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Abstract

Background: In metagenomics, microbial communities are sequenced at increasingly high resolution, generating
datasets with billions of DNA fragments. Novel methods that can efficiently process the growing volumes of sequence
data are necessary for the accurate analysis and interpretation of existing and upcoming metagenomes.

Findings: Here we present Tentacle, which is a novel framework that uses distributed computational resources for
gene quantification in metagenomes. Tentacle is implemented using a dynamic master-worker approach in which
DNA fragments are streamed via a network and processed in parallel on worker nodes. Tentacle is modular,
extensible, and comes with support for six commonly used sequence aligners. It is easy to adapt Tentacle to different
applications in metagenomics and easy to integrate into existing workflows.

Conclusions: Evaluations show that Tentacle scales very well with increasing computing resources. We illustrate the
versatility of Tentacle on three different use cases. Tentacle is written for Linux in Python 2.7 and is published as open
source under the GNU General Public License (v3). Documentation, tutorials, installation instructions, and the source
code are freely available online at: http://bioinformatics.math.chalmers.se/tentacle.

Keywords: Distributed computing, Master-worker, Next-generation sequencing, Metagenomics, Gene
quantification, DNA sequence analysis, Read mapping, DNA sequencing

Findings
Introduction
The development of next generation sequencing tech-
nology has resulted in unprecedented volumes of data
being generated by the research community [1]. Central
repositories for nucleotide sequence data, such as The
European Nucleotide Archive, have observed a doubling
in size every 10 months, a rate of increase that is pre-
dicted to hold for the coming years [2]. The increase in
the output of DNA sequencing technologies is outpacing
Moore’s Law, rendering single-computer systems increas-
ingly impractical for the necessary data processing. The
development of methods and algorithms that efficiently
use distributed computer systems is vital to the analysis
of modern sequence datasets within reasonable time
frames [3].
In metagenomics, complex mixtures of microorgan-

isms are studied by sequencing random fragments of
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their genomes [4]. A single sample from, for example,
soil, sediment, or marine water can contain millions of
cells from tens of thousands of species, making the total
genetic content massive [5]. Consequently, metagenomic
studies generate sequence data on the order of terabases
(1012 nucleotides) [6, 7], and these numbers are pre-
dicted to continue to increase. For example, the ongoing
Earth Microbiome Project aims to generate petabases of
metagenomic data (1015 nucleotides) over the coming
years [5, 8, 9].
The quantification of genes is an essential step to

understand, interpret, and compare metagenomes. This
process consists of three main steps: i) quality assess-
ment and filtering of the input data; ii) alignment of
the reads to a reference database; and iii) estimation
of the gene abundances. The reference database, typ-
ically containing a gene catalog, a collection of con-
tigs, or genomes, is often incomplete because most
microorganisms encountered in metagenomes lack a
sequenced reference genome. For example, although there
are approximately 56,000 sequencing projects listed in
the Genomes OnLine Database (GOLD) [10], this only
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reflects a tiny part of the total microbial biodiversity,
which is estimated to have more than 10 million species
[11]. Therefore, highly sensitive alignment algorithms are
necessary to match as many fragments as possible to
related sequences in the reference database. Although
many algorithms have been developed for this purpose
[12], high sensitivity and specificity increases the compu-
tational costs andmany existing single-computermethods
are not practically applicable to the size of modern
metagenomes [13].
Distributed computing resources, such as clusters and

clouds, can consist of up to tens of thousands of inter-
connected computers. Their combined power has the
potential to enable processing of large volumes of DNA
sequence data within practical time frames. However,
distributed computer systems require methods that can
efficiently disseminate the data and distribute the com-
putational tasks. Consequently, a wide range of methods
have been developed for distributed sequence alignment.
For example, several BLAST-based approaches that dis-
tribute the well-known algorithm [14] have been devel-
oped (such as BeoBLAST [15], Squid [16], G-BLAST [17],
mpiBLAST [18], Soap-HT-BLAST [19], W.ND-BLAST
[20], and CloVR [21]). DistMap is another method for dis-
tributed sequence alignment [22], which is cloud-based
and can use multiple sequence aligners. Other cloud-
based methods include CloudBurst [23], CloudAligner
[24], and STORMSeq [25], which implements complete
analysis pipelines for the discovery of single nucleotide
polymorphisms. In addition, QIIME [26] offers support
for distributed analysis and visualization of marker gene
survey data (such as 16S, 18S, and ITS amplicon data)
together with limited support for shotgun metagenomics.
However, most of these methods are focused on sequence
alignment and many lack the functionality for distributed
sequence quality assessment and gene abundance estima-
tion. Furthermore, few of these methods are designed for
processing terabase-sized shotgun sequencing datasets,
making them unsuitable or difficult to apply to the analysis
of modern metagenomes.
In this paper we present the Tentacle framework for

distributed gene quantification in metagenomes. Tentacle
uses a dynamic master-worker approach where sequence
data is streamed over the network and processed in
parallel on worker nodes while keeping the number of
time-consuming disk operations to a minimum. Tentacle
supports six commonly used read mappers, which makes
it applicable to all forms of gene quantification tasks.

Implementation
Tentacle stratifies metagenomes into jobs that are dis-
tributed using a dynamic master-worker scheme (Fig. 1).
The master is initialized with a list of jobs, each contain-
ing file paths to three items in the distributed file system,

as follows: i) a set of reads; ii) a reference database; and,
iii) a file with annotations of the data in the reference
database. Worker nodes dynamically register to the mas-
ter process as they become available and they are then
provided with a job. The dynamic master-worker scheme
allows worker nodes to be heterogeneous (for example,
with regards to memory and CPU configuration) and does
not require them to be allocated simultaneously. After a
job is finished, the worker notifies the master, which in
turn provides a new job. This continues until the list of
jobs is exhausted. The master maintains the list of cur-
rently running jobs and can request worker nodes to rerun
jobs that encounter errors. The status of running jobs
can be interactively queried and listed using a supplied,
easy-to-use command-line tool. Communication between
master and worker processes is implemented using the
high performance messaging library ZeroMQ [27].
The workflow has been designed to accept common

standard sequence formats. Reads can be supplied in the
ubiquitous FASTA or FASTQ formats, and will be auto-
matically converted in the Tentacle pipeline to the correct
format for the selected alignment program. The refer-
ence database is supplied in FASTA format, and in some
cases formats specific to some mappers. The reference
database can contain anything that the chosen mapper
will align against (for example, a selection of reference
genomes, single genes, or assembled contigs, as nucleotide
or amino acid sequences depending on mapper). The
annotation of the reference sequences is supplied as a sim-
ple tab-separated format, akin to a simplified version of
the General Feature Format (GFF).
The bioinformatics data processing pipeline executed

on each node consists of three overall steps: i) data trans-
fer and pre-processing; ii) mapping of reads to the ref-
erence; and iii) estimation of coverage (Fig. 2). The first
step performs data transfer and pre-processing in a sin-
gle unified pipeline. Data is transferred directly from the
distributed file system and is decompressed into a con-
tinuous in-memory stream, minimizing the number of
inefficient disk read and write operations. Sequence reads
can be quality assessed and filtered using FASTX [28]. As
an additional pre-processing step, Bowtie 2 [29] can be
used to identify and remove sequence reads matching (for
example, the human genome), which is useful, for exam-
ple, when working with metagenomic data from human
microbiomes.
In the read mapping step, the reads are aligned to

the reference database and the mapping output is writ-
ten to the local scratch disk of the nodes. The last step
combines the mapping output with the reference anno-
tation to compute coverage across the annotated regions
of the reference sequences, before writing the final quan-
tification results back to the distributed file system. It is
highly important that the worker nodes are independent
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Fig. 1Master-Worker. Tentacle uses a dynamic master-worker scheme to distribute work between computer cluster nodes. The master maintains a
list of jobs to be run and a list of available worker nodes. Worker nodes can dynamically come online at any time and register with the master
process to start receiving jobs. When the workers finish a job, they report back to the master for another job. This continues until the master’s job
queue is depleted. The master process can request that worker nodes rerun jobs that fail

of the master process for everything but receiving the job
description (i.e., paths to job-relevant files) to reduce the
risk of the master process becoming a bottleneck. The
implementation is, therefore, designed so that the master
process is never involved in the transfer of data or results.
The data and results are instead read from and written to
the distributed file system directly by the workers.

In the quantification step, Tentacle can compute both
counts and coverage for annotated regions in the reference
database. Counts are the number of reads that align to
each annotated region (based on a user-definable overlap
criteria). Users can select one of two options for han-
dling ambiguously mapped reads: i) only use the ’best’ hit
(defined as the first listed hit in the mapper output); or, ii)

Fig. 2 Overview of the data analysis pipeline executed on each worker node. The workers perform transfer of compressed data files from the
distributed file system (DFS), pre-processing (such as FASTQ quality filtering/trimming or removal of human sequences using Bowtie 2), read
mapping, and counts/coverage calculation. Note that ambiguously mapped reads are not depicted in this figure; the user can choose whether to
keep all of the mapped reads or keep only the best match. Worker nodes fetch their data independently of the master process, thus minimizing the
risk for data transfer bottlenecks. It is possible to instruct Tentacle to retrieve mapping results from worker nodes after mapping is completed.
Counts/coverage calculations can be disabled, which when combined with retrieval of mapping results effectively transforms Tentacle into a
parallel mapping framework
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use all hits that meet the user controlled matching crite-
ria. Tentacle has implemented coverage calculations in the
following way. Each sequence in the reference database is
represented by an array of integers. For each mapped read
the integers at the start and end positions in the corre-
sponding reference sequence array are incremented and
decremented by 1, respectively. After all of the +1 and −1
contributions to the affected start and stop positions in
the reference are handled, the total coverage across each
reference sequence is calculated as the cumulative sum
over the corresponding array. The operations are serially
performed for each read and reference sequence. The cal-
culation of coverage has a time complexity of O(n + N),
where n is the total number of bases in the reference
database and N is the number of mapped reads. This is
substantially faster than the naïve approach that incre-
ments the coverage for each mapped base covered by a
read, yielding a time complexity of O(n + N · M), where
M is the maximum number of bases per read. The output
format for counts and coverage information across refer-
ence sequences is a simple tab separated file with fields for
the reference sequence, annotation start/stop coordinates,
counts, median coverage, mean coverage, and coverage
standard deviation (see Additional file 1 for a detailed
example). The user can choose to disable counts or cov-
erage calculations independently of each other (both can
be skipped, in effect reducing Tentacle to a framework
for performing parallel read mapping using any of the
supported aligners).
Because Tentacle wrapsmany third-party tools and runs

a large number of processes simultaneously, it logs all
events extensively. By default, Tentacle writes log files for
each sample it processes and a processing log is produced
by the corresponding worker. This is important for sci-
entific reproducibility and traceability. Run settings are
stored in a separate master log file, along with informa-
tion about which worker node was assigned what job as
well as other orchestration details. In addition to the mas-
ter log file, additional processing logs are produced by
each worker node as they handle jobs. There are two lev-
els of log output in Tentacle. The default logging level
is to print/write informational messages only (i.e., when
important steps of the workflow took place). The second
option is to print a verbose output with summary statis-
tics before and after many steps in the workflow, which is
useful for troubleshooting or to find and investigate issues
with an analysis. If the user desires, the log output can also
be written to the attached terminal that started Tentacle’s
master process.
Tentacle can use several alignment algorithms. Cur-

rently, it supports six commonly used mappers: BLAST
[14], pBLAT [30, 31], Bowtie 2 [29], GEM [32], Raz-
erS3 [33], and USEARCH [34]. The mapping parameters
of the mappers can be adjusted via Tentacle’s command

line interface. The default settings for each mapper used
in Tentacle are available as an additional file Additional
file 2, and they are also listed in Tentacle’s online doc-
umentation [35]. The cluster scheduling software Slurm
[36] is used to launch worker nodes. The framework can
also be run locally on a single computer using multiple
cores for parallelization (such as for testing or for smaller
datasets). Tentacle is modular and can be easily extended
(for details on how to modify or contribute to Tentacle,
please refer to the online documentation [35]). Installa-
tion of the Tentacle Python package is easy and can be
performed in a single command using Python’s package
manager pip (installation instructions, along with tutori-
als and example data, are available on the project’s home
page [35]).

Results
Scaling
We evaluated the performance of the Tentacle frame-
work by measuring the speedup achieved when increasing
the number of engaged worker nodes. The evaluations
were performed on a cluster comprising 379 nodes, each
with 16 CPUs and at least 32 GiB of RAM. The nodes
were connected to a distributed file system (DFS) via
gigabit Ethernet. The evaluation data consisted of mul-
tiple copies of a single read file from the Meta-HIT
study [6]. The read data in this study was produced
using the Illumina Genome Analyser (GA). The reads in
the samples used in this example were on average 45
base pairs long. The reads were mapped to the corre-
sponding assembled contigs [6]. The number of reads
in the sample was 11,706,305 and the number of con-
tigs in the reference was 14,301. The pBLAT mapper
was used to map the reads (options: -threads=16
-minIdentity=90 -out=blast8). Figure 3 displays
how the throughput in reads per second scales with the
number of nodes. With this specific combination of map-
per, computer cluster, concurrent network usage, etc.,
Tentacle provided a throughput of more than 800,000
reads per second (about 2.9 billion reads per hour) using
32 worker nodes. The complete details of the evaluation
are available in an IPython [37] notebook [38].
We also performed a comparison between the dis-

tributed BLAST search functionality of CloVR [21] and
Tentacle. The evaluation was performed using 16 work-
ers. CloVRwas run inOracle VirtualBox using the publicly
available CloVR virtual machine image. Tentacle was run
on the same physical machine in a native Linux system.
The sample used in the evaluation contained 12 million
metagenomic read fragments, which were mapped to the
corresponding assembled contigs. The complete run time
of the CloVR BLAST search pipeline was 15 hours and
9 minutes, whereas Tentacle finished analyzing the same
data in 5 hours and 7 minutes. Thus, Tentacle was 3.0
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Fig. 3 Scaling. This graph shows the average throughput of three identical runs per point. The axes show throughput (reads per second) versus
number of worker nodes. The numbers at each point describe the increase in throughput compared with running on a single node. Standard errors
for each point in the graph: 0.67, 2.72, 3.39, 1.49, 0.99, 1.06 (standard error bars are barely visible in the figure). Note how Tentacle displays a near
perfect scaling with increasing computing resources. The measurements were performed with replicates of a metagenomic sample from [6]

times faster while still performing coverage calculations
in addition to the mapping. When Tentacle was run on
the same data using pBLAT, which is a more appropriate
mapping method for the task, the work was finished in
6 minutes and 43 seconds, corresponding to a 135 times
speedup (for complete details see Additional file 3).

Three use cases
To highlight the versatility of Tentacle, three different
use cases with three different mappers were evalu-
ated. The use cases are listed in Table 1 and they
represent the following three scenarios: 1) mapping
metagenomic reads to assembled and annotated con-
tigs from the same metagenome; 2) mapping metage-
nomic reads to a large database of reference genes; and
3) mapping metagenomic reads to a database of amino
acid sequences.
Use case 1 corresponds to quantification of genes anno-

tated in a metagenome. This requires read mapping
with relatively low sensitivity because the reads can be
expected to match with high similarity to the contigs
created from the same reads. Use case 2 corresponds
to a case when the gene abundances of a set of spe-
cific genes are compared between metagenomes. This
requires sensitive mapping because the reads do not nec-
essarily have high similarity with the genes in the refer-
ence database. Use case 3 corresponds to a similar use
case as use case 2 but requires a translated search (i.e.,
like BLASTX [14]) because the references are protein
sequences.

Figure 4 displays how the workload on the worker nodes
differs between the three use cases. For use case 1, the
time to transfer and decompress data is small in relation
to the time to map the reads and compute counts for
each annotated region in the contigs. In use case 2, the
time to transfer, decompress data, and map the reads, all
require more time caused by the large reference database.
Use case 3 highlights how mapping reads to a reference
database containing amino acid sequences spends most
of the time on mapping the reads (which includes trans-
lating the reads into all six reading frames). The time to
compute quantification results for the third use case is
negligible.
The total run times required to perform quantifica-

tion in the three use cases are listed in Table 1. Use case
1 required a wall-clock time of 1 hour and 30 minutes
on 30 nodes (a total of approximately 720 core-hours).
Similarly, use case 2 required 6 hours and 24 minutes
(30 nodes; 3072 core-hours) and use case 3 required
37 minutes using USEARCH with translated search (30
nodes; 296 core-hours). The time to run the same anal-
ysis on a powerful single computer would be approxi-
mately 30 times longer; that is, more than two days, eight
weeks, and approximately 18 hours, for the three use
cases, respectively.

Coverage and quantification accuracy
We performed a validation study to verify that Tentacle
performs quantification of annotated regions as expected.
Three samples from the Meta-HIT publication [6] were
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Table 1 Tentacle applied to three use cases. All use cases used the same read data consisting of 1,238,598,682 reads with a total size of
407 GiB in compressed FASTQ (2,213 GiB uncompressed) [6]. The examples were run on 30 nodes, with the cluster system login node
hosting the master process. The following options were used, pBLAT: -threads=16 -minIdentity=90 -out=blast8; GEM:
-T 16 -m 0.04 -e 0.04 -min-matched-bases 0.80 -granularity 2500000; USEARCH: -usearch_local
-query_cov 1.0 -id 0.9 -blast6out

Use case 1 2 3

Reads mapped to their contigs Reads mapped to large DB Reads mapped to peptide DB

Mapper pBLAT GEM USEARCH

Type of reference Per sample contigs (nucleotide) [6] BGI Refseq geneset (nucleotide) [6] Resqu; antibiotic resistance gene

database (peptide) [53]

Reference size (bytes) approx. 160 MiB per sample 3.0 GiB 1 MiB

Reference size (sequences) 6,589,348 3,305,138 3,019

Runtime (core hours) 720 3,072 296

Runtime (wall-clock) 1h 30m 6h 24m 0h 37m

chosen at random. For each sample, 10 % of the
corresponding contigs longer than 2500 nucleotides were
randomly selected. The samples were then spiked with
artificial reads (of the same length as the reads in the
original sample) that were created by randomly fragment-
ing the selected contigs at 1×, 10×, 100×, and 1,000×
coverage. Tentacle was then run on the original and spiked
samples, and the coverage of the selected contigs was
estimated. The estimated median coverages were within
0.81 %, 0.98 %, 1.9 %, and 2.9 % of the expected theoretical
coverages, for the 1×, 10×, 100×, and 1,000× levels,
respectively. Standard errors were 1.05 × 10−4, 2.01 ×
10−4, 1.27 × 10−3, 2.84 × 10−2, respectively. A detailed
description of the evaluation with explanations of the
input data, computations, plots, and results is available in
Additional file 4.

Discussion
Tentacle is a novel framework for distributed quantifica-
tion of genes in metagenomes. It was designed with flex-
ibility in mind and can easily be integrated into existing
workflows. The framework has been optimized to exhibit
low overhead and minimal memory requirements by
streaming data with few intermediate input/output oper-
ations. Therefore Tentacle is well-suited for rapid pro-
cessing of very large volumes of metagenomic data. Our
performance evaluation demonstrated that the method
exhibits near perfect scaling with the number of used
computer nodes.
The proposed framework applies a dynamic master-

worker strategy (DMW) to estimate gene abundances in
metagenomes. In contrast to the more traditional Single
Program, Multiple Data (SPMD) approach [39] used with,

Fig. 4 Relative times for subtasks in three use cases. Relative times are listed for: i) transfer and decompression and pre-processing of data files (reads,
references, annotations); ii) mapping of reads; and, iii) computing coverage/counts. All of the examples were run with 512 samples of metagenomic
data [6] on C3SE cluster Glenn using 30 nodes. Use case 1 mapped metagenomic reads to assembled contigs using pBLAT. Use case 2 mapped
metagenomic reads to a large reference (3.0 GiB) database of genes using GEM. Use case 3mappedmetagenomic reads to a small gene database (1.0
MiB) of amino acid sequences. The label ‘data transfer’ includes time for transfer and on-the-fly decompression of reads, references, and annotations
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for example, MPI [40], where tasks are split between a
fixed number of nodes, DMW can dynamically add and
remove workers as the availability of nodes in the clus-
ter varies in real-time. The DMW approach can also use
heterogeneous workers with regards to CPU and memory
configuration without any special configuration. Addi-
tionally, the master can also monitor the status of the
individual workers and disconnect nodes that encounters
errors. These properties make DMW preferable for dis-
tributing large data over a high number of nodes (such as
clouds) or on computer systems consisting of less reliable
commodity hardware [41, 42]. MapReduce is an alterna-
tive distribution strategy to SPMD and DMW [43], which
is implemented in the Hadoop framework [44] that is
used by several other distributed mapping applications
(for example [22–24]). Similarly to DMW,MapReduce can
use dynamically changing resources and is robust against
node failures. However, MapReduce in its general form
cannot re-use data between jobs (for example, it cannot
use the same reference database). It is perfectly possible
to implement this in Tentacle by virtue of the DMW strat-
egy. However, this implementation has not been a priority
because it has not yet been required. This functionality
is currently planned for future updates. Our method is
light-weight with few dependencies and it can easily be
deployed in most situations on most computer config-
urations with no or relatively minor modifications. The
scaling results displayed in Fig. 3 also underline that our
implementation of the DMW strategy provides excellent
scaling characteristics, which makes it highly suitable for
distributed analysis of large volumes of DNA sequence
data.
The comparison with CloVR [21] highlights the effi-

ciency of Tentacle’s DMW implementation. CloVR is dis-
tributed as a virtual machine image that contains a com-
plete Ubuntu-based Linux system bundled with facilities
and software for managing and running such pipelines.
The administration of pipelines in CloVR is handled via a
web browser interface. The virtual machine contains tools
for running a Sun Grid Engine, which can be deployed
to run distributed computing processes in a wide variety
of computing environments. Our results show that Ten-
tacle completed in a third of the total run time of CloVR
while performing more work (both mapping and cover-
age calculations). As the results in Additional file 3 show,
Tentacle is 135 times faster than CloVR when using an
algorithm more suited for the mapping problem (pBLAT
[31]). This example highlights that Tentacle is well suited
for analyzing very large metagenomes.
The performance evaluation shows that the computa-

tional effort of processing typical metagenomic samples
is dominated by mapping and quantification. These two
processes are computationally intensive and the over-
head required to distribute the data to the worker nodes

remains aminor part of the total time. In use case 1, we see
that mapping and quantification consume approximately
the same amount of time, which is likely to be a result of
the high similarity between reads and the reference con-
tigs. The high similarity leads to many reads that map
to the reference sequences, thus making the quantifica-
tion (which must process the coordinates of all mapped
reads) almost equally as time consuming as the map-
ping process. In use case 2, the time to map the reads
is much longer than the time to perform the quantifi-
cation. Given that use case 2 compares the reads to a
database of gene sequences, fewer reads are expected to
align to the references than in the previous use case.
Despite the database being substantially larger than in
use case 1, the time for quantification remains shorter
than the mapping time, which is partially because of
this process. In use case 3, the time for quantification is
negligible compared to the time for USEARCH to per-
form translation and mapping of all of the reads. In all
of the examples, the time for transfer and decompres-
sion of data consumes a minor portion of the total time
(8–20 %).
The rapidly increasing amounts of information in

molecular databases, including the many ongoing genome
and metagenome sequencing projects, will result in the
growth of reference databases. This will, in turn, result
in an increase in time for data transfer and read map-
ping. The impact on mapping performance is, however,
dependent on the algorithm and can, therefore, differ sub-
stantially depending on the method used [45, 46]. The size
of the reference database can thus become an important
parameter in the selection of a suitable mapper to use with
Tentacle. It should, however, be noted that, regardless of
the choice of read mapper used, the scaling properties of
the Tentacle framework will remain consistent. Further-
more, if the reference database becomes so large that the
mapping can no longer be accommodated entirely on a
single worker node, then the versatility of the DMWarchi-
tecture and themodularity of Tentaclemakes it possible to
circumvent such problems. For example, the data transfer
logic can be modified to use more intelligent data trans-
fer strategies that cache the data between consecutive
runs. Furthermore, high-performance on-the-fly com-
pression and decompression of the input metagenomic
data and the reference databases can be used to reduce the
data transfer time. Indeed, highly optimized compression
algorithms have recently been developed for sequence
data [47], which (in contrast to the ubiquitous gzip) could
be used to achieve both an increased compression rate and
a higher IO throughput in distributed frameworks such as
Tentacle.
When discussing optimization by parallelization, it is

important to keep the impact of Amdahl’s law [48] in
mind. Amdahl’s law states that the maximum achievable
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speedup using N processors is S(N) = 1
(1−P)+ P

N
, where P

is the proportion of the program that can be parallelized.
This relates to Tentacle in two ways: the first is that using
worker nodes with multicore processing capabilities can
help reduce the run time for individual subcomponents
in the workflow if they are parallelized; and the second
is that the data distribution problem that Tentacle sets
out to solve is essentially perfectly parallel. Perfectly par-
allel problems have the property that the P component
of Amdahl’s law is almost equal to 1, thanks to the inde-
pendence of the reads in the metagenomic data. However,
in practice there is a slight overhead associated with the
preprocessing involved in splitting the data (that is, decid-
ing which worker nodes does what) and transferring the
data to the nodes. With regard to the expectations from
Amdahl’s law on the optimization of the three major con-
tributors to the total run time of Tentacle, it is evident
that reducing the time consumption of any of the three
major run time contributors by parallelization would
bring improvements to how Tentacle’s total run time is
reduced. Currently, coverage computation is the foremost
candidate for this parallelization.
One alternative to Tentacle is the MG-RAST (Meta

Genome Rapid Annotation using Subsystem Technol-
ogy) metagenomics analysis pipeline [49]. MG-RAST is
a web-based service where users can upload their sam-
ples to the MG-RAST servers for analysis. MG-RAST
offers a wide range of tools, including sequence quality
assessment, read alignment, and gene quantification. The
MG-RAST pipeline initially used BLAST for sequence
alignment but it has switched to BLAT [30] and Bowtie
[50] in recent versions [49]. MG-RAST is, however, lim-
ited by its web-based interface. This requires users to
upload their data to the MG-RAST servers, which can
be problematic and slow for large datasets. In contrast,
Tentacle offers a flexible framework for gene quantifica-
tion in metagenomes that can be run on local computer
hardware. In addition, Tentacle is modular and can use
more recent mapping algorithms (for example GEM [32],
RazerS 3 [33], and USEARCH [34]), which offer sub-
stantial improvements in sensitivity and speed compared
to BLAST and BLAT. Another drawback of an online
web-based interface, such as MG-RAST’s, is that the
web-based interface (while extensive) does not provide
the same level of flexibility as having a locally operated
software that allows for extension or modification to fit
specific requirements, which might not be possible to fit
into a web-based interface.
Alignment and quantification efficiency are impor-

tant aspects to take into consideration when using an
automated analysis pipeline. Although Tentacle does
not implement any new mapping algorithms, it does
offer a wide selection of third party mappers that can
be used. Therefore, the performance and accuracy of

the mapping process depends entirely on what specific
mapping software is chosen. Tentacle has modules for six
different mapping programs: Bowtie 2 [29], GEM [32],
pBLAT [31], RazerS 3 [33], USEARCH [34], and NCBI
BLAST [14]. Although none of these tools are capable
of running on a computer cluster out-of-the-box, some
are parallelized so that they can run several concurrent
threads to take advantage of several CPUs in a single
computer. Each algorithm has inherent benefits and draw-
backs, so the choice of mapping algorithm depends on
the specific metagenomes analyzed and the hypotheses
addressed [45]. Because the accuracy of alignment (and
thus the gene quantification) depends heavily on the input
data, the alignment algorithm chosen, and the alignment
parameters used, the mapping results can vary substan-
tially from case to case. For example, when short reads
are mapped to de novo assembled contigs or reference
genomes, few mismatches are typically expected and high
specificity is more important. Accepting a decrease in
sensitivity (which often also improves alignment speed)
can, therefore, be satisfactory. However, when comparing
longer sequence reads to more distantly related genes and
genomes, a higher sensitivity will be necessary [46].
It is also important to note that it is often common to

see ambiguously mapped reads with modern short read
technology. This can complicate the analysis and make
the results harder to interpret, especially for downstream
analysis. The implementation in Tentacle allows users to
select to either use the ‘best hit’ (as defined by each map-
per) or use all hits that comply with matching criteria.
This is the same approach that the widely usedMG-RAST
platform uses. The ability to choose essentially any map-
per in Tentacle also contributes to making it suited for
gene quantification of data generated from most metage-
nomic experiments, allowing users to pick an algorithm
that best deals with the particular characteristics of
their data.
Besides enabling high-throughput high-sensitivity read

mapping of large metagenomic datasets, versatility and
modularity were also two important objectives in the
design of the Tentacle framework. To achieve this, calls to
external software (such as mappers, sequence filters and
job-scheduling tools) are placed in separate Python mod-
ules, making it easy to add, adapt, and implement support
for other components if desired (such as to change qual-
ity assessment algorithms, mappers, or job-schedulers). In
addition, the post-processing step that computes coverage
is also modular, making it straight-forward to implement
custom algorithms; for example, for coverage/binning
calculations or to modify the computation of coverage
statistics. Thus, Tentacle can with little effort be adapted
to various applications of metagenomics and integrated
with existing frameworks. It is also possible to extend
the method to other situations where read alignment is
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computationally limiting when run on single-computer
systems, such as genome resequencing or RNA sequenc-
ing. The Tentacle Python package is published under the
GNU General Public License (version 3) and the code
is publicly available in an online repository [51]. Con-
sequently, researchers who use Tentacle and create or
modify modules can contribute improvements back to the
repository for the benefit of the research community.
In conclusion, Tentacle provides researchers with a

novel framework to efficiently analyze and study large
metagenomes. Tentacle’s flexibility and modularity makes
it a versatile framework that can easily be adapted
and integrated into existing workflows and data analysis
pipelines. It runs on UNIX-based computers and com-
puter clusters, and it scales very well with increasing
computing resources, making it a cost-effective way to
quantify genes in large metagenomic datasets.

Availability and requirements
• Project name: Tentacle
• Project home page: http://bioinformatics.math.

chalmers.se/tentacle
• Operating system(s): Linux, OS X
• Programming language: Python 2.7
• Other requirements: a supported sequence aligner

(see Implementation).
• License: GNU GPL v3

Availability of supporting data
An archived snapshot of the code and supporting mate-
rials used in this paper is available from the GigaScience
GigaDB database [52].
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