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Abstract

We extend Martin-Löf’s Logical Framework with special constructions and typing rules providing inter-
nalized parametricity. Compared to previous similar proposals, this version comes with a denotational
semantics which is a refinement of the standard presheaf semantics of dependent type theory. Further, this
presheaf semantics is a refinement of the one used to interpret nominal sets with restrictions. The present
calculus is a candidate for the core of a proof assistant with internalized parametricity.
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1 Introduction

Reynolds [17] proved a general abstraction theorem (sometimes called parametric-

ity theorem) about polymorphic functions. His argument is about a set theoretic

semantic. As he stated it, the underlying idea is that the meanings of an expression

in “related” environments will be “related” values. For instance, he proves that if

tX is a term of type X → X and if we consider two sets A0, A1 and a relation

R ⊆ A0 × A1, then we have R([tX ]X=A0(a0), [tX ]X=A1(a1)) whenever R(a0, a1),

where [tX ]X=A denotes the meaning of the expression tX where X is interpreted by

the set A. As he noted, one can replace binary relations by n-ary relations in this

statement, and in particular unary relations (predicates). In the latter case, the

statement is the following: if A is a set and P is a predicate on A, then we have

P ([tX ]X=A(a)) whenever P (a) holds. Wadler [18] illustrates by many examples how

this result is useful for reasoning about functional programs.

The argument and result of Reynolds are model-theoretic in nature. In the

Logical Framework, it is possible to state such an abstraction result in a purely

syntactical way. One states for example that if a function f has type (A : U) →
A → A — the type of the polymorphic identity — then f Ax is Leibniz-equal to x,

i.e., the following proposition holds:

(A : U) → (P : A → U) → (x : A) → P x → P (f Ax)
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Indeed Bernardy et al. [9] prove such a result as a (syntactical) meta-theorem about

type systems. However this result is not provable internally, i.e., the following

proposition is not provable:

(f : (A : U) → A → A) → (A : U) → (P : A → U) → (x : A) → P x → P (f Ax) (�)

Therefore users relying on the parametricity conditions have postulated the para-

metricity axiom [3, 11, 16]. However, because postulates do not have computational

interpretations, such parametricity conditions can only be used in computationally-

irrelevant positions.

Instead, one would like to be able to rely on parametricity conditions within the

theory itself. Several attempts have been made [6, 7] — or are currently developed

[2] — for designing an extension of dependent type theory in which such an internal

form of parametricity holds. We propose another such system here. Our technical

contributions are as follows:

• We present an extension of Martin-Löf’s Logical Framework (Section 2) which

internalizes parametricity (as we show in Section Section 3) and can be seen

as a simplification and generalization of the systems of Bernardy and Moulin

[6, 7]. In particular, we have a special construction (a,i p) which pairs a term

a with its parametricity proof p, as well as special projections to extract the

proof. As we will show in Section 3.3, these new constructions enable us to

prove the proposition (Equation �) internally. (This is not possible with usual

pairs and projections since the first projection does not commute with applica-

tion.) The name i in the above construction is what we call a “color”; we want

internalized parametricity not only for LF but also for the extended calculus,

and as explained in [7], colors enable nested parametricity by keeping track of

the different uses (this is analogous to building hypercubes and accessing their

vertices as in [6]). However, unlike previous type theories with internalized

parametricity [6, 7], the system presented here does not compute parametric-

ity types: for instance, parametricity conditions are isomorphic to functions,

rather than functions themselves. (As shown in Section 3, this does not appear

to be an issue in practice.)

• We provide a denotational semantics, in the form of a presheaf model, for this

type theory (Section 4). This model is a refinement of the presheaf semantics

used to interpret nominal sets with restrictions [10, 15].

We conjecture that conversion and type-checking are decidable for this system.

2 Syntax

In this section we define the syntax and typing rules of our parametric type theory,

as well as the equality judgment.

We assume a special symbol ‘0’, and a countably infinite set I of other symbols,

called colors. The metasyntactic variables i, j, . . . range over colors, while ϕ range

over I ∪ {0}. We further assume a fixed function fresh(·) such that fresh(I) ∈ I\I
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for any finite color set I. The main innovation of the type theory presented here

is that terms may depend on (a finite number of) colors. For any term a, we note

supp(a) the set of free colors in a.

We do not attempt to explain what lead us to consider a colored type theory;

for that we refer to [7] instead.

Definition 2.1 [Syntax of terms and contexts]

A,B, P, T, a, p, t, u := x variable

| t u application

| λx : A.t abstraction

| (x : A) → B product

| |A| code

| El(A) decode

| U universe

| (a,i p) colored pair

| (x : A)×i P colored type pair

| 〈t,i u〉 colored function pair

| A �i a parametricity type

| a·i parametricity proof

Γ,Δ := () | Γ, x : A | Γ, i : I

We give a few intuitions to interpret the novel syntax, before formally giving the

typing rules of the system.

(i) Reynolds associates each type with a predicate. Here, each type is associated

not with a single predicate, but many: one for every color. These multiple

predicates are essential to interpret parametricity when it is nested. Indeed,

using a single predicate yields inconsistencies. Furthermore these predicates

are definable in the logic: the type A �i a expresses that a satisfies the para-

metricity predicate associated with the type A on color i. For each term a and

color i, the term a(i 0) is the erasure of i in a. It is defined by induction on a

(Definition 2.2) and can be understood as a realizer [5] of a.

(ii) The term a·i yields a proof of A �i a(i 0).

(iii) The forms (a,i p), (x : A)×iP and 〈t,i u〉 allow to locally associate parametricity

proofs with a given realizer.

Definition 2.2 [Color renaming and erasure] We consider a color i ∈ I and ϕ ∈
I ∪ {0}, and define the term a(i ϕ) by induction on a.

x(i ϕ) = x

(t u)(i ϕ) = (t(i ϕ)) (u(i ϕ))

(λ(x : A).t)(i ϕ) = λ(x : A(i ϕ)).t(i ϕ)

((x : A) → B)(i ϕ) = (x : A(i ϕ)) → (B(i ϕ))
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|A|(i ϕ) = |A(i ϕ)|
El(A)(i ϕ) = El(A(i ϕ))

U(i ϕ) = U

(a,i p)(i 0) = a

(a,i p)(i j) = (a,j p)

(a,j p)(i ϕ) = (a(i ϕ),j p(i ϕ)) if i 	= j

((x : A)×i P )(i 0) = A

((x : A)×i P )(i j) = (x : A)×j P

((x : A)×j P )(i ϕ) = (x : A(i ϕ))×j P (i ϕ) if i 	= j

〈t,i u〉(i 0) = t

〈t,i u〉(i j) = 〈t,j u〉
〈t,j u〉(i ϕ) = 〈t(i ϕ),j u(i ϕ)〉 if i 	= j

(A �i a)(i ϕ) = A(i j)(i ϕ) �j a(i ϕ) where j = fresh(supp(A))

(A �j a)(i ϕ) = (A(i ϕ)) �j (a(i ϕ)) if i 	= j

(a · i)(i ϕ) = a(i j)(i ϕ) · j where j = fresh(supp(a))

(a · j)(i ϕ) = a(i ϕ) · j if i 	= j

Definition 2.3 [Typing judgements — à la Tarski]

Γ 


Empty

() 


NewVar

Γ 
 Γ 
 A

Γ, x : A 


NewCol

Γ 

Γ, i : I 


Γ 
 A

Universe

Γ 
 U

Decode

Γ 
 A : U

Γ 
 El(A)

Swap

Γ, i : I, j : I,Δ 
 A

Γ, j : I, i : I,Δ 
 A

Pi

Γ 
 A Γ, x : A 
 B

Γ 
 (x : A) → B

Out

Γ, i : I 
 A Γ 
 a : A(i 0)

Γ 
 A �i a

In-Pred

Γ 
 A Γ, x : A 
 P

Γ, i : I 
 (x : A)×i P

Γ 
 a : A

Conv

Γ 
 t : A A = B

Γ 
 t : B

Var

Γ 
 x : A ∈ Γ

Γ 
 x : A

Code

Γ 
 A

Γ 
 |A| : U

Swap

Γ, i : I, j : I,Δ 
 a : A

Γ, j : I, i : I,Δ 
 a : A

Lam

Γ, x : A 
 t : B

Γ 
 λx : A.t : (x : A) → B

App

Γ 
 t : (x : A) → B[x] Γ 
 u : A

Γ 
 t u : B[u]
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In-Abs

Γ 
 a : A(i 0) Γ 
 p : A �i a

Γ, i : I 
 (a,i p) : A

In-Fun

Γ 
 t : ((x : A) → P [x])(i 0)

Γ 
 u : (x : A(i 0)) → (x′ : A �i x) → P [(x,i x
′)] �i tx

Γ, i : I 
 〈t,i u〉 : (x : A) → P [x]

Color-Elim

Γ, i : I 
 a : A

Γ 
 a·i : A �i a(i 0)

The parametricity constructions (· and �) are color binders (they bring colors

into scope), while the pairing constructs remove colors from scope. The equality

relation used in the Conv rule is detailed below in Definition 2.5. The Swap rules

allow us to use Out and Color-Elim with any free color, provided that no variable

was introduced after that color (see e.g., Theorem 3.6).

Additionally, for the above system to be well-founded, we need to distinguish

small and big types, and allow only small types to be encoded in U . Small types

are closed under product, ×i and �i. The distinction between big and small types

being standard, and to keep the presentation concise, we leave it implicit in the

syntax 1 .

Theorem 2.4 (Color erasure and substitution preserve typing) If Γ, i :

I 
 a : A then the terms a(i ϕ) and A(i ϕ) are defined and

• Γ 
 a(i 0) : A(i 0), and

• Γ, j : I 
 a(i j) : A(i j).

Proof. By induction on the typing judgment. �

Definition 2.5 [Conversion] The convertibility of types used in the Conv rule

and written simply (=) is defined as the smallest reflexive-symmetric-transitive

congruence containing the following rules.

Pair-Param

(a,i p)·i = p

Pair-App

〈t,i u〉 a = (t a(i 0),i u a(i 0) (a·i))
Pair-Pred

((x : A)×i P [x]) �i a = P [a]

Surj-Param

t = (t(i 0),i t·i)
Surj-Typ

T = (x : T (i 0))×i (T (i j) �j x)

El(|A|) = A |El(A)| = A
β

(λx : A.t[x])u = t[u]

η

t x = u

t = λx : A.u

Corollary 2.6 (Surj-Fun) t = 〈t(i 0),i λxx′.(t(x,i x′))·i〉

Remark 2.7 In order to be well-typed, any context for the conclusion of the Pair-

App, Surj-Param, Surj-Fun and Surj-Typ rules needs to end with a color bind-

ing.

1 Our rules are semantically justified in Section 4; the use of codes enables a presentation à la Tarski, while
avoiding us to split each constructor in two flavors, one for small types and one for large ones.
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Remark 2.8 Although it looks as if 〈t,i u〉 can be definable as λx.(t x,i uxx·i), the
latter rebinds i, and does not allow us to prove parametricity for the Church-encoded

naturals (Example 3.4) for instance.

Our conversion relation is intensional for functions, but extensional when it

comes to dependencies on colors. Because there is at any point only a finite number

of colors to consider, we conjecture that our conversion relation is decidable.

3 Parametricity

In this section we prove that our system properly internalizes unary parametricity;

it could naturally be extended to the n-ary case by using further special symbols

1, . . . , n − 1. We also illustrate the system by giving a few simple proofs relying

on parametricity (including iterated parametricity). For the sake of readability, we

leave out the distinction between types and their codes, which plays no role here.

Unlike previous type theories with internalized parametricity [6, 7], the system

presented here lacks equalities which allow to compute parametricity types. Ex-

pressed in our syntax, those equalities would become the conversion rules:

U �i A = A → U , and

((x : A) → B[x]) �i f = (x : A) → (x′ : A �i x) → B[(x,i x
′)] �i (fx).

The absence of the above equalities allows for a simpler system, but how can we

ensure that all parametricity theorems hold? The answer is that the above relation-

ships hold as isomorphisms. We say that A is isomorphic to B iff.

(i) there exist f : A → B,

(ii) there exist g : B → A,

(iii) for any x, f (g x) = x, and

(iv) for any x, g (f x) = x.

This notion of isomorphism is quite strong, because the equality used in its

definition is the conversion relation (Definition 2.5).

Theorem 3.1 U �i A is isomorphic to A → U .

Proof.

(i) f : (Q : U �i A) → A → U

f Qx = (A,iQ) �i x

(ii) g : (P : A → U) → U �i A

g P = ((x : A)×i (Px))·i

(iii) (A,i ((y : A) ×i (Py))·i) �i x = ((y : A) ×i (Py)) �i x = Px by Pair-Param

then Pair-Pred, and we conclude by η-contraction.

(iv) ((x : A) ×i (A,iQ) �i x) ·i = (A,iQ) ·i = Q by Surj-Typ (indeed (x : A) ×i

(A,iQ) �i x is typed in a context ending with i : I) and Pair-Pred. �

Theorem 3.2 ((x : A) → B[x]) �i f is isomorphic to

(x : A) → (x′ : A �i x) → B[(x,i x
′)] �i (f x)
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Proof.

(i) f : (q : ((x : A) → B[x]) �i f) → (x : A) → (x′ : A �i x) → B[(x,i x
′)] �i (fx)

f q x x′ = ((f,i q)(x,i x
′))·i

(ii) g : ((x : A) → (x′ : A �i x) → B[(x,i x
′)] �i (f x)) → ((x : A) → B[x]) �i f

g p = 〈f,i p〉·i
(iii) ((f,i 〈f,i p〉·i) (x,i x)′)·i = (〈f,i p〉 (x,i x′))·i = (f x,i p x x

′)·i = p x x′ by Surj-

Param then Pair-App (indeed 〈f,i p〉 and 〈f,i p〉 (x,i x′) are typed in a context

ending with i : I) and we conclude by Pair-Param.

(iv) 〈f,i λxx′.((f,i q) (x,i x′))·i〉·i = (f,i q)·i = q by Surj-Fun (indeed (f,i q) is typed

in a context ending with i : I) and we conclude by Pair-Param. �

In practice however, when carrying out parametricity proofs, many of the steps

of the above isomorphisms cancel each other and one obtains a simpler proof. This

behaviour is illustrated by the following examples: parametricity for the polymor-

phic identity and Church-encoded natural numbers.

Example 3.3 Any function f : (X : U) → X → X is the polymorphic identity,

i.e., its output is Leibniz-equal to its second input. Assume a context

Γ = (f : (X : U) → X → X, A : U, P : A → U, a : A, p : P a).

Then Γ, i : I 
 (x : A)×i (P x) and by Pair-Pred Γ, i : I 
 (a,i p) : (x : A)×i (P x),

thus Γ, i : I 
 f ((x : A)×i (P x)) (a,i p) : (x : A)×i (P x) and finally

Γ 
 (f ((x : A)×i (P x)) (a,i p))·i : ((x : A)×i (P x)) �i (f ((x : A)×i (P x)) (a,i p))(i 0)

= P (f ((x : A)×i (P x)) (a,i p))(i 0) = P (f Aa)

Example 3.4 Let N = (X : U) → X → (X → X) → X. Proving (unary)

parametricity for N means that, assuming a context Γ

f : N, A : U, P : A → U, z : A, z′ : P z, s : A → A, s′ : (x : A) → P x → P (s x),

we can prove P (f A z s).

Indeed Γ, i : I 
 (x : A) ×i (P x), and by Pair-Pred Γ, i : I 
 (z,i z
′) : (x :

A)×i (P x) and Γ, i : I 
 〈s,i s′〉 : (x : A)×i (P x) → (x : A)×i (P x), thus

Γ, i : I 
 f ((x : A)×i (P x)) (z,i z
′) 〈s,i s′〉 : (x : A)×i (P x), and finally

Γ 
 (f ((x : A)×i (P x)) (z,i z
′) 〈s,i s′〉)·i : ((x : A)×i (P x)) �i (f A z s) = P (f A z s)

As seen in Example 3.4, one needs to use 〈t,i u〉 to pair a function with the

parametricity proof of its type if one wants to apply that pair to some argument

and reduce the application. This is because as noted above, our system does not

support direct computation of free theorems: in particular (A → B) �i a does not

reduce.

At this point one may wonder, since a new syntactic construction was introduced

for function types, whether yet another construction is required for higher order

functions. This objection was preemptively refuted by Theorem 3.2: it turns out
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that 〈t,i u〉 can be combined with (a,i p) to pair higher order functions with the

parametricity proof of their type. The following example illustrates this technique:

Example 3.5 Let F = (X : U) → ((X → X) → X) → X. Proving (unary)

parametricity for F means that, assuming a context Γ = f : F, A : U, P : A →
U, g : (A → A) → A, g′ : (h : A → A) → ((x : A) → P x → P (hx)) → P (g h), we

can prove P (f A g).

Let T = (x : A)×i (P x). We have Γ, i : I 
 T and

Γ, h : A → A, h′ : (T → T ) �i h, x : A, x′ : P x, i : I 
 (h,i h
′) : T → T , hence

Γ, h : A → A, h′ : (T → T ) �i h, x : A, x′ : P x 
 ((h,i h
′) (x,i x′))·i : T �i hx = P (hx)

Γ, h : A → A, h′ : (T → T ) �i h 
 g′ h (λ(x : A). λ(x′ : P x). ((h,i h
′) (x,i x′))·i) : P (g h)

Let g′′ = λh. λh′. g′ hλ(x : A). λ(x′ : P x). ((h,i h
′) (x,i x′))·i. Since we have Γ 
 g′′ :

(h : A → A) → (T → T ) �i h → P (g h) we can pair it with g and Γ, i : I 
 〈g,i g′′〉 :
(T → T ) → T . We can finally conclude as before, that Γ 
 (f T 〈g,i g′′〉)·i : P (f A g).

3.1 Iterating Parametricity

In our system, one can use parametricity generically as follows:

p : (X : U) → (x : X) → X �i x

pX x = x·i
We have already seen that A �i corresponds to a parametricity predicate for

the type A. As we hinted at in the introduction, the color index i allows us

to distinguish each application of parametricity. (As a side remark, since the

Color-elim rule introduces a color, limiting the depth of nested applications of

parametricity can trivially be enforced in our system by limiting the number of

free colors in the context.) We can iterate the operator A �· to construct relations

between parametricity witnesses. That is, given a context with

x : A, y : A �j x, z : A �i x,

the type A �i (x,j y) �j z is well formed (� is left associative), and can be under-

stood as a binary relation between the parametricity proofs y and z. The following

results about this relation illustrate the expressivity of our system.

Theorem 3.6 If the type A does not depend on either i or j, the relation λyz.A �i

(x,j y) �j z is symmetric.

Proof. We first construct the proof term:

σ1 : (x : A) → (y : A �i x) → (z : A �i x) → A �i (x,j y) �j z → A �j (x,i z) �i y

σ1 x y z w = ((x,j y),i (z,j w))·j ·i
And, by α-equivalence on colors, A �j (x,i z) �i y = A �i (x,j z) �j y. �

Theorem 3.7 If the type A does not depend on either i or j, then the types A �i

(x,j y) �j z and A �j (x,i z) �i y are isomorphic.
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Proof. We show that σ1 y x z (σ1 x y z w) = w. Let t = ((x,j y),i (z,j w)), w′ =

t·j ·i, t′ = ((x,i z),j (y,iw
′)). Then t′(i 0) = (x,j y) = t(i 0), t′(j 0) = (x,i z) = t(j 0),

and (t·j)(i 0) = y. We now continue to reason by deduction:

w′ = t·j ·i by def.

(y,iw
′) = t·j because (t·j)(i 0) = y

t′ ·j = t·j by def.

t′ = t because t′(j 0) = t(j 0)

t′ = ((x,j y),i (z,j w)) by def.

t′ ·i = (z,j w)

t′ ·i·j = w �

Remark 3.8 At this point one may wonder if the system could have been set up

to have t·i·j = t·j·i, and the equality between A �i (x,j y) �j z and A �j (x,i z) �i y

rather than an isomorphism. The answer is that the equation

A �i (x,j y) �j z = A �j (x,i z) �i y

is inconsistent: in particular for A = U one gets

U �i (X,j P ) �j Q = U �j (X,iQ) �i P

for arbitrary P and Q of type U �i X. The above equality in turn implies

(x : X) → P x → Qx → U = (x : X) → Qx → P x → U

for arbitrary predicates P and Q over X, which is obviously inconsistent.

Theorem 3.9 If the type A and the term a do not depend on either i or j, and

a′ : A �i a (not depending on i or j either), then A �i (a,j a·i) �j a
′.

Proof. We can construct the following closed term:

q : (A : U) → (x : A) → (x′ : A �i x) → A �i (x,j x·i) �j x
′

q : (A : U) → (x : A) → (x′ : A �i x) → A �i x �j x
′ by Surj-Param

q Axx′ = x′ ·j
The result is then obtained by substituting a for x and a′ for x′. �

To conclude the section we note that by iterating parametricity n times, one

creates n-ary relations between proofs of relations of arity n − 1. Furthermore,

the above results carry over to the n-ary case. That is, for each k < n, one can

construct a function σk, which exchanges the arguments k and k + 1 of a relation.

Furthermore, these functions satisfy the laws of the generators of the symmetric

group.

4 Presheaf model

In this section we show how to interpret our type theory by a presheaf model.
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Definition 4.1 If I and J are two finite subsets of I, we call a color map any

function f : I → J ∪ {0} such that i1 = i2 for any i1, i2 ∈ I with f(i1) = f(i2) ∈ J .

Definition 4.2 [Category pI] Let objects be finite color sets and morphisms be

color maps (a.k.a. partial injections; the Hom-set I → J denotes functions I →
J ∪ {0}). If f : I → J and g : J → K, we define the composition as the Kleisli

one: fg : I → K as fg(i) = 0 if f(i) = 0 and fg(i) = g(f(i)) if f(i) ∈ J . We write

1I : I → I for the identity map. It is easy to check that pI is a category (see [14,

ex. 9.7 p. 176] for another description of this category).

If f : I → J , i 	∈ I and j 	∈ J , let (f, i = j) : I, i → J, j (where I, i is a shorthand

for I ∪ {i}) denote the map defined by (f, i = j)(i) = j and (f, i = j)(k) = f(k) for

every k ∈ I.

If f : I, i → J (resp. f : I, i → J, j) is such that f(i) = 0 (resp. f(i) = j), let

f − i : I → J denote the map defined by (f − i)(k) = f(k) for every k ∈ I.

For any object I and i 	∈ I, let ιi : I → I, i denote the inclusion map, defined by

ιi(k) = k for every k ∈ I.

Definition 4.3 [Projection] We say that a morphism α : I → Iα is a projection if

Iα ⊆ I, α(i) = 0 for each i ∈ I\Iα, and α(i) = i for each i ∈ Iα.

Definition 4.4 [Total maps] We say that a morphism h : I → J is total, and note

h : I � J , if it is injective, i.e., if h(i) 	= 0 for each i ∈ I.

Remark 4.5 [Morphism decomposition] Any morphism f : I → J has a unique

decomposition into a projection map α : I → Iα and a total map h : Iα � J .

Definition 4.6 [I-set] Let an I-element be any tuple indexed by the subsets of I:

(uJ)J⊆I . An I-set is a set of I-elements. For instance, the elements of an {i, j}-set
are of the form u = (u∅, ui, uj , ui,j). Alternatively, such an element can be seen as

a tuple (uα) indexed by the projections α : I → Iα.

If a, b are I-elements and j 	∈ I, we define the (I, j)-element (a,j b) as (a,j b)J :=

aJ if j 	∈ J and (a,j b)J,j := bJ . Any (I, i)-element can be written u = (uJ)J⊆I,i =

(uJ)J⊆I ∪ (uJ,i)J⊆I ; We can therefore define the I-elements u(i 0) := (uJ)J⊆I and

u · i := (uJ,i)J⊆I . (Hence by definition u = (u(i 0),i u · i).)
Recall that a presheaf F on pIop is given by a family of sets F (I) together

with restriction maps F (I) → F (J), u �→ uf for f : I → J satisfying u1 = u and

(uf)g = u(fg). (Note that the category of presheaves on pIop is equivalent to the

category Res of nominal restriction sets [14, rem. 9.9 p. 161].) We use a refined

presheaf on pIop by requiring two further conditions:

(i) for any object I, F (I) is an I-set; and

(ii) for any projection map α : I → Iα, the restriction map F (I) → F (Iα), u �→ uα

is the projection operation, i.e., uαJ = uJ for any J ⊆ I (alternatively, seeing

I-elements as tuples indexed by projection maps, (uα)β = uαβ).

Unless written otherwise, any presheaf in the remainder of this section is assumed to

satisfy these conditions. The refinement is necessary for the interpretation of some
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of our syntactic constructions. Indeed, without it, it is not clear how to validate

the equality Pair-Pred: ((x : A)×i P [x]) �i a = P [a].

A context Γ 
 is interpreted by a (non-refined) presheaf on pIop, i.e., by a family

of sets Γ(I) for each object I, together with restriction maps Γ(I) → Γ(J), ρ �→ ρf

for f : I → J satisfying the conditions ρ1 = ρ and (ρf)g = ρ(fg).

A type Γ 
 A is interpreted by an I-set Aρ for each object I and ρ ∈ Γ(I),

together with restriction maps Aρ → A(ρf), u �→ uf if f : I → J satisfying u1 = u

and (uf)g = u(fg) for any g : J → K. Furthermore the map Aρ → A(ρα), u �→ uα

is the projection operation.

A term Γ 
 a : A is interpreted by an I-element aρ ∈ Aρ for each object I and

ρ ∈ Γ(I), such that aρf = a(ρf) for any f : I → J .

If Γ 
 and Γ 
 A we define the interpretation of Δ = (Γ, x : A) by taking

〈ρ, x = u〉 ∈ Δ(I) to mean ρ ∈ Γ(I) and u ∈ Aρ. The restriction map is defined by

〈ρ, x = u〉f = 〈ρf, x = uf〉.
If Γ 
 we define the interpretation of Δ = (Γ, i : I) by taking [ρ, i = ϕ] ∈ Δ(I)

to mean either ϕ = 0 and ρ ∈ Γ(I), or ϕ = j ∈ I and ρ ∈ Γ(I\{j}). The restriction

map is defined by [ρ, i = 0]f = [ρf, i = 0] and [ρ, i = j]f = [ρ(f − j), i = f(j)].

Remark 4.7 In other words, Γ, x : A 
 is interpreted by the cartesian product

(ρ ∈ Γ)× Aρ of the interpretations of Γ 
 and Γ 
 A, while Γ, i : I 
 is interpreted

by the separated product [14, sec. 3.4 p. 54] Γ ∗ I of the interpretation of Γ 
 and

I ∪ {0}:

Γ ∗ I(I) = {[ρ, i = 0] | ρ ∈ Γ(I)} ∪ {[ρ, i = j] | j ∈ I, ρ ∈ Γ(I\{j})}

We also note that Γ, i : I, j : I 
 and Γ, j : I, i : I 
 are respectively interpreted as

the sets of [ρ, i = ϕ, j = ϕ′] and [ρ, j = ϕ, i = ϕ′], which are trivially isomorphic.

The semantics we define satisfy the substitution law. That is, if Γ, x : A 
 B

and Γ 
 a : A then for any ρ ∈ Γ(I) we have B[a]ρ = B〈ρ, x = aρ〉. It also satisfies

the substitution law on colors, i.e., if Γ, i : I 
 A then for any ρ ∈ Γ(I) and j 	∈ I

we have A(i0)ρ = A[ρ, i = 0] = A[ρ, i = j](j 0). (Since [ρ, i = 0] ∈ Γ ∗ I(I) and

[ρ, i = j] ∈ Γ ∗ I(I, j), A(i 0)ρ and A[ρ, i = 0] are I-sets while A[ρ, i = j] is a

(I, j)-set.) For establishing these properties, we proceed as Aczel [1].

We proceed to interpret each type construction.

Pi. Assume ρ ∈ Γ(I). We define ((x : A) → B)ρ as a I-set. An I-element of

((x : A) → B)ρ is defined as a tuple λ = (λα), where each λα is a family of

elements indexed by a total map f : Iα � J :

λαf ∈
∏

u∈A(ραf)

B〈ραf, x = u〉

such that app(λαf , u)g = app(λαfg, ug) for f : Iα � J total and for any

g : J → K (where app is the semantic application). Because any map I → J
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has an unique decomposition as a projection and a total map, we can consider

λf for an arbitrary map f : I → J .

If f : I → J is an arbitrary map, we define λf to be the tuple (λfβ) where λfβ
is the family λfβg = λfβg. With this definition, we directly have λαβ = λαβ .

This is similar to the usual interpretation of dependent product in presheaf

models [10, 12]; but to satisfy our first extra condition on presheaves we present

each element as a tuple, which can be done naturally by repartitioning the

family as follows: (λf )f :I→J = (λαg)Iα⊆I,g:Iα�J
∼= ((λαg)g:Iα�J)Iα⊆I .

Universe. The universe U is interpreted as a presheaf over pI. An element A of

U(I) is a tuple (Aα) where each Aα is a family (Aαf ) of U -small sets (where

U is a fixed Grothendieck universe) indexed by f : Iα � J total together with

restriction maps Aαf → Aαfg, u �→ ug for f : Iα � J total and g : J → K

arbitrary, such that u1 = u and (ug)h = u(gh).

As before, such data define a set Af for an arbitrary map f : I → J with

restriction maps Af → Afg if g : J → K.

If f : I → J is an arbitrary map, we define Af by taking Afβg to be the set

Afβg, together with restriction maps Afβg → Afβgh defined as the given maps

Afβg → Afβgh. We can then check, as before, that we have Aαβ = Aαβ .

As before, this is similar to the usual interpretation of universe in presheaf

models, where each element is presented as a tuple.

Out. Assume ρ ∈ Γ(I). We need to define the I-set (A �i a)ρ. Let j = fresh(I).
We get a (I, j)-set A[ρ, i = j], and the I-element aρ belongs to A(i 0)ρ =

A[ρ, i = 0] = A[ρ, i = j](j0).

We define (A �i a)ρ to be the set of I-elements v such that (aρ,j v) ∈ A[ρ, i =

j]. If v is such an element and f : I → J and k = fresh(J), then vf is defined

by the equation (aρf,k vf) = (aρ,j v)(f, j = k).

In-Pred. Assume [ρ, i = ϕ] ∈ Γ ∗ I(I). We define the I-set ((x : A)×i P )[ρ, i = ϕ]

by case analysis on ϕ ∈ I ∪ {0}. If ϕ = 0 then ρ ∈ Γ(I), and we define

((x : A) ×i P )[ρ, i = 0] as the I-set Aρ. If ϕ = j ∈ I then ρ ∈ Γ(I\{j}), and
we define ((x : A) ×i P )[ρ, i = j] as the I-set of (u,j v) where u ∈ Aρ and

v ∈ P 〈ρ, x = u〉.
Decode. Assume ρ ∈ Γ(I). We have Aρ ∈ U(I) and we define El(A)ρ to be the

set Aρ1. The restriction map El(A)ρ → El(A)ρf , u �→ uf is defined using the

restriction map Aρ1 → Aρf and the fact that we have Aρf = A(ρf)1.

Remark 4.8 Our calculus does not have any base types, but they could be in-

terpreted by modifying their usual interpretation as a constant presheaf into an

isomorphic I-set. For instance, the base type of natural numbers would be inter-

preted as the I-set of (nJ)J⊆I where n∅ ∈ N and nJ = ∅ for any non-empty J ⊆ I.

We now describe how to interpret terms.

Var. We define x〈ρ, y = u〉 to be u if x = y, and xρ otherwise. We define x[ρ, i = ϕ]

to be xρ if ϕ = 0, and x(ριj) if ϕ = j.

Lam. We define app((λx : A.t)ρf , u) to be t〈ρf, x = u〉
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App. We define (t u)ρ to be app(tρ1, uρ)

In-Abs. Assume [ρ, i = ϕ] ∈ Γ ∗ I(I). We define the I-element (a,i p)[ρ, i = ϕ] by

case analysis on ϕ ∈ I∪{0}. If ϕ = 0 then ρ ∈ Γ(I), and we take (a,i p)[ρ, i = 0]

to be aρ ∈ A(i 0)ρ = A[ρ, i = 0]. If ϕ = j ∈ I then ρ ∈ Γ(I\{j}), and we take

(a,i p)[ρ, i = j] to be (aρ,j pρ).

In-Fun. Assume [ρ, i = ϕ] ∈ Γ ∗ I(I). We define the J-element 〈t,i u〉[ρ, i = ϕ]f
by case analysis. If ϕ = 0, then ρ ∈ Γ(I) and ρf ∈ Γ(J); we define w =

〈t,i u〉[ρ, i = 0]f by app(w, a) = app(tρf , a). If ϕ = j ∈ I and f(j) = 0,

then ρ ∈ Γ(I\{j}) and ρ(f − j) ∈ Γ(J); we define w = 〈t,i u〉[ρ, i = j]f by

app(w, a) = app(tρf−j , a). If ϕ = j ∈ I and f(j) = k ∈ J , then ρ ∈ Γ(I\{j})
and ρ(f − j) ∈ Γ(J\{k}); we define w = 〈t,i u〉[ρ, i = j]f by app(w, (a,k b)) =
(app(tρf−j , a),k app(app(uρf−j , a), b)).

Color-Elim. Assume ρ ∈ Γ(I). We define (a·i)ρ as a[ρ, i = j]·j where j = fresh(J).

Theorem 4.9 (Convertible terms are semantically equal)

• If Γ 
 A1 and Γ 
 A2 with A1 = A2, then A1ρ = A2ρ for any ρ ∈ Γ(I).

• If Γ 
 a1 : A and Γ 
 a2 : A with a1 = a2, then a1ρ = a2ρ for any ρ ∈ Γ(I).

Proof. By simultaneous induction on the derivation. We only show the conversion

rules Pair-Param, Pair-Pred and Surj-Param here; other rules involving colors

can be proven in a similar fashion, while β and η can be proven in the usual way.

Pair-Param. Let ρ ∈ Γ(I) and j = fresh(I). We have

v ∈ (((x : A)×i P ) �i a)ρ

iff. (aρ,j v) ∈ ((x : A)×i P )[ρ, i = j]

iff. (aρ,j v) ∈ {(u,j w) | u ∈ Aρ,w ∈ P 〈ρ, x = u〉}
iff. v ∈ P 〈ρ, x = aρ〉
iff. v ∈ P [a]ρ

Pair-Pred. Let ρ ∈ Γ(I) and j = fresh(I). We have ((a,i p) · i)ρ = (a,i p)[ρ, i =

j] · j = (aρ,j pρ) · j = pρ

Surj-Param. For each ρ ∈ Γ(I) we have (t(i 0),i t · i)[ρ, i = 0] = t(i 0)ρ = t[ρ, i =

0], and if j 	∈ I then (t(i 0),i t · i)[ρ, i = j] = (t(i 0)ρ,j (t · i)ρ) = (t[ρ, i =

j](j 0),j t[ρ, i = j] ·j) = t[ρ, i = j]. Hence (t(i 0),i t · i)ρ = tρ for any ρ ∈ Γ∗I(I).
�

Remark 4.10 As noted earlier, the types U �i (X,j P ) �j Q and

U �j (X,iQ) �i P are not convertible. Their semantic interpretations are

not equal either. Indeed taking ρ ∈ Γ(I), k = fresh(I) and l = fresh(I, k), we have

(leaving out the context interpretation ρ for the sake of readability) on the one hand

v ∈ (U �i (X,j P ) �j Q)ρ

iff. (Qρ,k v) ∈ (U �i (X,j P ))[ρ, j = k]

iff. ((X,j P )[ρ, j = k],l (Qρ,k v)) ∈ U(l, k)

iff. ((Xρ,k Pρ),l (Qρ,k v)) ∈ U(l, k)
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while on the other hand

v ∈ (U �j (X,iQ) �i P )ρ

iff. (Pρ,k v) ∈ (U �j (X,iQ))[ρ, i = k]

iff. ((X,iQ)[ρ, i = k],l (Pρ,k v)) ∈ U(k, l)

iff. ((Xρ,k Qρ),l (Pρ,k v)) ∈ U(k, l)

hence (U �i (X,j P ) �j Q)ρ 	= (U �j (X,iQ) �i P )ρ since the map U(l, k) →
U(k, l), u �→ ug where g(k) = l and g(l) = k is not the identity.

Theorem 4.11 (Validity) If Γ 
 a : A then aρ ∈ Aρ for any ρ ∈ Γ(I).

Proof. By induction on the typing judgment. We only show the cases In-Abs and

Color-Elim. In-Fun is similar to the former, and the other cases match the usual

proof (using Theorem 4.9 for Conv).

In-Abs. Assume [ρ, i = ϕ] ∈ Γ∗I(I). We proceed by case analysis on ϕ ∈ I∪{0}. If
ϕ = 0 then ρ ∈ Γ(I), and we have (a,i p)[ρ, i = 0] = aρ ∈ A(i 0)ρ = A[ρ, i = 0].

If ϕ = j ∈ I then ρ ∈ Γ(I\{j}), and we have (a,i p)[ρ, i = j] = (aρ,j pρ);

Since by induction hypothesis pρ ∈ (A �i a)ρ, we conclude by definition that

(aρ,j pρ) ∈ A[ρ, i = j].

Color-Elim. Assume ρ ∈ Γ(I). We need to show that (a · i)ρ ∈ (A �i a(i 0))ρ,

i.e., that (a(i 0)ρ,j (a · i)ρ) ∈ A[ρ, i = j] where j = fresh(I). By induction

hypothesis a[ρ, i = j] ∈ A[ρ, i = j], hence we have (a(i 0)ρ,j (a · i)ρ) = (a[ρ, i =

j](j 0),j a[ρ, i = j] · j) = a ∈ A[ρ, i = j]. �

5 Related Work

Our own line of work

This work continues a line of work aiming at a smooth integration of para-

metricity with dependent types [5–9]. The present work offers two improvements

over previous publications: 1. a denotational semantics, and 2. a much simplified

syntax, suitable as the basis of a proof assistant.

The simplification of syntax is allowed by not requiring the preservation of func-

tions by parametricity. We call preservation of functions by parametricity the prop-

erty that if f were a function, then the canonical proof that f is parametric (denoted

f ·i here) is also a function. To our knowledge, following Reynolds [17], all para-

metric models of parametricity (both syntactical and semantical ones) have this

property. However, having this property in the syntax implies that certain function

arguments must be swapped when performing the substitution of beta reduction,

as identified by Bernardy and Moulin [6]. In the present system, the parametric

interpretation of functions is instead merely isomorphic to a function, thanks to the

In-Fun rule (Theorem 3.2). This isomorphism (rather than equality) means on the

one hand that the swapping of arguments is handled by the usual rules of logic,

instead of special-purpose ones. On the other hand, obtaining the usual parametric

interpretation of types requires some purely mechanical work by the user of the

logic.
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Parametric Models of Type Theory vs. Parametric Type Theories

Two pieces of work propose alternative parametric models of type theory [4, 13],

but do not integrate parametricity in the syntax of the calculus. This means that,

while certain consequences of parametricity can be made available in the logic (e.g.,

via constants validated by the model), parametricity itself is not available. In this

paper, we not only propose a parametric model, but also show how it can be used

to interpret parametricity in the syntax of the type theory.

Various kinds of models

Another characterizing feature of proposals for parametricity is the kind of model

underlying the semantics. Krishnaswami and Dreyer [13] propose a model based

on Q-PER. Atkey et al. [4] propose a model based on reflexive graphs. The model

that we use is based on cubes (functions from subsets of colors). In Bernardy and

Moulin [6] the cubes were reified as syntax in an underlying calculus, while in the

present work they refine a presheaf structure.

Presheaf models

The presheaf construction used in this paper follows a known template, used for

example by Bezem et al. [10] and Pitts [15] to model univalence in type theory. Not

only do both models use a presheaf, but they also use a category closely connected

to the underlying category pI. This means that all these models have an additional

cubical structure. We think that it is remarkable that cubical structures are useful

for modeling both parametricity and univalence. Altenkirch and Kaposi [2] give

a syntax for Bezem et al.’s Cubical Type Theory, effectively modelling univalence

by internalization of their model. The present work further refines the model by

interpreting terms as I-elements, which is essential to interpret our special-purpose

pairing constructions.

6 Future work and conclusion

We have defined a new type theory with internalized parametricity. Thanks to our

model construction, we have proved the consistency of the system. The missing

piece to construct a type-checker is a decision algorithm for the conversion relation.

This checker could then be used as a minimal proof assistant for a type theory with

parametricity.
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