
Gothenburg University Publications

Collecting Product Usage Data Using a Transparent Logging Component

This is an author produced version of a paper published in:

International Conference on Advances and Trends in Software Engineering

Citation for the published paper:
Gautsson, T. ; Larsson, J. ; Staron, M. (2015) "Collecting Product Usage Data Using a
Transparent Logging Component". International Conference on Advances and Trends in
Software Engineering

Downloaded from: http://gup.ub.gu.se/publication/230413

Notice: This paper has been peer reviewed but does not include the final publisher proof-

corrections or pagination. When citing this work, please refer to the original publication.

(article starts on next page)

http://gup.ub.gu.se/publication/230413


Collecting Product Usage Data Using a Transparent Logging Component

Thorvaldur Gautsson, Jacob Larsson

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
e-mail: {gautsson, jacobla}@student.chalmers.se

Miroslaw Staron

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden
e-mail: miroslaw.staron@gu.se

Abstract—Continuous software engineering and experiments on
released products have become very popular in modern software
development. In this paper, we present a software component
used to transparently log usage data from products in order to
facilitate the use of customer-usage data by software developers.
Such a component can aid with software maintenance and life-
cycle management, but also provide help in software production
and validation. We present a technical solution, the evaluation
of its influence on the performance of a sample product, and an
initial study on the acceptance of such a technology by regular
users. Our results show that the mechanisms available in modern
programming languages make it possible to integrate such a
component without manual interventions in product code and
that users are generally positive towards using this technology
for logging the usage of work-related applications. We conclude
that this type of technology can provide new possibilities for
developers to adjust product planning based on the customer
usage data.

Keywords–Logging; usage patterns; features; data analysis.

I. INTRODUCTION

Modern software development emphasizes the need for rapid
delivery of customer value and many software development
companies use the principles of continuous software engi-
neering to deliver on these needs [1][2][3]. The concept of
continuous software engineering drives the development of
technology towards continuous integration, continuous deploy-
ment and continuous feedback from customers. Continuous
integration allows companies to decrease the internal feedback
cycles on the quality of software by advocating quick delivery
of small software increments and testing them directly after
integration with the rest of the software product code. The
continuous deployment philosophy prescribes methods and
tools for delivering software without the need for manual
installation (e.g., changing a web application) and finally
the continuous feedback from customers is often realized as
customer-experiments (also known as A/B testing [4]).

In this paper, we contribute to the area of rapid feed-
back from customers by developing a logging component
which can be integrated with software products (e.g., desktop
applications) without the need to modify the product code.
The logging component collects data about the usage of
features and functions — both per user and per feature. It also
provides the possibility to store strategically taken screenshots
of the GUI (graphical user interface) of an application, and
enables analysing the status of applications before exceptions
or crashes occur. Collecting this kind of data has the potential
to speed up the development feedback substantially compared

to the currently used data (c.f. [5]). The research question
which we analyzed in our research was:

How can an external logging component be used to aid in
the process of software development by providing developers
with information about usage patterns?

We set off to design a component which could be integrated
with existing products without manual intrusion in the product
source code, though recompilation was allowed. We also
defined the term usage pattern as how users use an application
at a high level, i.e., how they interact with the application
through mouse clicks and keyboard input, which pre-defined
features of the application they use, when and how often they
use those features, and when and how they cause exceptions
to occur. The logging component scrutinized in the research
therefore provides developers with the flexibility to define the
precise usage pattern that constitutes a feature.

Although there exists a body of research on both the
logging of software applications as well as managing large
quantities of data (c.f. [6][7]), there is still much to be
researched. Our working hypothesis was that analyzing feature
usage with the help of screenshots and unconstrained logging
of method-calls can be highly valuable for developers. Such
an approach has been found to help companies to remain
innovative in the long run [8].

Our results show that automated logging of method-calls
combined with pre-defined packaging of the sequences of
method-calls into features can help developers to understand
the usage patterns of an application. Based on a survey which
was conducted, we also found that the logging of feature
usage is generally met with a positive attitude for work-related
applications, but skepticism for privately used software. The
study led us to conclude that the largest developmental benefits
are the combination of logging and pre-definition of features
— which is a rather unique approach.

This paper is structured as follows: Section II presents
some of the most related work in the field of customer data
collection and continuous software engineering. Section III
presents the design of our research. Section IV presents the
logging component and its design. Section V presents the
results from the evaluation of the logging component. Finally,
Section VI presents the conclusions from our study.

II. RELATED WORK

Backlund et al [9] studied post-deployment data collection
by conducting a case study on a web-based portal system.



They began by identifying which quantitative data needed to be
collected, collected it and finally compared the collected data
with survey answers from test subjects. The quantitative data
used was collected through aspect-oriented programming and
included various user actions, such as button clicks and task
completion times. The authors found a correlation between
the survey data and the measurements. For instance, both the
survey and the measurements suggested that a task called
change password was the most difficult task to perform.

Olsson et al. [5][10] studied patterns in post-deployment
data collection in products from three companies in the em-
bedded software development field. Their results show that the
collected post-deployment data that the companies used came
from the operating system, or concerned performance. They
found that while feature-usage data is valuable, it is generally
not collected. In our work, we address this challenge in the
context of applications written in C#.

Lindgren et al. [4] studied the implications of using ex-
periment systems in the development of software. Through
a survey among companies, they found that there is still no
consensus on how to collect customer feedback and how to use
it during development. They also found that customer feedback
is rarely used during development. Our work contributes to the
ability to collect data automatically, thus presenting a way to
use customer data during development.

Börjesson and Feldt evaluated in 2012 two tools for au-
tomated visual GUI testing on a software system developed
by a Swedish aerospace company. They found that visual
GUI testing can perform better than manual testing practices
and that it furthermore has benefits over manual GUI testing
techniques. They stated however that visual GUI testing still
had challenges which had not been addressed [11][12].

III. RESEARCH DESIGN

The research presented in this paper utilized two research
methods: design science research for the development of the
logging component and a case study for its evaluation.

A. Design science research

The design science research approach [13][14] was used
to construct a logging component which serves as a proof of
concept for detecting usage patterns in external applications.
After the logging component had been constructed it was
integrated with a prototype application and then assessed.
Further evaluation was conducted in a case study in which
both qualitative and quantitative aspects were considered.

In order to ensure industrial applicability, the logging com-
ponent was developed in cooperation with Diadrom Systems
AB (hereafter: Diadrom) in Gothenburg. Representatives from
Diadrom provided continuous feedback, both in formal as well
as informal settings. Employees from the company were also
part of the evaluation processes.

Before the development phase began, a prototype software
application called PersonDatabase was built in order to have
an application which the logging component could be built
around. This application had the purpose of storing information
about employees of a fictitious company.

B. Case study
After the design science research phase was over, the

logging component was further evaluated through a case study
[15]. Two applications which had previously been developed
by Diadrom were used in this phase. The assessment involved
both qualitative and quantitative aspects, using both metrics
which were measured as well as structured group interviews.
The case study process model which was used to evaluate the
logging component consisted of the following steps:

1) Two suitable applications for evaluation were identi-
fied: an application from Diadrom (hereafter: Appli-
cation X), consisting of ca. 40 000 LOC; and an open
source application named ScreenToGif which allows
users to record an area of their screen, manipulate,
edit, and then save as a gif image file [16].

2) Qualitative data was collected through workshops
and quantitative data by using the aforementioned
applications.

3) The collected data was analyzed.

1) Interviews: In order to obtain qualitative data, two
workshops were held where semi-structured interviews were
conducted. Application X was evaluated through a workshop
held at Diadrom which was attended by developers at the
company. ScreenToGif was evaluated through a workshop
held at Chalmers University of Technology. Both workshops
followed the same structure. First, the project was introduced
and the research question presented. Next, the integration of
the logging component and the target application was shown.
The attendees were then asked a series of open-ended questions
relating to how difficult they perceived the integration process
to be. Thereafter, a live demonstration was given to show how
the logging component worked on the application which it had
been integrated with. Following that, the logging component
was discussed and questions about its benefits were posed.
The remaining part of the workshop was then used to present
open-ended questions.

2) Measurements: Several criteria were defined which the
logging component had to fulfill, along with ways to measure
them. The following aspects were measured:

• Time to execute a sequence of operations with or
without the logging component

• CPU usage with the logging component
• The size of the database after a sequence of operations
• The size of an average screenshot

In order to obtain data which could be generalized, mea-
surements were taken for three different applications. The
applications tested were the applications used in the work-
shops, i.e., ScreenToGif and Application X, as well as the
PersonDatabase application previously mentioned. The mea-
surements were conducted using the Visual Studio Profiler, the
db.stats() function in MongoDB and SikuliX. The Visual
Studio Profiler is a tool for analyzing performance issues in
an application and gathering performance data. The MongoDB
function returns statistics about a particular database. SikuliX
is a visual GUI testing tool.

The first aspect was measured on the target application,
both with and without the logging component. To measure the
time to execute a sequence of operations in the application,



SikuliX was used. The tool was used to define a sequence
of operations which was then executed 100 times using a
loop. The time of each execution was then measured from
when the pre-defined sequence started until it stopped. By
doing this both with and without the logging component it
was possible to investigate whether the it slowed down the
application significantly.

To measure CPU usage the Visual Studio Profiler was
used. Due to restricted access and technical limitations it
was not possible to measure CPU usage for Application X,
as permission was not granted to install the application on
computers which had the measuring tools needed. The size of
an average screenshot as well as the size of the database were
measured using the db.stats() function in MongoDB.

C. Analysis methods

The Student’s t-test was used to see whether there was a
statistically significant difference between the time it took for
the PersonDatabase and ScreenToGif applications to execute
a sequence of operations with and without the logging com-
ponent. Since the variance of the data sets for Application X
varied greatly, the Welch t-test was used in that case, as it
performs better for data sets of unequal variance.

The null hypothesis was that there should not be a signif-
icant time difference in executing the sequence of operations
dependent on whether the logging component was integrated
with the application or not.

IV. THE LOGGING COMPONENT

The purpose of the logging component was to log various
user actions and program behavior and store those logs in a re-
mote database. Among the user actions logged were keyboard
input and mouse clicks. Handled and unhandled exceptions,
as well as method-calls, were also logged. Screenshots were
taken when a user interacts with the application — to make it
possible to understand how the application behaved from the
users’ point of view.

The way the logging component operated was by weaving
log statements into the source code of an application at com-
pile time. Weaving is a technique for automatically injecting
code into previously written code and is further explained in
Section IV-A.

Immediately after the logging component started to gen-
erate data, the need for a GUI to view the data emerged. It
became necessary to develop a GUI both for verifying that the
correct data was being logged, and to be able to view how
the logging component worked. The development therefore
resulted in three different modules:

• a logging module that logged usage patterns

• a GUI module for presenting the data

• a weaving module for the code injections

Together these three modules constituted a system which
defines logging and presentation of data for C# WPF (Windows
Presentation Foundation) applications.

A. Weaving Module
The Weaving module only had one purpose: to inject code

into a target application in order to connect it with the logging
module. To achieve this, an open source weaving tool called
Fody was used. By using Fody it was possible to define how
and where code should be injected into the application without
specific knowledge about the Microsoft Build Engine and the
Visual Studio APIs. Since Fody had been released as a NuGet
package it was possible to create a NuGet package out of the
Weaving module that would automatically install Fody.

B. Logging Module
The logging module was developed using C# WPF. To store

the large amount of data that the logging module produced, a
NoSQL database called MongoDB was used due to its flexi-
bility. The logging module provided an interface for logging
information and timestamps for the following:

• Method-calls
• Handled and unhandled exceptions
• Mouse clicks and mouse scroll (start and stop)
• Keyboard button clicks
• Specified Keyboard Shortcuts

The logging module logged method-calls in order to track
the data flow of an application. The method logs contain
data concerning the namespace, class name, method name,
parameter types, parameter names and the time of execution.
This can allow developers to find any given method in their
source code, and the associated timestamp makes it possible
to view the sequential order of execution.

Logging exceptions is also important and an interface was
provided for logging both handled and unhandled exceptions.
To log handled exceptions, it was necessary to insert a log
statement into every ”catch”-block in an application, which is
automatically done by the weaving module. To log unhandled
exceptions, an event handler in C# WPF was used.

To capture user interaction, screenshots were taken for
mouse clicks, mouse scroll, button clicks and specified key-
board shortcuts. All screenshots contained a timestamp to make
it possible to follow the interaction between user and computer
in a sequential order. All saved logs, except for the exception
logs, were accompanied by a screenshot. The purpose of the
screenshots was to allow developers to view what actions a
user had taken; it made it for instance possible to view what
a user did before an exception occurred or how a user used a
certain feature.

C. GUI Module
The GUI module was developed in C# WPF. The GUI

module displays data for a selected individual user or aggre-
gated data for all users. Special sub-menus for statistics and
features sub-menus were available for both one selected user as
well as in the form of aggregated data from all users. A figure
of the statistics view for one users is displayed in Figure 1. The
statistics sub-menu contains information about the following:

• Most common exceptions
• Most used features
• Most called methods
• At what time of day the application is used



Figure 1. Statistics sub-menu showing: most called methods, when an
application is used, most common exceptions and most used features

General information presented about an application in-
cluded the following: (i) total number of users, (ii) average
number of sessions per user, (iii) average sessions which
crashed the application per user, (iv) total number of sessions
which crashed the application, (v) total number of sessions, (vi)
average time for a session, (vii) average number of different
flows used per session, and (viii) average number of features
used per session.

Defining features as sequences of method-calls
In order to know how the users of an application use

its features, those features need to be defined in some way.
This was achieved through the GUI module, which provided
functionality for defining and mapping what method calls a
feature consists of.

To give a concrete example of feature definition, we can
consider the previously mentioned PersonDatabase application.
This application enabled its users to add a person to a database
by pressing an add button, then entering the first and last names
in respective input boxes, and finally clicking on a save button.
In this case, it seems reasonable that the add feature finishes
when the save button has been pressed. The above scenario will
trigger methods to be called in the application, and all method-
calls are logged by default. The add feature can therefore be
defined as a sequence of method calls that begins when the
user clicks on the add button and ends when the user clicks
on the save button. The feature definition is therefore kept
completely detached from the source code of the application
that is being logged. This also makes it possible to re-define
features at will, without affecting the underlying data.

In addition to a sequence of method-calls being mapped
to a feature, there can be several flows leading to the same
feature being used. For example, a person could be added
to PersonDatabase by using an add button or perhaps by
using a keyboard shortcut. Each flow is defined by one or
several events, where an event is a method-call that has been
defined by developers as important using the GUI module. An
example of an event would be the first method-call triggered
when clicking the add button. When executing the feature
calculation, all method-calls are mapped to the defined events.
In case there is a defined event for a method-call, the method-
call will be marked as an event. After all the events have
been found, they are iteratively mapped towards flows. If the
events appear in a sequence, as defined by a flow, the flow
is marked as having been used once — together with the

feature that is represented by the flow. In this way, it is possible
to calculate statistics about feature usage. How the mapping
process functions is illustrated in Figure 2.

Figure 2. The different steps in the mapping of a feature.

After the features have been mapped using the method in
Figure 2, various statistics can then be viewed in the GUI
module. The feature usage view for all users is displayed in
Figure 3.

Figure 3. Feature statistics. The bottom row shows data on feature flows

For every feature, it is possible to view statistics for the
average execution time, number of times it was used, how
many session have used it, and the percentage of users that
have used it. Information about the flows for the feature is
available and provides statistics for how many times each flow
has been used, how many users have used the flow and what
the average time for each flow is. A similar view is shown if
a single user is selected.

V. EVALUATION RESULTS

After development had ceased and all data had been
gathered, the results were evaluated and conclusions drawn.

A. Measurements
The average time it took to run a pre-defined sequence of

steps in ScreenToGif, PersonDatabase and Application X with
and without the logging component is summarized in Table I.
The sequence of steps was automatically executed 100 times
and the results then averaged. The data gathered was then
tested by using a t-test with α = 0.05 to see if there was
any significant difference in execution time with and without
the logging component. For PersonDatabase and ScreenToGif
there was a significant difference, but not for Application X.
For PersonDatabase and ScreenToGif the difference observed
is therefore likely caused by the integration of the logging
component. The data collected for Application X had a much



higher variance than the data collected for the other two appli-
cations, which is the reason to why no significant difference
could be confirmed.

The performance measurements therefore indicate that the
logging component has some negative effect on the perfor-
mance of an application. How large the effect is depends on the
nature of the logged application. For instance, an application
which has a method that is called thousands of times during
a short interval will likely create latency issues and might
even cause the logging component to run out of memory. In
those cases it would be necessary to disable logging for that
particular method. What the performance measurements appear
to show is that in most cases the time difference is within an
acceptable range, as the observed time difference in all three
cases would be quite hard for a regular user to notice.

TABLE I. AVERAGE TIME TO EXECUTE A SEQUENCE OF STEPS

PersonDatabase ScreenToGif Application X
With the logging component 43.88 s 18.23 s 56.36 s
Without the logging component 42.64 s 17.44 s 55.87 s
Difference 1.24 s 0.79 s 0.49 s

Measurements of CPU usage were gathered using a CPU
measurement tool in Visual Studio by running PersonDatabase
and ScreenToGif with the logging component. The results
are presented in Table II. The CPU usage of the logging
component was divided into three areas: method-call, screen
events and buffer & DB (database). The logging component
constituted 25.93% of the CPU usage of PersonDatabase and
11.91% of the CPU usage of ScreenToGif. The reason for the
large difference is that ScreenToGif requires more CPU com-
putation in general just to run the application. PersonDatabase
is a small application with a relative low CPU usage.

TABLE II. HOW MUCH OF THE TOTAL CPU POWER OF AN
APPLICATION THE LOGGING COMPONENT USES

Method-call Screen Events Buffer & DB Total
PersonDatabase 0.55 % 14.01 % 11.37 % 25.93 %
ScreenToGif 0.2 % 4.45 % 7.26 % 11.91 %

To measure the size of the data generated by the logging
component, a built in measurement tool in MongoDB was
used. The size of an individual image and of a log statement
for a method-call was calculated from the data. The results are
presented in Tables III and IV. Count defines how many logs
the database contained and average object size is calculated
by dividing the total size with count.

TABLE III. DATABASE SIZE FOR STORING IMAGES

Approx. Image Size Count Total Size Avg. Object Size
Small (300x350) 560 7200 kB 12.86 kB
Medium (880x600) 200 12907 kB 64.5 kB
Large (1550x840) 206 26416 kB 128.23 kB

TABLE IV. DATABASE SIZE FOR STORING METHOD-CALLS

Application Count Total Size Avg. Object Size
PersonDatabase 17452 8656 kB 0.496 kB
ScreenToGif 6475 3217 kB 0,496 kB

B. Interviews
In order to evaluate whether an external logging component

could be used to aid software development by providing devel-
opers with information about usage patterns, two workshops
were held to obtain qualitative data. The participants in the
first workshop were four students in the Software Engineering
M.Sc. programme at Chalmers University of Technology. This
workshop was used as a pilot study before conducting the
workshop at our industrial partner. All of the subjects consid-
ered software development to be their area of work and they
all had previous industrial experience which ranged from 2 to
7 years. The main findings from the workshop were:

1) The integration process using weaving was perceived
as straightforward as it required only a few mouse
clicks in the Visual Studio GUI.

2) A set of situations when the logging component
should be modified — e.g., a case of a function which
crashed when being logged (because of buffers) —
were noted.

3) The logging component was not found to hinder
application performance. Furthermore, a suggestion
was raised that logging component could be used to
re-architecture an application to its improve perfor-
mance.

4) It was considered essential to conduct a survey to find
how users would perceive being logged.

The second workshop was held at Diadrom and the par-
ticipants were four developers with years of experience in
developing software applications. All participants had previous
experience with Visual Studio and all had used logging tools
of some kind at some point. The target application which the
logging component was integrated with in the workshop was
built for a Swedish aerospace company. The results were:

1) The practitioners perceived the integration process to
be straightforward.

2) The practitioners suggested further uses — for in-
stance customization of which design-time elements
should be logged (e.g., namespaces).

3) The practitioners identified further development areas
— e.g., a management view, adding temporal aspects
or presentation of user clicks as a heat-map.

Finally, the participants concluded that they would not
mind using an application which was logged by the logging
component — as long as the data was not used to try to
measure the productivity or performance of an employee. As
long as the logging component was used for debugging or
developmental purposes, they found logging to be acceptable.

C. Survey
It was considered essential to conduct an initial survey to

find how users of an application would perceive being logged.
This was evaluated by presenting the logging component to
employees at four different companies in Sweden, and after-
wards handing out a survey. The total number of participants
in the survey was 27, of which 16 were software developers,
8 worked in management, and 3 worked in other fields. No
participant had less than 2 years of work experience, and nearly
50% had 10 or more years of work experience.

The participants were also asked about the developmental
perspective. Over 90% of the participants said that they knew



of a project where the logging component would have been
useful, and 100% of the participants thought that the logging
component had potential to provide information that could
aid in the further development of an application. Just under
90% of the participants thought that the logging component
had potential to provide information that would facilitate the
debugging of an application.

Three questions were asked to query how users would per-
ceive being logged. The participants were first asked whether
they would be comfortable using an application for their own
private matters if they knew that it was being logged. As
Figure 4 shows, 60% of the respondents said that they would
not be comfortable with using a logged application for private
matters. The participants were then asked whether they would
be comfortable using an application at work if they knew that it
was being logged. In this case, the results were very different.
As Figure 5 shows, only 3 out of 27 participants – around 10%
– answered that they would not be comfortable with this.

Q: I would be comfortable if an application that I use for
private matters is being logged by the logging component

Figure 4. Comfort with using an logged application for private matters.

Q: I would be comfortable if an application that I use at
work is being logged by the logging component

Figure 5. Comfort with using a logged application at work.

Finally, the participants were asked whether they would be
more comfortable using an application that is being logged
at work rather than one they use for private matters. 20 out
of 27 answered that they would be more comfortable using a
logged application at work than at home, while 7 participants
answered that they felt that was no difference between the two.
These results therefore suggest that the context in which the
logging component is used can greatly affect the perception
of users about whether logging is acceptable or not. Using a
logged application at work, for instance, seems to be much
more tolerable for most people rather than using a logged
application at home.

VI. CONCLUSIONS

Continuous deployment, experiment systems and user-
centered software engineering approaches have become very
popular in modern software development. However, there are
still challenges, such as how to add logging functionality to an

application, what to log, and how to translate low-level logging
data into knowledge about how product features are used by
their users. In this paper, we contributed by developing and
evaluating a logging component which could be integrated with
a product without affecting its source code, and which added
negligible performance penalties. It was found to provide
developers with informative data on how a product is used
by enabling them to define features and then visualize how
they are used. Since this style of logging can lead to ethical
issues, we conducted a survey with 27 participants at four
different companies to initially assess the attitude of users to
being logged. The results from the survey showed that users
consider the logging process to be acceptable as long as they
are informed of it, and if the logged application is not one that
they use for private matters.

REFERENCES
[1] M. Staron, W. Meding, and K. Palm, “Release Readiness Indicator for

Mature Agile and Lean Software Development Projects,” in Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer,
2012, pp. 93–107.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, 2014,
pp. 1–9.

[3] J. Bosch, Continuous Software Engineering. Springer, 2014.
[4] E. Lindgren and J. Münch, “Software development as an experiment

system: A qualitative survey on the state of the practice,” in Agile Pro-
cesses, in Software Engineering, and Extreme Programming. Springer,
2015, pp. 117–128.

[5] H. H. Olsson and J. Bosch, “Post-deployment data collection in
software-intensive embedded products,” in Continuous Software Engi-
neering. Springer, 2014, pp. 143–154.

[6] R. Veeraraghavan, G. Singh, K. Toyama, and D. Menon, “Kiosk
usage measurement using a software logging tool,” in Information
and Communication Technologies and Development, 2006. ICTD’06.
International Conference on. IEEE, 2006, pp. 317–324.

[7] T. Menzies and T. Zimmermann, “Goldfish bowl panel: software
development analytics,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 1032–1033.

[8] A. Steiber and S. Alänge, “A corporate system for continuous in-
novation: the case of google inc.” European Journal of Innovation
Management, vol. 16, no. 2, 2013, pp. 243–264.

[9] E. Backlund, M. Bolle, M. Tichy, H. H. Olsson, and J. Bosch, “Au-
tomated User Interaction Analysis for Workflow-based Web Portals,”
in Software Business. Towards Continuous Value Delivery. Springer,
2014, pp. 148–162.

[10] H. H. Olsson and J. Bosch, “The hypex model: From opinions to data-
driven software development,” in Continuous Software Engineering.
Springer, 2014, pp. 155–164.

[11] E. Borjesson and R. Feldt, “Automated System Testing Using Visual
GUI Testing Tools: A Comparative Study in Industry,” in Software Test-
ing, Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on. IEEE, 2012, pp. 350–359.

[12] R. Feldt, M. Staron, E. Hult, and T. Liljegren, “Supporting software
decision meetings: Heatmaps for visualising test and code measure-
ments,” in Software Engineering and Advanced Applications (SEAA),
2013 39th EUROMICRO Conference on. IEEE, 2013, pp. 62–69.

[13] V. Vaishnavi and W. Kuechler, “Design Research in Information Sys-
tems,” 2004.

[14] R. H. von Alan, S. T. March, J. Park, and S. Ram, “Design Science
in Information Systems Research,” MIS quarterly, vol. 28, no. 1, 2004,
pp. 75–105.

[15] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical software
engineering, vol. 14, no. 2, 2009, pp. 131–164.

[16] Nicke Manarin. ScreenToGif. [Online]. Available:
https://screentogif.codeplex.com (Retrieved: January 2016)


