂ TϕDiff(M) with respect to the information metric GI is
given by

U ∈ Hϕ ⇐⇒ GIϕ(U, V ) = 0 ∀V ∈ Vϕ.
In other words, Hϕ is the orthogonal complement of Vϕ. The metric GIϕ descends to ḠF

through the principle bundle structure (10). That is

GIϕ(U, V ) = ḠFπµ(ϕ)(Tϕπμ · U, Tϕπμ · V ) ∀U, V ∈ Hϕ.
A remarkable property of descending metrics is that initially horizontal geodesics remain hor-
izontal: if ϕ(t) is a geodesic curve and ϕ̇(0) ∈ Hϕ(0), then ϕ̇(t) ∈ Hϕ(t) for all t. Furthermore,
if ϕ(t) ∈ Diff(M) is a horizontal geodesic curve, then μ(t) := π(ϕ(t)) is a geodesic curve on
Dens(M).

In summary, we have the following result.
Lemma 2.4 (see [27]). Under the identification Dens(M) � Diffvol(M)\Diff(M), the infor-

mation metric GI , given by (4), descends to the Fisher–Rao metric ḠF , given by (3), i.e.,
π : (Diff(M), GI )→ (Dens(M), ḠF ) is a Riemannian submersion. The horizontal distribution
is right invariant, given by

Hϕ = {U ∈ TϕDiff(M);U ◦ ϕ−1 = grad(f), f ∈ C∞(M)} .
Remark 2.5. In [4] it was shown that the Fisher–Rao metric is the unique metric on

Dens(M) that is invariant under the action of the diffeomorphism group. As a consequence,
any right-invariant metric on Diff(M) that descends to a metric on Dens(M) through the
principal bundle structure (10) descends to the Fisher–Rao metric.

Remark 2.6. The condition for a right-invariant metric to descend to right cosets is transver-
sal to the condition for a subgroup to be totally geodesic. See [28] for details.

2.6. Base manifold with infinite volume. In the setting so far we assumed that M is
compact and that vol(M) is finite. In some applications it is useful to drop this assumption
and consider noncompact manifolds with infinite volume, in particular M = R

n. By imposing
decay conditions on the set of densities and diffeomorphisms, the previously described theory
continues to hold, as now briefly explained. For a detailed exposition in the case of the
diffeomorphism group on R, see [3].

Let vol be the volume form of a noncompact Riemannian manifold M . We introduce
compactly supported densities, diffeomorphisms, and functions via

Densc(M) := {I vol ∈ Dens(M); {x; I(x) �= 1} has compact closure} ,
Diffc(M) := {ϕ ∈ Diff(M); {ϕ;ϕ(x) �= x} has compact closure} ,
C∞
c (M) := {f ∈ C∞(M); f has compact support} .

With these decay conditions, the theory described in subsections 2.2–2.5 for the compact case
extends to the noncompact, infinite volume case. In particular, Moser’s lemma is still valid.

Then the space of compactly supported densities is an open subset of a sphere with infinite
radius, thus a flat space. To see this, we slightly modify the W -mapping (5) to

W̃ : Dens(M)→ C∞
c (M), μ �→

√
μ

vol
− 1 .
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Using this mapping, the formula (6) for geodesics on Densc(M) simplifies to

[0, 1] 
 t �→ W̃−1
(
(1− t)W̃ (μ0) + tW̃ (μ1)

)

and the induced geodesic distance is given by the Hellinger distance.

3. Matching with compatible background metric. In this section we derive efficient
algorithms to solve Problems 1 and 2 with respect to the information metric (4) on Diff(M)
and the Fisher–Rao metric (3) on Dens(M) and a background metric g on M fulfilling the
compatibility constraints volg = μ0. This property is fulfilled in some applications of density
matching, for example, texture mapping, random sampling, and mesh adaptivity.

An integral component of our method is the ability to horizontally lift paths in Dens(M)
to the diffeomorphism group. Indeed, the selection of GI on Diff(M) and ḠF on Dens(M)
fulfils two central properties: (i) Fisher–Rao geodesics on Dens(M) are explicit [14] and (ii) the
metrics (4) and (3) are related via a principal bundle structure [27]. These are the properties
that allow us to construct fast, explicit algorithms.

3.1. Horizontal lifting of paths of densities. Given a path of densities μ(t) ∈ Dens(M)
we want to find a path of diffeomorphisms ϕ(t) that project onto μ(t) with respect to Moser’s
principal bundle (10), i.e.,

(11) πμ(0)(ϕ(t)) = ϕ(t)∗μ(0) = μ(t).

Such a path is not unique, since we can compose any solution ϕ from the left with any
diffeomorphisms ψ ∈ Diffμ(0)(M). To address the nonuniqueness, we therefore consider paths
of diffeomorphisms fulfilling (11) while of minimal length with respect to the information
metric GI , given by (4). Mathematically, this problem is formulated as follows.

Problem 3 (horizontal lifting). Given a path of densities μ ∈ C1([0, 1],Dens(M)), find a
path of diffeomorphisms ϕ ∈ C1([0, 1],Diff(M)) fulfilling

ϕ(0) = id ,

ϕ(t)∗μ(0) = μ(t) ,(12)

while minimizing ∫ 1

0
GIϕ(t)(ϕ̇(t), ϕ̇(t)) dt.

In general there is no easy way to solve this problem. If, however, the background met-
ric fulfils the following compatibility condition, then Problem 3 reduces to solving Poisson
equations.

Definition 3.1 (compatible background metric). Let μ ∈ Dens(M). The background metric
g on M is called compatible with μ if volg = μ.

The following result explains the advantage of having a background metric compatible
with μ(0).

Lemma 3.2. Let the background metric g on M be compatible with μ(0). Then there is a
unique path of diffeomorphisms solving Problem 3. This path is horizontal with respect to the
information metric (4).
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Proof. To prove this statement we differentiate (12) for μ(t):

(13) μ̇(t) = ∂t(ϕ(t)
∗μ(0)) = ϕ(t)∗Lv(t)μ(0).

Here v(t) ∈ X(M) denotes the right trivialized derivative of ϕ, i.e., ϕ̇ ◦ ϕ−1 = v. Using the
compatibility condition, we get

(14) μ̇(t) = ϕ(t)∗Lv(t)volg = div(v(t)) ◦ ϕ(t)μ(t).

By the Hodge–Helmholz decomposition for vector fields, we can write v as

v = grad f + w

for some function f and a divergence-free part w (notice that w also contains the harmonic
part). Equation (13) only determines the divergence part of the vector field v, which allows
us to choose w freely. Since the Hodge–Helmholz decomposition is orthogonal with respect
to the information metric GI (see [27, section 2]), the length of ϕ is minimal for w = 0. This
is the horizontality condition, described in subsection 2.5. That the solution is unique follows
from uniqueness of the information factorization of diffeomorphisms; see [27, section 5].

From Lemma 3.2 we obtain an equation for the solution of the lifting problem.
Theorem 3.3. Under the same conditions as in Lemma 3.2, the unique solution of Prob-

lem 3 is obtained by solving the Poisson equation

Δf(t) =
μ̇(t)

μ(t)
◦ ϕ(t)−1,

v(t) = grad(f(t)),

ϕ̇(t) = v(t) ◦ ϕ(t), ϕ(0) = id .

(15)

Proof. The horizontal bundle is generated by gradient vector fields v = grad f for some
function f . Thus,

div(v(t)) = div(grad(f)) = Δf .

From (14) we then obtain (15).
Remark 3.4. Because the solutions to Problem 3 are horizontal, the part of the metric GI

penalizing the divergence-free part does not affect the solutions. In particular, the parameter λ
in (4) does not affect the solution.

Remark 3.5. We can use the equivariance of the Laplacian and the gradient to rewrite the
differential equation (15) as

Δϕ(t)∗g(f(t) ◦ ϕ(t)) =
μ̇(t)

μ(t)
,

ϕ(t)∗v(t) = gradϕ∗g(f(t) ◦ ϕ(t)),
ϕ̇(t) = v(t) ◦ ϕ(t), ϕ(0) = id .

If we introduce h(t) := f(t) ◦ ϕ(t), w(t) := ϕ(t)∗v(t), and g(t) := ϕ(t)∗g the above equations
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become

Δg(t)(h(t)) =
μ̇(t)

μ(t)
,

w(t)) = gradg(t)(h(t)),

ϕ̇(t) = Tidϕ
−1 · w(t), ϕ(0) = id .

The main difference with (15) is the time-dependence of the Laplacian in Poisson’s equation.
A numerical algorithm for solving Problem 3 is now given as follows.
Algorithm 1. Assume we have a numerical way to represent functions, vector fields, and

diffeomorphisms on M , and numerical methods for (i) composing functions and vector fields
with diffeomorphisms, (ii) computing the gradient of functions, and (iii) computing the inverse
of the Laplace operator Δ. Given a C1-path of densities [0, 1] 
 t �→ μ(t) with μ(0) = vol,
a numerical algorithm for computing discrete lifted paths {ϕk}Nk=0 and {ϕ−1

k }Nk=0 is given as
follows:

1. Choose a step size ε = 1/N for some positive integer N . Initialize t0 = 0, ϕ0 = id,
and ϕ−1

0 = id. Set k ← 0.

2. Compute Ik =
μ̇(tk)
μ(tk)

◦ ϕ−1
k and solve the Poisson equation

Δfk = Ik.

3. Compute the gradient vector field vk = grad fk.
4. Construct approximations ψk to exp(εvk) and ψ

−1
k to exp(−εvk), for example,

ψk = id + εvk, ψ−1
k = id− εvk.

5. Update the diffeomorphisms

ϕk+1 = ψk ◦ ϕk, ϕ−1
k+1 = ϕ−1

k ◦ ψ−1
k .

6. Set k ← k + 1 and continue from step 2 unless k = N .

3.2. Exact compatible density matching (optimal information transport (OIT)). The
special case of Problem 1 with GI and ḠF for infinite-dimensional metrics and a compatible
background metric gives OIT.

Problem 4 (OIT). Given μ1 ∈ Dens(M), find ϕ ∈ Diff(M) minimizing dI(id, ϕ) under the
constraint

(16) μ1 = ϕ∗vol.

Equivalently, using the density function I1 for μ1, the constraint is

I1 = |Dϕ−1|.
To better conform to the horizontal lifting setup in subsection 3.1, which uses the pullback

rather than pushforward action, we notice that if ϕ is a solution to Problem 4, then ϕ−1 is a
solution to the same problem but with pullback in (16) instead of pushforward. This follows
from right invariance of GI , as dI(id, ϕ) = dI(id, ϕ

−1).
The following result is a direct consequence of the information factorization of diffeomor-

phisms [27, Theorem 5.6].
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Theorem 3.6. Problem 4 has a unique solution. Its inverse is given by the endpoint of the
solution to the lifting equations (15) for the path μ(t) given by the Fisher–Rao geodesic (6)
with μ0 = vol.

It follows that a numerical algorithm for Problem 4 is given by Algorithm 1 with μ(t) as
in Theorem 3.6. This algorithm is demonstrated in section 4 below. Before that, we solve the
lifting equations explicitly in the one-dimensional case.

Example 3.7. We want to explicitly solve Problem 4 in dimension one. Let μ0 = I0 dx,
μ1 = I1 dx be two arbitrary densities onM = S1 � R/Z. SinceM is one dimensional we could
solve this problem directly, using that, up to translations, the diffeomorphism ϕ is determined
by the matching constraint only. We shall, however, refrain from using this fact and instead
solve the lifting equations (15).

The standard metric on S1 is not compatible with μ0 unless f0 ≡ 1. Nevertheless, it is
straightforward to construct a compatible background metric: choose g = I20 dx⊗ dx. Then
volg = μ0 as required. In contrast to the higher-dimensional case, this choice of a compatible
background metric is uniquely determined by I0; two different ways to construct compatible
metrics in the higher-dimensional case are described in Appendix A.

Using Theorem 3.6 we are now able to obtain the solution. To simplify the notation, let
f0 =

√
I0 and f1 =

√
I1, corresponding to the W–map W (μ) =

√
μ/dx. First we recall the

formula (6) for the Fisher–Rao geodesics on Dens(S1), i.e.,

μ(t) =

(
sin ((1− t)θ)

sin θ
f0 +

sin (tθ)

sin θ
f1

)2

dx ,

where the angle θ is given by

θ = arccos

(
1

2π

∫ 2π

0
f0f1 dx

)
.

To calculate the lifting equations we need a formula for the gradient and Laplacian of the
metric g. For any function f we have

gradg(f) =
1

I0
∂xf, Δgf =

1

f20
∂x(f0∂xf).

These formulas are derived in a more general setting in subsection A.1. To simplify the
notation we let

h(t, x) =
μ̇(t)

μ(t)
=

2θ (cos(θ − tθ)f0(x)− cos(tθ)f1(x))

f1(x) sin(tθ) + sin(θ − tθ)f0(x) .

The lifting equations (15) now become

ϕt ◦ ϕ−1 =
∂xf

f0
, ϕ(0) = id,

1

f20
∂x(f0∂xf) = h ◦ ϕ−1 .

The solution to this PDE is given by

ϕ(t, x) = ψ(t, ψ(0, x)−1) with ψ(t, x) =

∫ x

0

μ(t)

dx
dy ,

where μ(t)
dx is the Radon–Nikodym derivative of μ(t) with respect to dx. Evaluating at t = 1
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we obtain

ϕ(1, x) =

(∫ x

0
f1 dy

)
◦
(∫ x

0
f0 dy

)−1

.

3.3. Inexact compatible density matching. We are now interested in the special case
of Problem 2 with GI and ḠF for infinite-dimensional metrics and a compatible background
metric.

Problem 5 (inexact, compatible density matching). Given μ1 ∈ Dens(M), find ϕ ∈ Diff(M)
minimizing

E(ϕ) = σd2I(id, ϕ) + d̄2F (ϕ∗vol, μ1),

where σ > 0 is a fixed parameter.
As in Problem 4, ϕ is a minimizer of E(ϕ) if and only if φ = ϕ−1 is a minimizer of

(17) Ẽ(φ) = σd2I(id, φ) + d̄2F (φ
∗vol, μ1).

Our approach for Problem 5 is to minimize (17) and then obtain the solution by taking the
inverse. From Lemma 2.4, i.e., that GI descends to ḠF , it follows that the lifting equations
can be used also to obtain the solution to Problem 5.

Theorem 3.8. Problem 5 has a unique solution, obtained as follows. Let ϕ(t) be the hori-
zontally lifted geodesic such that ϕ(1)−1 solves Problem 4 for the same μ1. Let s = 1

1+σ . Then

the solution is given by ϕ(s)−1.
Proof. A minimizer φ of (17) must be connected to the identity by a horizontal geodesic

(otherwise it would be possible to find another diffeomorphism with a strictly smaller value of
Ẽ, using [27, Theorem 5.6]). Therefore, minimizing Ẽ is equivalent to minimizing the func-
tional ẽ(μ) := σd̄2F (vol, μ)+ d̄

2
F (μ, μ1) on Dens(M). First, notice that ẽ is convex on Dens(M),

so a unique minimizer exists. Denote it ν. From the spherical geometry of (Dens(M), ḠF ), ex-
plained in subsection 2.3, it is clear that ν must belong to the geodesic curve μ(t) between vol
and μ1. Without loss of generality, we may assume that the distance between vol and μ1 is 1.
Using arc length parameterization μ(s), we then get ẽ(μ(s)) = σs2 + (1 − s)2. Minimization
over s now proves the result.

From Theorem 3.8 it follows that a numerical algorithm for Problem 5 is obtained through
Algorithm 1 by solving the lifting equations until reaching t = 1/(σ + 1) and then taking the
inverse.

4. Examples of matching with compatible metric. In this section we give some examples
of matching with a compatible metric, using Algorithm 1.

4.1. Random sampling from nonuniform probability distributions. In R, a classical algo-
rithm for generating random samples from an arbitrary probability density function is to use
the result in Example 3.7. That is, one uses the cumulative distribution function to transform
the standard uniform random variable on the unit interval. Algorithm 1 can analogously be
used to transform uniform random samples to samples from an arbitrary probability density
on M .
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As an example, let M = T
2 (the two-dimensional flat torus). We want to produce random

samples from an arbitrary probability distribution on T
2, for example,

μ1 =
(
1− 0.8 cos(x) cos(2y)

)
dx ∧ dy︸ ︷︷ ︸

vol

,

where x, y ∈ [−π, π) are coordinates. The approach is to first use the lifting algorithm for
Problem 4 to compute ϕ ∈ Diff(T2) such that ϕ∗vol = μ1, then draw random samples (xi, yi)
from the uniform distribution (using a uniform random number generator), then map these
samples into the μ1-distribution by (x̃i, ỹi) = ϕ(xi, yi).

For a 1024 × 1024 grid on T
2, with step size ε = 0.05 (a total of 20 steps), we obtain the

following warp ϕ and Jacobian |Dϕ|:
Warp Jacobian |Dϕ|

Green and pink shades of the Jacobian imply, respectively, expansion and contraction. The
optimal information framework assures the warp is matching the two probability densities
while locally minimizing metric distortion.

We now draw 105 uniform samples and transform them with the computed ϕ:

Uniform samples Nonuniform samples
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A benefit of transport-based methods over traditional Markov chain Monte Carlo methods is
cheap computation of additional samples; it amount to drawing uniform samples and then
evaluating the transformation. A downside is poor scaling with increasing dimensions.

Detailed comparisons of the OIT approach developed here, to the OMT approach de-
veloped by Moselhy and Marzouk [29] and Reich [34], is beyond the scope of this paper.
Since OIT is intrinsically simpler than OMT (Poisson instead of Monge–Ampere equation),
we expect OIT- to outperform OMT-based approaches.

4.2. Registration of letters: J to V. This example illustrates and explains why OIT,
i.e., Problem 4, is not suitable for image registration. Recall that the algorithm developed
for Problem 4 works for any background metric. Thus, given a source density μ0 ∈ Dens(M),
we can construct a background metric g such that volg = μ0 (various ways of doing this are
explained in Appendix A). Suppose now we want to match the letters J and V, represented
as gray-scale functions I0 and I1 on M = T

2. We might have to add some background
density for black pixels, since I0 and I1 must be strictly positive in order for Algorithm 1 to
be well-defined. Then we construct the conformal background metric g such that volg = μ0.
With step size ε = 0.05 (20 steps) and background density 0.2 (lowest grey-scale value, white
corresponds to 1.0), we get the following sequence of warps:

Source Target

This is simply blending between the images, as foreseen by the formula (6) for Fisher–Rao
geodesics. The corresponding mesh deformation and Jacobian of the inverse at the final point
look as follows:

Inverse warp Inverse Jacobian |Dϕ−1|

This is not a satisfactory registration: instead of transporting the white pixels of the J to the
white pixels of the V, the resulting diffeomorphism produces white pixels by compressing the
background pixels. This example shows that, although Problem 4 allows matching of any pair
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of densities by using a compatible metric, only those applications where μ0 is the standard
volume form are likely to be of interest. A remedy for more general, noncompatible matching
applications is developed next.

5. Matching with noncompatible background metric. In section 3 we derived an algo-
rithm for solving Problems 1 and 2 for the case when the background metric g is compatible
with μ0. In this section we want to derive an algorithm for the situation of a noncompat-
ible background metric. When the background metric g is noncompatible, the solution to
Problem 2 with respect to the information metric (4) on Diff(M) and Fisher–Rao metric (3)
on Dens(M) is still obtained by a geodesic curve ϕ(t). However, ϕ(t) is not horizontal and
therefore does not project to a geodesic on the space of densities. As a consequence, the main
ingredient of our efficient lifting algorithm—the explicit formula for geodesics on Dens(M)—
cannot be used. From a geometric standpoint, the problem is that the information metric GI

does not descend to Diffμ0(M)\Diff(M) unless μ0 = vol.
To numerically solve the density matching problem using the LDDMM techniques devel-

oped in [7] is plausible, but computationally expensive. In the following, we shall instead study
a slightly modified matching problem, for which efficient algorithms can still be obtained.

5.1. Inexact matching with the divergence metric. The modification resides in exchang-
ing the information metric GI for the degenerate divergence metric Gdiv. The degeneracy of
the divergence metric is characterized by

div(U ◦ ϕ−1) = 0 ⇐⇒ Gdiv
ϕ (U,U) = 0,

so the kernel is given by the tangent directions of the fibers of the principal bundle (10),
explained in subsection 2.4. As mentioned in the introduction, the divergence metric descends
to the Fisher–Rao metric. If ddiv denotes the distance function of Gdiv, we have

(18) ddiv(id, ϕ) = d̄F (vol, ϕ
∗vol) = d̄F (ϕ∗vol, vol).

In consequence, the inexact density matching problem with Gdiv and ḠF is the following.
Problem 6 (inexact matching with divergence metric). Given μ0, μ1 ∈ Dens(M), find ϕ ∈

Diff(M) minimizing

(19) E(ϕ) = E(ϕ;μ0, μ1) = σd̄2F (ϕ∗vol, vol) + d̄2F (ϕ∗μ0, μ1),

where σ > 0 is a regularization parameter, penalizing change of volume.
Notice that we allow the source and target densities to belong to the completion Dens(M).

This relaxation is possible because of (18) and the fact that the action of Diff(M) extends
naturally from Dens(M) to Dens(M). For applications of Problem 6 the relaxation is impor-
tant, as it allows us to treat images as densities. This only works for inexact matching, since
Moser’s lemma requires strictly positive densities.

Due to the degeneracy of the divergence metric, a solution to Problem 6 is not unique.
Indeed, with

Diffvol,μ0(M) = Diffvol(M) ∩Diffμ0(M),

Diffvol,μ1(M) = Diffvol(M) ∩Diffμ1(M),

we have the following result.
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Lemma 5.1. Let ϕ ∈ Diff(M), η0 ∈ Diffvol,μ0(M), and η1 ∈ Diffvol,μ1(M). Then

E(η1 ◦ ϕ) = E(ϕ) = E(ϕ ◦ η0) .

Proof. Since η1 ∈ Diffvol,μ1(M) we also have that η−1
1 ∈ Diffvol,μ1(M), since the inter-

section of two groups is again a group. Using the invariance of the Fisher–Rao metric we
get

E(η1 ◦ ϕ) = σd̄2F ((η1)∗ϕ∗vol, vol) + d̄2F ((η1)∗ϕ∗μ0, μ1)

= σd̄2F (ϕ∗vol, η∗1vol) + d̄2F (ϕ∗μ0, η∗1μ1) = E(ϕ).

Again, using the invariance of the Fisher–Rao metric, we get

E(ϕ ◦ η0) = σd̄2F (ϕ∗(η0)∗vol, vol) + d̄2F (ϕ∗(η0)∗μ0, μ1)

= σd̄2F (ϕ∗vol, vol) + d̄2F (ϕ∗μ0, μ1) = E(ϕ).

This proves the lemma.
Thus, the functional E has two different descending properties:
1. It descends to a functional on the right cosets Diffvol,μ1(M)\Diff(M), right invariant

with respect to Diffvol,μ0(M). The corresponding right principal bundle is

(20) Diffvol,μ1(M) � � �� Diff(M)

��
Diffvol,μ1(M)\Diff(M) .

2. It descends to a functional on the left cosets Diff(M)/Diffvol,μ0(M), left invariant with
respect to Diffvol,μ1(M). The corresponding left principal bundle is

(21) Diffvol,μ0(M) � � �� Diff(M)

��
Diff(M)/Diffvol,μ0(M) .

We need a strategy to tackle the degeneracy problem explained in Lemma 5.1. Our approach
is simple: we impose the additional constraint on ϕ that it should be connected to the identity
by a curve that is GI -orthogonal to the fibers of both principle bundles (20) and (21). Then
Problem 6 can be solved efficiently by a gradient flow, as we now explain.

5.2. Gradient flow for inexact matching. Let ∇IE denote the gradient of E with respect
to the information metric GI . Our approach for Problem 6, i.e., for minimizing the functional
E in (19), is to discretize the gradient flow

(22) ϕ̇ = −∇IE(ϕ).

Since the functional E is constant along the fibers of the principal bundles (20) and (21), the
curve traced out by the gradient flow is GI -orthogonal to both fibers, as desired.
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Through formulas (7) and (19) we obtain an explicit formula for E. We can then derive the
gradient ∇IE. It is convenient to carry out the calculations using the sphere representation
for the densities via the W -map (5).

Proposition 5.2. The GI–gradient of the divergence-metric matching functional E in (19)
is given by

(23) ∇IE(ϕ) = A−1

(
σc

(∫
M

√
|Dϕ−1| vol

)
grad

√
|Dϕ−1|

+ c

(∫
M
WϕW1vol

)(
W1 gradWϕ −Wϕ gradW1

))
◦ ϕ ,

where A is the inertia operator (9), W1 := W (μ1), Wϕ :=W (ϕ∗μ0), and

c : [0, vol(M)]→ R, c(x) =
arccos

(
x

vol(M)

)
√

1− x2

vol(M)2

.

Proof. Take a curve ϕ(ε) such that ϕ(0) = ϕ, i.e., a variation of ϕ. Then

d

dε

∣∣∣∣
ε=0

E(ϕ(ε)) = GIϕ(∇GE, ϕ̇(0))
(24)

= σ

〈
δd̄2F
δμ

(ϕ∗vol, vol),
d

dε

∣∣∣∣
ε=0

ϕ(ε)∗vol
〉
+

〈
δd̄2F
δμ

(ϕ∗μ0, μ1),
d

dε

∣∣∣∣
ε=0

ϕ(ε)∗μ0
〉
.

We now write the variation of the form ϕ̇(ε) = v ◦ ϕ(ε) for some vector field v ∈ X(M). For
any μ ∈ Dens(M) we then have

d

dε

∣∣∣∣
ε=0

ϕ(ε)∗μ = −Lvϕ∗μ.

Let r :=
√
μ(M) =

√
ν(M). Then, from (28)

d̄2F (μ, ν) = r2 arccos

(
1

r2

∫
M
W (μ)W (ν)vol

)2

,

so the variational derivative is given by〈
δd̄2F
δμ

(μ, ν), η

〉
=

arccos
(

1
r2

∫
M W (μ)W (ν)vol

)
√
1− (

1
r2

∫
M W (μ)W (ν)vol

)2
︸ ︷︷ ︸

c(W (μ)W (ν))

〈
−2W (ν)

δW (μ)

δμ
, η

〉
.

Since 〈 δW (μ)
δμ , η〉 = 1

2W (μ)
η
vol we get

〈
δd̄2F
δμ

(μ, ν), η

〉
= −c(W (μ)W (ν))

∫
M

W (ν)

W (μ)︸ ︷︷ ︸
F (μ,ν)

η.
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Notice that (i) F (μ, μ) = 0 since the variation η preserves the total volume, (ii) ϕ∗F (μ, ν) =
F (ϕ∗μ,ϕ∗ν) reflecting the invariance of the Fisher–Rao distance, (iii) limr→∞ c(W (μ)W (ν)) =
π
2 reflecting the simplified formula when the volume is infinite, and (iv) c(W (ϕ∗vol)W (vol)) =

c(
√|Dϕ−1|). The first term in (24) now becomes

σc(
√
|Dϕ−1|)

〈
δd̄2F
δμ

(ϕ∗vol, vol),
d

dε

∣∣∣∣
ε=0

ϕ(ε)∗vol
〉

(25)

= σc(
√
|Dϕ−1|)

∫
M
F (ϕ∗vol, vol)Lvϕ∗vol

= σc(
√
|Dϕ−1|)

∫
M
F (ϕ∗vol, vol)divϕ∗vol

= −σc(
√
|Dϕ−1|)

∫
M

dF (ϕ∗vol, vol) ∧W (ϕ∗vol)2ivvol

= −σc(
√
|Dϕ−1|)

∫
M

d

(
1

W (ϕ∗vol)

)
∧W (ϕ∗vol)2ivvol

= σc(
√
|Dϕ−1|)

∫
M

dW (ϕ∗vol) ∧ ivvol

= σc(
√
|Dϕ−1|)

∫
M

g(AA−1 grad(W (ϕ∗vol)), v)vol

= GIid

(
σc(

√
|Dϕ−1|)A−1 grad(W (ϕ∗vol)), ϕ̇ ◦ ϕ−1

)
= GIϕ

(
σc(

√
|Dϕ−1|)A−1 grad

√
|Dϕ−1| ◦ ϕ, ϕ̇

)
.

Using the notation Wϕ :=W (ϕ∗μ0) and W1 :=W (μ1), the second term in (24) becomes

〈
δd̄2F
δμ

(ϕ∗μ0, μ1),
d

dε

∣∣∣∣
ε=0

ϕ(ε)∗μ0
〉

(26)

= c(WϕW1)

∫
M
F (ϕ∗μ0, μ1)Lvϕ∗μ0

= c(WϕW1)

∫
M
F (ϕ∗μ0, μ1)divϕ∗μ0

= −c(WϕW1)

∫
M

dF (ϕ∗μ0, μ1) ∧W 2
ϕivvol

= −c(WϕW1)

∫
M

d

(
W1

Wϕ

)
∧W 2

ϕivvol

= c(WϕW1)

∫
M

(W1dWϕ −WϕdW1) ∧ ivvol

= c(WϕW1)

∫
M

g
(
AA−1(W1 gradWϕ −Wϕ gradW1), v

)
vol

= GIϕ
(
c(WϕW1)A

−1(W1 gradWϕ −Wϕ gradW1) ◦ ϕ, ϕ̇
)
.

Put together, (25) and (26) prove formula (23).
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Based on Proposition 5.2, we can now discretize the gradient flow (22). Indeed, a numerical
method is given by the following algorithm.

Algorithm 2. Assume we have a numerical way to represent functions, vector fields,
and diffeomorphisms on M , and numerical methods for (i) composing diffeomorphisms with
functions, (ii) composing diffeomorphisms with diffeomorphisms, (iii) computing the divergence
of a vector field, (iv) computing the gradient of a function, and (v) computing the inverse of
the inertia operator A in (9). A computational algorithm for the gradient flow (22) is then
given as follows.

1. Choose a step size ε > 0 and initialize the diffeomorphisms ϕ0 = id, ϕ−1
0 = id, and a

function J0 = 1. Precompute W (μ1) and grad(W (μ1)). Set k ← 0.
2. Compute action on the source

fk =W (μ0) ◦ ϕ−1
k

√
Jk.

3. Compute coefficients ak = c
( ∫

M

√
Jk vol

)
and bk = c

( ∫
M fkW (μ1)vol

)
, then compute

momentum

mk = σak grad(
√
Jk) + bkW (μ1) grad fk − bkfk grad(W (μ1)).

(If vol(M) =∞, set ak = bk = 1.)
4. Compute the vector field infinitesimally generating the negative gradient

vk = −A−1mk.

5. Construct an approximation ψ−1
k to exp(−εvk), for example, ψ−1

k = id− εvk.
6. Update the inverse diffeomorphism: ϕ−1

k+1 = ϕ−1
k ◦ ψ−1

k .
7. Update the inverse Jacobian using Lie–Trotter splitting:1

Jk+1 = (Jk ◦ ψ−1
k )e−ε div(vk).

8. Construct an approximation ψk to exp(εvk), for example, ψk = id + εvk (output).
9. Update the forward diffeomorphism: ϕk+1 = ψk ◦ ϕk (output).
10. Set k ← k + 1 and continue from step 2.

5.3. Geometry of the gradient flow. In this section we describe the geometry associated
with the divergence-metric functional E in (19) and the corresponding gradient flow (22).

The diffeomorphism group acts diagonally on Dens(M)×Dens(M) by ϕ·(μ, ν) = (ϕ∗μ,ϕ∗ν).
The isotropy group of (μ, ν) ∈ Dens(M)×Dens(M), i.e., the subgroup of Diff(M) that leaves
(μ, ν) invariant, is given by

Diffμ,ν(M) := Diffμ(M) ∩Diffν(M).

The action of Diff(M) on Dens(M) × Dens(M) is not transitive, so there is more than one
group orbit. The group orbit through (vol, μ0), given by

Orb(vol, μ0) := Diff(M) · (vol, μ0) ⊂ Dens(M)×Dens(M),

1Here, one could use Strang splitting to obtain higher order.
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is a way to represent the quotient set Diff(M)/Diffvol,μ0(M). This set is potentially compli-
cated (an orbifold), but let us assume we stay away from singular points so we can work with
Orb(vol, μ0) as a submanifold of Dens(M)×Dens(M). The principal bundle (21) can then be
represented as

(27) Diffvol,μ0(M) � � �� Diff(M)
πvol,µ0��

Orb(vol, μ0) ,

where

πvol,μ0(ϕ) = ϕ · (vol, μ0) = (ϕ∗vol, ϕ∗μ0).

The manifold Dens(M)×Dens(M) comes with a metric, namely,

ḠFF
(μ,ν)

(
(αμ, αν), (βμ, βν)

)
= σḠFμ (αμ, βμ) + ḠFν (αν , βν).

(Notice that ḠF is naturally extended to a metric on Dens(M) by the W -map (5).) The
corresponding distance is given by

(28) d̄2FF ((μ1, ν1), (μ2, ν2)) = σd̄2F (μ1, μ2) + d̄2F (ν1, ν2).

To connect back to the divergence-metric matching in Problem 6, the key observation is that

E(ϕ) = d̄2FF ((vol, μ1), (vol, μ0) · ϕ) = d̄2FF ((vol, μ1), πvol,μ0(ϕ)),

so E(ϕ) is simply the function (μ, ν) �→ d̄2FF ((vol, μ1), (μ, ν)) on Dens(M) × Dens(M) lifted
to Diff(M).

Let us now discuss how the metric GI fits into this geometry.
Lemma 5.3. The information metric GI on Diff(M) is descending with respect to the prin-

cipal bundle (27), i.e., it descends to a metric ḠOrb on Orb(vol, μ0).
Proof. Translation by ψ ∈ Diffvol,μ0(M) of a vector U ∈ TϕDiff(M) along the fiber of (27)

is given by U �→ U ◦ ψ. Therefore, the metric GI is descending if and only if

(29) GIϕ(U, V ) = GIϕ◦ψ(U ◦ ψ, V ◦ ψ) ∀U, V ∈ Hvol,μ0
ϕ ,

where Hvol,μ0
ϕ is the distribution that is GI -orthogonal to the tangent spaces of the fibers

of (27). Since GI is right invariant, condition (29) is automatically true.
Although GI descends to a metric ḠOrb, the associated distance function d̄Orb is not explic-

itly computable, in particular it is not given by d̄FF . If it was, the result in Lemma 5.3 would
allow us to use the same technique as in section 3 to solve the noncompatible, nondegenerate
matching problem using GI and ḠF , namely, to lift the geodesics on Orb(vol, μ0). Our remedy
is to exchange d̄Orb for the distance function d̄FF on the ambient manifold Dens(M)×Dens(M).
The geometry of our setup is illustrated in Figure 1.
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(vol, μ0)

(vol, μ1)

(ϕ∗vol, ϕ∗μ0)

∇E

Orb(vol, μ0)

Figure 1. Illustration of the geometry associated with inexact density matching using the divergence metric.
The gradient flow on Diff(M) descends to a gradient flow on the orbit Orb(vol, μ0). While constrained to
Orb(vol, μ0) ⊂ Dens(M) × Dens(M), this flow strives to minimize the ambient Fisher–Rao distance d̄FF to
(vol, μ1).

5.4. Two-component gradient flow. Since both the information metric GI and the
functional E descend with respect to (27), the gradient flow (22) induces a gradient flow
on Orb(vol, μ0) ⊂ Dens(M) × Dens(M). This allows us to represent the gradient flow
on Dens(M)×Dens(M).

Proposition 5.4. The gradient flow (22) descends to a two-component gradient flow equa-
tion on Dens(M)×Dens(M), constrained to stay on Orb(vol, μ0). Expressed in the variables
J = |Dϕ−1| and P = (ϕ∗μ0)/vol it is given by

J̇ = −v · grad J − J div(v),

Ṗ = −v · gradP − P div(v)
(30)

with

v = A−1

(
σc

(∫
M

√
J vol

)
grad

√
J

+ c

(∫
M
W (μ1)

√
P vol

)(
W (μ1) grad

√
P −

√
P gradW (μ1)

))
.

Proof. Let ϕ(t) be the solution of the gradient flow (22). Then ϕ̇(t)◦ϕ(t)−1 = ∇IE(ϕ(t))◦
ϕ(t)−1 =: v(t) depends on ϕ(t) only through ϕ(t)∗vol and ϕ(t)∗μ0, i.e., through J and P . We
also have

d

dt
ϕ(t)∗vol = −Lv(t)ϕ(t)∗vol = −

(Lv(t)J + div(v(t))J
)
vol



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DIFFEOMORPHIC DENSITY MATCHING 1743

and
d

dt
ϕ(t)∗μ0 = −Lv(t)ϕ(t)∗μ0 = −

(Lv(t)P + div(v(t))P
)
vol.

This proves the result.
This proposition tells us that an alternative way to compute the gradient flow (22) is to

first solve (30) and then the lifting equations for the principle bundle (27), thereby obtaining
a horizontal curve in Diff(M). We have not investigated this approach in detail.

5.5. Relation to matching with compatible background metric. In this section we want
to show the relation between the compatible background approach in section 3 and the gradient
flow approach developed here. Recall that the solutions to Problems 4 and 6 are obtained by
the inverse of the endpoint of a horizontal geodesic, obtained by lifting a Fisher–Rao geodesic.
As a consequence, we have the following two results.

Lemma 5.5. Let μ0 = vol, μ1 ∈ Dens(M), and let [0, 1] �→ γ(t) ∈ Diff(M) be the horizontal
GI-geodesic such that γ(1)−1 solves the OIT problem (4). Then ∇E(γ(t);μ1, vol) is parallel
with γ̇(t).

Proof. We have E(ϕ;μ1, vol) = σd̄2F (ϕ
∗vol, vol) + d̄2F (ϕ

∗vol, μ1). Thus, E(·;μ1, vol) de-
scends with respect to Moser’s principal bundle (10). Since the information metric GI de-
scends to the Fisher–Rao metric, the gradient flow descends to a gradient flow on Dens(M),
given by

(31) μ̇ = −∇F e(μ), e(μ) = σd̄2F (vol, μ) + d̄2F (μ, μ1),

where∇F is the gradient with respect to ḠF . If now μ = π(γ(t)), then ∇F e(μ) is parallel with
d
dtπ(γ(t)), since π(γ(t)) is the unique minimizing geodesic between vol and μ1. The result now
follows since two horizontally lifted paths are parallel if they are parallel on Dens(M).

Proposition 5.6. If μ0 = vol and μ1 ∈ Dens(M), then the limit of the gradient flow ϕ̇ =
−∇AE(ϕ;μ1, vol), ϕ(0) = id, exists and coincides with the inverse of the solution to the
nonexact OIT problem (5).

Proof. The proof follows since the gradient flow ϕ̇ = −∇AE(ϕ;μ1, vol) descends to the
gradient flow (31) and e(μ) is a strictly convex functional and Dens(M) is a convex space with
respect to the Fisher–Rao geometry.

Remark 5.7. In contrast to the previous parts of this section we actually require here
that μ1 is strictly positive. This is indeed a necessary condition: for μ1 on the boundary of
Dens(M) we cannot guarantee the existence of a minimizer to the nonexact OIT problem.
In fact for a target density μ1 ∈ Dens(M) the optimal deformation ϕ will, in general, not
be a diffeomorphisms, instead it will have a vanishing derivative on certain points or even
intervals. To guarantee the existence of minimizers in this situation also, one could use a
complete metric on the diffeomorphism group as regularization term. Possible choices for this
include higher order Sobolev metrics [12, 5, 8, 25] and metrics that are induced by Gaussian
kernels [36].

6. Examples of matching with noncompatible metric. In this section we evaluate the
gradient-flow-based Algorithm 2 in various examples where μ0, μ1 ∈ Dens(T2), i.e., there are
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regions with vanishing density (represented by black pixels). For simplicity, in our experiments
we consider the flat, periodic torus and use the FFT for inverting the operator A in (9). There
has been extensive work on fast, efficient solutions of Poisson’s problem on other manifolds;
see, for example, the review [11].

6.1. Registration of letters: J to V. This example illustrates the capability of producing
severely deformed warps, namely, to warp the letter J into the letter V. We also examine the
effect of the balancing parameter σ.

With step size ε = 0.2, balance σ = 0.05, and 400 iterations, we get the following energy
evolution and sequence of warps:

Source Final Target

Notice in the warp that the pixel values have changed in regions of large deformations (the
upper left part of the final V). This is due to expansion. The corresponding mesh deformation
and Jacobian of the inverse at the final point look as follows:

Inverse warp Inverse Jacobian |Dϕ−1|

Notice how the lower part of the J is stretched out to the left part of the V.
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Let us now do the same experiment but with the larger balancing parameter σ = 5:

Source Final Target

Notice here that the warp rarely changes the pixel values, at the price of less expansion of
the left part of the V. This is due to a smaller amount of compression and expansion, as seen
below in the corresponding mesh deformation and Jacobian of the inverse:

Inverse warp Inverse Jacobian |Dϕ−1|

Compared to the smaller σ, the Jacobian determinant is more regular and closer to one and the
mesh deformation is almost volume preserving. This example illustrates nicely the influence
of the balancing parameter.

6.2. Registration of noisy x-ray images. In this example we illustrate the use of Algo-
rithm 2 for registration of low-resolution, noisy x-ray images of human hands. With step
size ε = 0.2, balance σ = 0.1, and 400 iterations, we get the following energy evolution and
sequence of warps:
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Source Final Target

Except for the tip of the little finger and the thumb, the resulting path of diffeomorphisms
yields a good warp between corresponding bone structures in the hands. The mesh deforma-
tion and Jacobian of the inverse at the final point look as follows:

Inverse warp Inverse Jacobian |Dϕ−1|

Here one can see how the noise affects the diffeomorphisms: both the mesh warp and the
Jacobian are somewhat irregular, except at the left and right borders where the source and
target densities vanish.

Appendix A. Constructing compatible background metrics. In section 3 we have de-
scribed a method to solve the density matching problem, assuming that we are given a com-
patible background metric. If the source density μ0 is not equal to the density induced by the
background metric, one has to construct such a metric first (as in Example 4.2). There is, of
course, a range of background metrics h having a prescribed volume form; here we describe
two specific choices.
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A.1. Conformal metric. As already discussed, any volume form μ ∈ Dens(M) can be
written μ = Ivolg. Note that I is the Radon–Nikodym derivative of μ with respect to volg (as
measures). This observation yields a first choice for the desired metric.

Lemma A.1. Let μ = Ivolg ∈ Dens(M). Then the modified metric

(32) h = I
2
n g

is compatible with μ, i.e., volh = μ.
Proof. In coordinates (x1, . . . , xn) we have

volh =
√

det(hij) dx
1 ∧ . . . ∧ dxn .

Remark A.2. Note that the metric (32) is conformally equivalent to the background metric
g. In mechanics, it is called the Jacobi metric.

The advantage of the metric (32) is that it is easy to construct and also that the Lapla-
cian and gradient take simple forms (in terms of the Laplacian and gradient of the original
background metric g).

Lemma A.3. The Laplacian and gradient of the metric h = I
n
2 g are given by

gradh(f) = I−
n
2 gradg(f), Δhf =

1

I
divg(I

1−n
2 gradg(f)).

Proof. To calculate the expression for the gradient we use

df(X) = h(gradh(f),X) = g(I
n
2 gradh(f),X) = g(gradg(f),X).

For the Laplacian we express the divergence in coordinates

divg(X) =
1√

det hij
∂i(

√
det hij X

i) =
1

I
∂i(I X

i) =
1

I
divg(IX) .

Then we have

Δhf = divh(gradh(f)) = divh(I
−n

2 gradg(f)) =
1

I
divg(I · I−

n
2 gradg(f))

=
1

I
divg(I

1−n
2 gradg(f))

Remark A.4. Note that for n = 2 the formula for the Laplacian simplifies to

Δh =
1

I
Δg ,

reflecting the scale invariance of the Laplacian in dimension two.
Corollary A.5. Using the metric (32) the lifting equation (15) reads

ϕ̇(t) = v(t) ◦ ϕ(t), ϕ(0) = id,

v(t) = I−
n
2 gradg(f),

1

I
divg(I

1−n
2 gradg(f)) =

μ̇(t)

μ(t)
◦ ϕ(t)−1 .
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A.2. Constructing a flat compatible metric. For a flat background metric g, the Jacobi
metric h given by (32) is not, in general, flat. Indeed, h is only flat if I is constant. Now
we will describe a method to choose a flat background metric assuming that the background
metric g is flat.

Lemma A.6. Assume that M carries a flat background metric g. Let μ ∈ Dens(M) and let
ϕ be the solution of Problem 4 with μ0 = vol and μ1 = μ. Then h = ϕ∗g is a flat metric and
volh = μ.

Proof. We have volϕ∗h = ϕ∗volh for any metric h and therefore h = ϕ∗g has the desired
volume density. The flatness follows since the curvature tensor Rg of g satisfies 0 = Rg =
ϕ∗Rϕ∗g.

A.3. Symmetric matching. In the previous section we have described how to choose a
metric that is compatible with a fixed volume form. Thus, the solution of Problem 1 with
respect to the Fisher–Rao metric (3) can be obtained as follows:

1. Given μ0, μ1 ∈ Dens(M), construct a background metric h compatible with μ0 by
subsections A.1 or A.2.

2. Solve the lifting equation (15) with respect to h, using the explicit geodesic curve (6)
between μ0 and μ1.

This problem is not symmetric in μ0 and μ1, since the metric h depends on μ0. However, the
condition that h is compatible with μ0 can be made more general, which allow us to derive a
symmetric solution. We use the fact that any geodesic that is horizontal at some s ∈ (0, 1)
remains horizontal for all time. Thus we do not have to choose a metric that is compatible
with one of the prescribed densities μ0 and μ1, but only a metric that is compatible with
some density that lies on the geodesic connecting the two. This suggests the following choice
of background metric h, which leads to a symmetric solution of Problem 1:

1. Calculate the geodesic curve μ(t) connecting μ0 to μ1 using (6).
2. Construct a background metric h that is compatible with the midpoint of the geodesic
μ(12) using subsections A.1 or A.2.

3. Solve the lifting equations for the part of the geodesic that connects the densities μ(12)
and μ1 with respect to the compatible metric h. Denote the resulting deformation ϕ.

4. Solve the lifting equations for the part of the geodesic that connects the densities μ(12)
and μ0 with respect to the compatible metric h. Denote the resulting deformation ψ.

5. The solution is then given by ϕ ◦ ψ−1.
The symmetry of this strategy follows from the construction.

Appendix B. Relation between Fisher–Rao and other distances.
In this section we compare the Fisher–Rao distance d̄F (·, ·) with the Wasserstein distance

dW(·, ·), the Hellinger distance dH(·, ·), the total variation distance dTV(·, ·), the Kullback–
Leibler divergence dKL(·, ·), and the χ2-distance dχ(·, ·) (see [15] for definitions). Note that
the Kullback–Leibler divergence and the χ2-distance are not metric distances, as they are not
symmetric.

The following inequalities for probability distances are given by Gibbs and Su [15]:

1.
dW(μ−, μ+)

supx,y∈M (dM (x, y))
≤ dH(μ−, μ+) ≤ infx,y∈M

(
dM (x, y)

)
dW(μ−, μ+),

2. dTV(μ−, μ+) ≤ dH(μ−, μ+) ≤
√
dTV(μ−, μ+),
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3. dH(μ−, μ+) ≤
√
dKL(μ−, μ+),

4. dH(μ−, μ+) ≤
√
dχ(μ−, μ+).

Here, M is more general than before: it can be any metric space. The lower bound in item 1,
however, is only meaningful for bounded M and the upper bound only for discrete M . Using
these inequalities, and a comparison of the Fisher–Rao distance with the Hellinger distance,
we obtain the following result.

Proposition B.1. For any two densities μ0, μ1 ∈ Dens(M) we have
5. dH(μ−, μ+) ≤ dFR(μ−, μ+) ≤ π

2d
H(μ−, μ+),

6.
dW(μ−, μ+)

supx,y∈M (dM (x, y))
≤ dFR(μ−, μ+) ≤ π

2
infx,y∈M

(
dM (x, y)

)
dW(μ−, μ+),

7. dTV(μ−, μ+) ≤ dFR(μ−, μ+) ≤
√

π
2d

TV(μ−, μ+),

8. dFR(μ−, μ+) ≤
√

π
2d

KL(μ−, μ+),

9. dFR(μ−, μ+) ≤
√

π
2d

χ(μ−, μ+).
Proof. To prove the first inequality we recall that dFR(μ0, μ1) equals the spherical Hellinger

distance; see subsection 2.2. Thus we only have to compare the spherical distance to the
Euclidean distance, yielding a factor π

2 . Now the other inequalities follow immediately using
items 1 to 4.

Recall from section 2 that the Fisher–Rao metric arises from a metric on Diff(M). Like-
wise, there is a metric on Dens(M), corresponding to the Wasserstein distance, that is the
projection of a (non-right-invariant) metric on the diffeomorphism group [31]. To our knowl-
edge, it is not known whether similar statements exist for the other distance functions above.
Notice that the metric on Dens(M) corresponding to the Wasserstein distance is of Sobolev-
type H−1, whereas the Fisher–Rao metric is an L2-type metric. Likewise, the metric on
Diff(M) inducing the Wasserstein distance is of L2-type, whereas the information metric is
of Sobolev-type H1. Further discussions about the relation between metrics on Diff(M) and
Dens(M) are given in [6, Chap. 3].
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