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Abstract

Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage
protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and
rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and
production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from
both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association
Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To
complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and
Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk
locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses
and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and
identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small
intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients
with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified
susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth
and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system.
These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism
that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory
component.
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Introduction responsible for the association in HLA are known (H{LA-DQAI and
HIA-DQBI) [2]. In the past few years Genome Wide Association
Studies (GWAS) have had tremendous success in identifying new
genes, or gene regions, that influence common diseases. These
studies use several hundreds of thousands of genetic markers

Celiac disease (CD) is a common chronic disease and even
though most often diagnosed in early childhood, it can present
itself at any age. Most of the individuals with CD remain

undiagnosed and an estimated 2% of the Swedish population is (single nucleotide polymorphisms, SNPs) across all human

chromosomes in order to pin down the chromosomal locations
of genes, which could influence the disease.

A large joint effort has been done, not the least in CD, and 40
new CD-associated genetic regions marked by SNPs have been

affected without having been diagnosed [1]. Ongoing disease will
increase the overall risk for developing other chronic inflammatory
diseases, neurological manifestations and malnutrition disorders.
CD is the only autoimmune disorder where the actual genes
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Figure 1. Manhattanplot of the TDT p-values. a) The location of all genotyped SNPs on chromosomes 1-22 and X plotted on the x-axis. -
log10(p-value) result for each SNP and all transmissions on the y-axis. b) The location of all genotyped SNPs on chromosomes 1-22 and X plotted on
the x-axis. —log10(p-value) result for each SNP and all transmissions, to children in the low risk group, on the y-axis. ¢) Regional plot of association
results and recombination rates, within the region surrounding DUSP10, generated by SNAP (http://www.broadinstitute.org/mpg/snap/Idplot.php).
The x-axis show 500 kb around the most associated SNP. Genomic locations of genes within the region of interest (NCBI Build 36 human assembly)
were annotated from the UCSC Genome Browser (arrows). The left y-axis show —-log10(p-value) and estimated recombination rates (cM/Mb) from

HapMap Project (NCBI Build 36) are shown in light blue lines.
doi:10.1371/journal.pone.0070174.g001

discovered [3-7]. However, these genes cannot account for all CD
heritability, and part of the genetic variance that influences disease
development is still unknown [8].

Most GWAS so far have been performed on case control
samples. A case control study design has some advantages
compared to using a family study design. For example, in a case
control design it is possible to select a perfectly matched set of
controls to increase the chance of discovering susceptibility genes,
and furthermore, cases and controls are usually easier to collect
than individuals from the same family. However, using a family
material can be a very good complement to a case control design.
First of all, families with several affected members are likely to
have a stronger genetic component compared to sporadic cases.
Familial cases tend to be enriched for disease-predisposing alleles
and there is an increased power especially for detecting rare
genetic variants [9]. Another important fact is that statistical
analyses based on family data are robust against population
stratification. Already in their paper from 1996, Risch and
Merikangas suggested that all sib-pair families collected for non-
parametric linkage analysis in complex diseases, should be re-run
“Genome-Wide” using SNP markers and the potentially more
powerful Transmission Disequilibrium Test (TDT) [10]. The
TDT test in sib-pairs is a test of linkage in the presence of
association. Hereafter we refer to whole genome sibling TD'T" as
“Linkage GWAS”.

In this study, we aimed to uncover additional genetic factors in
CD by performing a Linkage GWAS using 206 affected children
(sib-pairs) within 97 nuclear families using the TDT test. In
addition to the Linkage GWAS we explored gene-gene interac-
tions and pathway analyses. We also performed a non-parametric
linkage (NPL) analysis and compared the results with the published
linkage analysis, with microsatellite markers, performed in the
same set of families previously [11]. Furthermore, quantitative
PCR was used to investigate levels of gene expression in small
intestinal biopsies from additional patients with CD autoimmunity
(CAI) and control patients. Finally, we stratified the TDT analysis
on HLA genotype. It has been shown that carrying DQB1*02 on
both chromosomes (i.e. being homozygous), confers higher risk of
developing CD as compared to heterozygote individuals [12]. It is
therefore conceivable that heterozygote individuals may require
more additional risk factors outside HLLA, in order to accumulate
sufficient risk to develop CD, compared with homozygous
individuals. Based on this assumption we stratified the patient in
an HLA low-risk group and an HLA high-risk group. By
stratifying the Linkage GWAS, we expected to uncover even
more of the so-called “missing heritability” in CD. This strategy
could identify different risk factors all together or perhaps a more
likely scenario is that the same risk factors outside HLA would just
be more common in the HLA low-risk group.

Results

Genotyping and Imputation
We included single nucleotide polymorphism (SNP) markers
that had a call rate above 97%, which led to the exclusion of 1.3%

PLOS ONE | www.plosone.org

of the Omni Express and 0.6% of the 660W-Quad SNP markers.
Out of the 127,535,126 imputed genotypes, 88.3% had a posterior
probability of over 0.95. Approximately 90% of the 944,512 SNP
markers had a minor allele frequency of at least 0.01 after
imputation.

Transmission Disequilibrium Test (TDT)

All markers from the TDT analysis are shown in Figure la. As
expected, the region around the CD associated HLA genes on
chromosome 6 showed the strongest association with the most
significant p-value reaching 4.9x1072! at marker rs424232. In
Table 1, we present the 35 most significant associations found
outside of HLA (HLA defined as SNP markers located within 27—
34 Mb on chromosome 6). The most significant finding outside of
the HLA region was the marker rs12734338 on chromosome 1,
including the PPPIRI12B gene.

HLA Stratified Transmission Disequilibrium Test (TDT)

In Figure 1b and Table 2, we present results from the TDT
analysis stratified on the HLA-DQ risk factor. For this analysis 115
affected offspring trios were included in the “low-risk” group and
88 trios were put in the “high-risk™ group. A region including the
DUSPI0 gene (also known as AMKP5) reached genome-wide
significance (p-value =3.8x10™%) in the low-risk group. Figure lc
presents this region including the most associated SNPs plotted on
the x-axis using SNAP.

Interaction Analyses

Since some markers just below genome-wide significance are
still expected to be true findings, we wanted to try and separate
these from the, in fact, true negative findings (those that show
linkage and association close to genome-wide significance just by
chance). In total, 603 SNP markers from 383 independent regions
and their surrounding genes were identified by three inclusion
criteria (Fig. 2 and Table S1). These genes were subsequently used
for pathway and two-locus interaction analyses.

Two-locus interaction analysis. Two-locus interaction
analysis, identified 582 SNP pairs with a p-value of less than
1.0x10* for the test comparing the model My of no association
and the general two-locus model Mg. Out of these, 101 pairs from
87 regions deviated significantly (p<<0.05) from a purely multipli-
cative model (M), which is the best fitting model when at least
one of the SNP markers is false. Under the null hypothesis we
expect to find 29 such pairs. The 101 pairs showed either epistasis
(individuals carry both risk alleles) or evidence of heterogeneity
(individuals carry either the one or the other risk allele from the
two loci).

The results with a p-value <1.0x10™* for epistasis and those
with high p-value (>0.05), which represent pairs that did not show
convincing deviation from the heterogeneity model are listed in
Table 3 and 4. Several loci were in an epistatic relationship with
HLA; 1s4899272 (ACTNI), 131073933 (COX7C), rs10482751
(TGFB2), 1s571879 (APPLI) and rs7590305 (FABPI). Also,

previously identified susceptibility loci for CD were involved in
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The top 35 associated SNPs are listed together with the surrounding genes defined by either Grail (www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genome.ucsc.edu/). The disease associations are acquired

from the “Catalog of Published Genome-Wide Association Studies” (http://www.genome.gov/gwastudies/).

For PLINK: genotypes were imputed if any of the posterior probabilities were >0.95.

For expTDT: T and U are the expected transmission counts (based on all the posterior imputation probabilities).

NPL - the most significant Non Parametric Linkage (NPL) p-value for the same locus as the SNP. P-values below 0.05 are marked in italics.

T and U - the number of heterozygous parents who transmit the alleles AT and A2, respectively. T/U - transmission odds based on the expected transmission counts.

*the marker in the set of SNPs from the linkage analysis closest to the marker in the SNP column (when this marker was not run in the linkage analysis).

closest known gene. located >500 kb from associated SNP.

doi:10.1371/journal.pone.0070174.t001
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several interactions: rs4899272 (ACTNI), rs6741418 (STAT1, GLS),
rs13096142 (CCR1,2,3,5), rs10197319 (ICOS, CTLA4) and
rs870875 (CD247).

Pathway analysis. Biological functions clustered by Ingenu-
ity Pathway Analysis (IPA) and Genetrail [13] are shown in
Table 5, 6 and 7. Several clusters were significant after correction
for multiple comparisons. The most significant network implicated
by IPA included DUSPI0 (Fig. 3 and Table 8). The second top
network included the MHC complex (HLA) and the third top
network included LPP, which is located within the most
significantly non-HLA associated region identified in CD so far

(3]

Gene Expression

Out of the 34 selected target genes, three were from the top
associated SNPs (DUSPI0, SVIL and PPPIRI?B) and the
remaining were genes identified from the two-locus and pathway
analysis. Eight genes showed significant up- or down-regulation
after correction for multiple testing using Bonferroni correction
(Fig. 4). For the top associated genes, several transcript variants
were tested (Table 9). For the PPPIRI2B gene, Isoform ¢ and d
(transcript variants NM032103.2 and NM032104.2) also known as
the small subunit (sm-M20) of myosin light chain phosphatase,
show significant up-regulation in patients with CD autoimmunity
compared to control patients. An additional ten genes showed
nominally significant differences in expression (Table 9).

Non-parametric Linkage (NPL)

The strongest linkage outside of HLA was detected in
chromosome regions 5q23.2-q33.1, and 1q32.1. In total, thirteen
regions with an NPL point wise p-value below 0.01 were detected
(Fig. 5 and Table 10). In our previous linkage-scan, using almost
the same set of families, we detected only one region (11q23-25)
with a point wise p-value below 0.01 [14]. The reason for the
improved results is mainly the almost perfect information content
achieved by a dense set of highly successful SNP markers
compared to a relatively sparse set of less successful microsatellite
markers. Also in the NPL analysis, the PPPIRI?B gene was
located in one of the top regions (1q32.1).

Discussion

This study confirmed some previous GWAS findings and in
addition, it established a new genome-wide significant region
containing the DUSPI0 gene. The top markers, rs12144971 and
rs4240931 showed a substantial effect size in the HLA low-risk
group with a transmitted versus non-transmitted allele ratio of 3.11

(Table 2).

DUSP10, TNF-a and Tissue Transglutaminase (TGM2)
The protein product of DUSPI0 preferentially binds to the
stress-activated p38 MAPK (mitogen-activated protein kinase) and
plays an important role in regulating chemokine induction after
infection by various pathogens [15], and in coordinating MAPK
activity in response to oxidative stress [16]. In previous studies,
both p38 MAPK and DUSP10 have been shown to activate TNF-
o [17,18], of which one also demonstrates that TNF-o up-
regulates TGM?2 (the gene encoding the main autoantigen in CD
[19]) in intestinal mucosa from untreated CD patients [17].
Whether this up-regulation of 7GAM?2 is of importance for the
immune response leading to formation of IgA-tTG and IgG-tTG
autoantibodies, the serological markers for CD is still unresolved.

August 2013 | Volume 8 | Issue 8 | e70174



Celiac Disease Genome-Wide Linkage and Association

S0-36T°S ve€9l  £LS0 9€l LL 180l S0-30€C ¢C6'/L ja40] 6L v€  10-390°L L9¢ ¢L0 LS ¥ 1 D 05919198 DV1VOW SOEVOLLLSA 4%
€0-31LL°€ w8 €9l SL SLL 06'0L S0-30€C T6'LL (494 143 6/ 10-3¥9°S €€0 880 04 G€E D V 96188611 leavy LELOCLS) 8
¢0-38L% ¢6’e 1LL0 6/ 99 co'Lll ¥0-3¥0°L L0'SL (A4 L9 ST C0-36L'S 09'¢ L] L1 oge O 1 SoLlese8 CNHd1 £T7998/54 L
€0-309'L L66 €81 L st To'LL  S0-306'L  8T8L  6L'E 9L LS L0-3SS9 TO 80 vT LT D 1 $868910TC oLdsna LOSYYSLSt L
€0-3LE°L €€0L 00C LE 29 ¢o'LL  S0-399C  99/L I'e €l Sy 10-399'8 8700 V60 8l L L D 04109208 [4JEL] LOSSYTLLSA 4%
81SY4S Z4ENOd £D0D
70-310°L cLsL soc [44 98 80°LL LO-3¥SE 980 8C’L 14 ¢€  so3el’l 86l 8l'E L1 s 95 V LEELYL66 S¥dSN 8914109D #1X94 ¢S0SyLLS) 9
€0-345°C 606 8€0 [43 [4} 60'LL  S0-306'S €Lal SLo 9C ¥ 10-3€6'S 870 €£°L 9 8 O L S§e6v66SLL C14NY DS3L MYH 8MX84 GLEBOOLLSA 4%
€0-3St°L 710l S8l ot L (44N (V=4 4l G8'8lL €€'€ Sl 0S 10-3SS9 20 880 144 lc D V 1/£5/910CC oLdsna LZSEvLTLS) L
€0-3LSY L08  S9'L LS 8 €CLL 90-3¢SL 90°0C vTe L1 SS  lLo-30L°€ 080 640 143 L ¥ D 069€¢8LL C1d4HT LdAVDS ££9TS61L1S) S
90-316'9 lzoz w0 18 33 €Ll 703096  LLT  S90 L€ bT 90-3T8€E SELZ 1T0 T 6 L D 6L68SL00L dLLW ZL}opD ZALWEDY SSEzEoLs! 4
20-359°S YoE vrL  Sb 59 vyl S0-366'8  YESL  v/T 6L TS TO-aLE €€y 050 9Z €L D V 10976508 MLL TIHDFEHS ¥INOT3  EPSLOTELS! 9
9voll
el Syl 8v'T €T LS Sy'LL so-3a8l'e  LgZL €£€ Ll b L0-30SY L[S0 €€L  TL 9L D V [EESTEULL aldvw 1yad zx1a Lxia 6082L6vS z
€0-39L°€ o8 6£0  LE 4} LrLL S0-309'L  T98L 800 T T 10-3L9% €50 €L L 0L D L S§59v/90L a>1SO TLSINI 9/1/89/51 4
LILA9ALY
S0-ALY'T 6LLL 6L0 TE 9 Lyl S0-3/L8  8ESL €10 €T € C0-3€€8 € €60 6 € L D 8lS6SHIL 8LYSTD1S €L72109 AId 97896154 [44
90-3L1L°L 910z €0 06 6¢€ 99'LL  S0-LTE  STLL  ¥EO0 €S 8L T0-3STE LS¥ 950 9€ 0z L D 9€9£L00T 17390 TIAS 9TlYlddd  8EEvELTLS! L
50-380'L 9g6L 6£0 L 8z 89'LL S0-3S9C 99/l  6C0 Sy €L TO-ALY9 €VE 950 LT SL D V  B89E/TE9E oviS 0009+0TS! €
S0-3STY 991 06°L 09 il 0Ll 90-3088  9/'6l €9C Jx4 £ 10-31SC el 0g'L €€ €& DO L Tvleeosol LSDYO0S £8€18801S4 oL
S0-318'L 8€'8L 6£0 69 Lz LLLL S0-306'L  6T8L  LTO vy Tl Lo-ApLL ST 090 ST SL L D  69/8KE9E VIS 0S€L£81S! €
S0-318°L 8€8L 6€0 69 LT L1l S0-306°L 678l LT0 144 4N | ) §C 090 14 sl D> Vv L¥S6CE9€E JV1S ¢SeLL8LS) €
9voll
70-38L°L [4:3 4 i [44 99 VLl S0-38L°€E LELL €L'E Ll Iy L0-3EEY 190 9€L LL Sl 5 V Geloceesl dLdVIN LXMAdd ¢X1a Lx1d 018Z/L6154 [4
Y0-3rCL €Lyl 00l 4 (14 8Ll v0-3Lv'E  08CL 00’6 4 8L 10-3/LS°L 4 VN 0 ¢ D 1 1861821 9ECWINL WVLS L1Y8Y/L1S) oL
€0-309'S L9L 6Ll 143 L9 88'LL S0-3CCe  6TLL oCe Sl 87y 10-399% €50 940 L1 €L 1L D 6SS/00LLL EVNDX orLZOLLLS L
S0-391°L €C6lL  L6'L L9 ocl ¥6'LlL  90-30L°L £1°0C 69'C 9C 0/ 10-30°L ¥oc &Vl S€ 0s V 5 89/8/980L LSOHO0S oclLeobLLLS oL
10-305°8 ¥00 960 LS ss 60TL €0-LE'L STOL  6€T 8L €y $0-395L 6Tyl LE0 66 Tl D V  €589809% IOMYd  vPOLLOELS! 4
€0-36t'C SLie  LLL € 9L L so3El’L 876l 8L L1 ¥S  10-399°¢ 780 9.0 14 6L V D 9roreloze oLdsna €L9L18LLSI L
10-3LT8 S00 SOL b 137 79Tl ¥0-38YL OrvlL 00 8 ZE t0-ALL6 IL €60 € Ll D V  L//£809% IDMHd 80£55£95! z
S0-38€'L 068L /6L 09 8Ll 0Tl 90-L€€  6SlT  LLT 9T TL 10-308'L gL SEL ¥E 9 D V 6591/980L 1SDY0S 08€£60£5! oL
€0-31T'L LrOL S8l LY 9L 00€L 90390 vTlz  €SE SL €5 L039SH SS0 080 SZ 0T V 9 lT96EL0TT oLdsna YELOY8YSI L
€0-319°L £00L 190 Ol €9 el £0-39€8 LTVC [431] 69 ¢z lo3dleY 70 LLUL S€ I v D L¥€1066C IAS £69/YCLS) oL
¥0-390°L st 18l 9 9Ll vc0C 80-39L€  LT0E L€ 8¢ /8 loF6¥'C €L v/0 13 9¢ O 1 8/9s50l0cc 0ldsnd LE6OVCHSI i
70-390°L st 18l 144 9Ll vc'0C  80-39L°€ L20€ LIE 8¢ /8 loFd6¥'C £l w0 k13 9¢ 1 DO 80l6600cC oldsna LL6vrieiss L
anjea-d bsiy> n/L n 1 bsiy> anjea-d bsiy> n/L n 1 anjea-d bsiy> n/L n 1 oY v dg (s)auab dNS 44D
pa1ybram
n sk mo sty Y614

"(1aL) 3591 wnuqyinbasig uoissiwsuel] paynens yH *z dlqeL

August 2013 | Volume 8 | Issue 8 | e70174

PLOS ONE | www.plosone.org



Celiac Disease Genome-Wide Linkage and Association

Qo
3 Pathway Analyses
% 3 _? In order to discover possible functional connections between
d ué S DUSPI10 and other genes, we analyzed genes surrounding the top
S 603 markers. A total of 845 genes were used in the analysis.
- E Ingenuity pathway analysis (IPA) included DUSPI0 within the
£ a % most significant network. Also part of this network were GLS and
~g RGS1, two genes previously identified within significant GWAS
2lg “‘n:—i loci [3], as well as the wmsulin (INS) gene, and the immune
- % regulatory nuclear factor kappa B (NF—Kb) complex (Fig. 3 and
5| .| 5 Table 8). The second top network included the MHC complex
D (HLA) and also several genes within already identified GWAS loci:
a _g ACTNI, CD247, CCR), ICOS and STATI [3]. In addition, both
< I IPA and GeneTrail [13] identified T2D genes as the most
- g significantly overrepresented gene cluster after correction for
% .2 % multiple testing (Table 5 and 6). Among this set of genes
RS £ g surrounding the 603 markers, many genes belonged to growth
] € and nutrient signaling pathways, for example, INS, INSR, EGF,
] E Z E POMC, TIPRL and PRR5L. There were also related genes directly
i § 5 .g mvolved in energy metabolism; PDKI, COX7C, COQ3 and GLS.
= £
HE: E:S § Overlapping Results with Other GWAS Findings
3| - g % Surprisingly, four out of six top loci identified by a GWAS for
& g anorexia nervosa [20] and two out of three loci involved in plasma
2 g 93 g glucose levels in type 1 diabetic patients [21] were among our 603
2 £ and 35 best SNP markers respectively. One of the genes in
% 518 é “ 5 anorexia, namely AKAPG, is also associated to fasting insulin-related
; 82 .3 traits as well as the autoimmune disease Ankylosing spondylitis
S [ I ﬁ\) El 8 [22]. Of the 40 identified regions in CD, seven regions overlap
o| 2 g gé with our 603 SNP list (LPP, STAT4/GLS, RGSI, CCR1/CCRS3,
% g :—é g £° PUS10, ICOS/CTLA4 and CD247). Out of the 69 regions reported
il2| v % g-% in the GWAS catalog for type 1 diabetes, eight overlap with the
£8 S E regions reported in this study and out of those eight, CTLA44/1COS
~ ° 8 :é é also overlap with the previously reported CD associations.
-_% = %.E b T We compared minor allele frequencies between the previous
NE: % §§ CD GWAS by Dubois et al. and our GWAS. In their top 42
218 Sy w2 associations, there was no SNP below a minor allele frequency of
o s5 g 2 0.08. In our top 42 associations, we identified five SNPs with a
2 slm| 22 £8 minor allele frequency below 0.06. This observation could just be
£ gE E = a chance finding or perhaps an indication that rare variants are
I -2l 5 é % 2 casier to discover using families. We also identified a relatively rare
8| é 3 S’g variant in the LPP gene region (rs17283813), with a minor allele
_ SE £g frequency of 0.075. This SNP was not at all significant in the
|1 485 58 GWAS by Dubois et al. (Table S1).
S —E‘ ; ‘g ; % Neither was there an association with the DUSPI0 region in the
8| =88 g £ GWAS by Dubois and co-workers. The associated markers in the
s |8 5;“:; %é % £ DUSPI0 region in our GWAS have a minor allele frequency
g i €5 ¢ around 0.5 and are hence very common in the population. It is
s2¢ é *Z difficult to say if this is a population specific effect or if DUSPI0
8| 3g=cs could be detected in an HLA stratified population from another
:‘5: g 55 S g ethnicity. Interestingly, the DUSPI0 region has also been identified
Ol g %‘us _§ % as a risk factor for colon cancer by a meta-analysis of three GWAS
{3 %Eg g N from the UK. This is an indication that colon cancer and CD
| el é §§ could share genetic risk factors.
5|z S25c25 Key Metabolic Regulators as well as the Top Associated
s E ; 5 3 gene PPP1R12B were Differently Expressed in CD Cases
o 2l Bg582 2 Compared to Controls
£ 3 .§ E g3 g Another important finding was the difference between cases and
v 2G| a°2%82238 controls and their gene expression patterns in the small intestine.
N Ns€o T N Eight of the 34 candidate genes selected for quantitative
% ‘%.ﬁ ;% .‘Dgé measurements of gene expression, including PPPIRI2B, PDKI,
s E|x é g é g = é GLS, PRR5L and the INSR, showed significant up or down

regulation of mRINA levels in cases compared to controls (Fig. 4).
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Criteria

Criteria 2
Criteria 3 I

53 (12| 420 { 45 | 73

Figure 2. lllustration of the three inclusion criteria used for pathway and interaction analyses. The first criteria of p-values less than
3.0x10™*in the linkage TDT analysis resulted in a total of 477 markers. The second criteria included a comparison of the results from this study with
the results from the study by Dubois et al. [3]. We included 118 SNPs that had a simple score based on a combined p-value less than 5.0x107> and in
the same allelic direction in both datasets. The third criteria involved selecting markers with a large effect size. We included 65 markers which had a
ratio of transmitted versus not transmitted (T/NT) alleles of over 5 or below 0.2, combined with a p-value of less than 2.0x1073.
doi:10.1371/journal.pone.0070174.g002

Table 3. The top epistasis interaction results from the 101 two-locus interaction analysis.

Snp 1 Genes chr Snp 2 Genes chr N Py, P Puz
rs2187668 HLADQ 6 rs4899272 ACTNT 14 95 4.0E-17 1.42E-13  4.E-02
rs204034 SHISA9 16 94 1.3E-14 1.09E-12  5.E-02
rs571879 APPL1 HESX1 IL17RD. DNHD2. ASB14 3 94 23E-15 521E-11  3.E-02
rs204999 HLA 6 rs1073933 COX7C 5 94 9.9E-14 9.27E-12 3.E-02
rs11836636  ATXN7L3B KCNC2 12 91 1.1E-12  8.15E-11  4.E-02
rs7745052  FBXL4. C6orf168. USP45. COQ3. POU3F2. SFRS18 6 92 2.3E-05 1.79E-05 4.E-02
rs10749738 FOXD3 1 rs1373649 BMPR1B 4 93 2.7E-05 1.78E-05 4.E-02
rs3860295  RASSF5 IKBKE 1 rs13096142 CCR5 CCR3 LTF CCR2 CCR1 3 95 1.1E-05 6.48E-06 1.E-02
rs9396802  KIF13A NUP153 FAM8A1 6 152194633 NETO1 18 95 3.8E-06 6.82E-06 2.E-02
rs9296204 MTCH1 PI16 6 rs4385459 LY96 JPH1 GDAP1 TMEM70 TCEB1 8 9528E-05 9.91E-06 3.E-02
rs9397928  ARID1B* 6 152415836 FSCB* 14 93 2.8E-05 1.75E-05 3.E-03
rs1145212  APOA5 ZNF259 BUD13 11 rs10083673  MYO5A 15 95 6.6E-05 1.77E-05 2.E-03
rs7756191 DNAHS8 6  rs1108001 NAV2 HTATIP2 DBX1 PRMT3 11 95 3.5E-05 2.60E-05 3.E-03
rs10197319 ICOS CTLA4 2 rs882820 SRL TFAP4 16 94 14E-05 3.03E-05 3.E-05
rs4899272  ACTN1 14 rs17703807  C150rf41 15 83 2.9E-05 8.68E-05 1.E-02

All SNP pairs which reached an interaction p-value of P;,<<1.0x10™*, in addition to Py><0.05.

*closest known gene. located >500 kb from associated SNP.

Poy— p-value for the test statistic comparing the models M, (no association) and the general model Mg.
P1,— p-value for the test test comparing the models Mg (heterogeneity) and the general model Mg.
Pma— p-value for the test comparing the models My, (multiplicative) and the general model Mg.
doi:10.1371/journal.pone.0070174.t003
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This could very well be a consequence of an ongoing inflammation
or possibly also indicate an underlying metabolic difference.
Glutamine is converted to glutamate by the enzyme glutaminase
(GLS). In turn, glutamate can be converted to proline and
subsequently catabolized by the enzyme proline dehydrogenase
(PRODH) resulting in the production of reactive oxygen species
and apoptosis [23]. In the present study, we show that the
expression of GLS is down-regulated and PDK7 is up-regulated in
cases. Interestingly, a previous study has shown that cell lines with
a known familiar mutation for amyotrophic lateral sclerosis (ALS)
have the same expression pattern, with up-regulated PDK1 and
down-regulated GLS, as compared to the wild-type cell line [24].
PRR5L (also called Protor-2) belong to the TOR signaling
pathway. Our results show an up-regulated PRR5L expression in
cases (Iig. 4). Like DUSP10, the protein product from PRR5L has
been shown to stimulate an increased TNF-o expression [25].
Another gene, connected to the MAPK pathway and which was
identified both by our two-locus interaction analysis and in
significant biological functions implied by IPA, was the APPLI
gene. APPLI is a binding partner of the protein kinase Akt2 and a
key regulator of insulin signaling [26]. It takes part in adiponectin
signaling to stimulate activity of p38 MAPK in muscle cells [27]
and is a critical regulator of the crosstalk between adiponectin
signaling and insulin signaling pathways [28]. We could detect

PLOS ONE | www.plosone.org

Table 4. The top heterogeneity results from the 101 two-locus interaction analysis.

SNP1 Genes chr SNP2 Genes chr N Py, P> PM2

rs4899272 ACTN1 14 rs4820682 SRRD HPS4 TFIP11 ASPHD2 MIR548) 22 95 7.1E-06 6.97E-02 2.E-02

TPST2 CRYBB1 CRYBA4

rs4426448 DOK6 18 94 9.5E-06 6.80E-01 1.E-02
rs870875 CD247 1 94 9.4E-05 7.19E-02 3.E-02
rs4842007 PAEP 9 95 86E-06 5.66E-01 4.E-02

rs571879 APPL1 HESX1 IL17RD 3 rs4385459 LY96 JPH1 GDAP1 TMEM70 TCEB1 8 94 4.1E-05 5.81E-01 5.E-02

DNHD2 ASB14
rs7590305 FABP1 THNSL2 2 rs390495 MICAL3 22 93 7.0E-05 9.09E-01 3.E-03
rs7745052 FBXL4 C60rf168 USP45 6 rs4930144 IGF2AS TH MRPL23 TNNT3 SYT8 ASCL2 1 50 1.9E-05 5.30E-01 3.E-02
COQ3 POU3F2 SFRS18 TNNI2 LSP1 IGF2 INS-IGF2 INS H19

rs10749738 FOXD3 1 rs10498982 EPHA7* 6 93 2.0E-05 1.95E-01 4.E-02
rs2605393 STAC 3 63 73E-05 437E-01 4.E-02

rs2187668 HLADQ 6  rs11013804 KIAA1217 10 94 3.5E-14 840E-02 2.E-02
rs1676235 ESRRB ANGEL1 VASH1 14 43 20E-07 855E-02 3.E-02

rs958802 KANK4 L1TD1 INADL 1 rs2194633 NETO1 18 95 19E-05 555E-01 3.E-02

rs2345981 KHDRBS2 6 rs6495130 RYR3 15 94 6.1E-05 1.58E-01 3.E-02

rs11940562 PCDH7* 4 rs4905043 ITPK1 CHGA 14 44 46E-05 277E-01 2.E-02

rs4656538 POU2F1 1 rs2187668 HLADQ 6 94 3.0E-13 1.19E-01 5.E-02

rs3860295 RASSF5 IKBKE 1 rs7046385 SMC2 9 94 53E-05 1.07E-01 2.E-02

rs6741418 STAT1 GLS STAT4 2 rs10798004 Clorf25 Clorf26 IVNSTABP RNF2 1 87 7.2E-05 7.68E-02 4.E-02
rs1571812 VLDLR 9 86 3.0E-05 9.19E-02 4.E-02
rs882820 SRL TFAP4 16 87 4.2E-05 3.52E-01 6.E-03
rs1470379 VIM 10 82 1.0E-05 3.70E-01 8.E-03
rs10946659 DCDC2 NRSN1 6 87 19E-06 6.64E-01 9.E-03

rs10482751 TGFB2 1 rs1571812 VLDLR 9 92 5.2E-05 1.86E-01 1.E-02

All SNP pairs which reached an interaction p-value of P;,>0.05, in addition to Py;,<0.05.

*closest known gene located >500 kb from associated SNP.

Po2— p-value for the test statistic comparing the models M, (no association) and the general model Mg.

P1>— p-value for the test test comparing the models Mg (heterogeneity) and the general model Mc.

Pma— p-value for the test comparing the models My, (multiplicative) and the general model Mg.

doi:10.1371/journal.pone.0070174.t004

expression of both APPLI and APPL2 in small intestinal biopsies
and a significantly lower expression of APPL2 was detected in the
CD autoimmunity cases as compared to controls (Fig. 4). Lower
expression of APPL2 levels lead to enhanced adiponectin
stimulated glucose uptake and fatty acid oxidation [29]. A SNP
(rs10861406) included in the top 603 list was located upstream of
the APPL? gene, however the promotor of this gene was on the
opposite side of a recombination hotspot and therefore not
included in the gene list for pathway analyses.

The most significant finding from our non-stratified linkage
GWAS analysis was the association with the PPPIRI2B gene
region. PPPIR12B is involved in smooth muscle contractibility and
mediates binding to myosin [30]. Myosin light chain phosphatase
from smooth muscle consists of a catalytic subunit (PP1c) and two
non-catalytic subunits, M130 and M20. The two non-catalytic
subunits are both encoded by the PPPIRI2B gene. The M130
transcript was not differentially expressed between CD autoim-
munity and control patients while the small subunit “M20”
showed a significantly higher expression in patients with CD
autoimmunity. (PPPIRIZ2B 22 in Fig. 4) Several other genes
located close to top markers such as the PPP3CA, ACTNI, MYOIB,
MY054, MAPKI, PRRKCH, PRKCQ, PRRACB, PRRSL and NTS
genes, are connected to smooth muscle when examining their
function by using AEGG [31] and Gene Ontology [32].
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Figure 3. Ingenuity network 1. The top network identified by the Ingenuity IPA software using genes surrounding all 603 most associated SNPs
from the TDT analysis. Molecules in gray were present among the genes from our TDT analysis and molecules in white were added by the IPA

software. The DUSP10 gene is marked in yellow.
doi:10.1371/journal.pone.0070174.g003

The second most significant region in the HLA-stratified
analysis after DUSPI0 contains the SVIL gene. The product of
this gene has been suggested to bind LPP [33]. In our two-locus
interaction analysis, the LPP locus and a locus containing K7F134
was one of the 101 interaction pairs. K7F/34 is a motor protein,
which shuttles vesicles containing AP-1 and the mannnose-6-
phosphate receptor [34]. KTF134 was significantly down-regulated
in intestinal biopsies from CD patients in our gene expression
analysis (Fig. 4). SVIL is associated with cell-focal adhesions
(substrate contacts), which are important for rapidly moving cells
such as for example immune cells but also for motility and polarity

PLOS ONE | www.plosone.org

10

of intestinal epithelial cells. SVIL mRNA was down-regulated in
our gene expression analysis, however, not significant after
correction for multiple testing.

Proline and Glutamine Metabolism - Part of a “Danger
Signal”

Amoebiasis was one of the nominally significant pathways in the
GeneTrail analysis of genes surrounding the two-locus interaction
SNPs (Table 7). Several of these genes were also present together
with DUSPI0 and the MHC class II genes in the two most
significant IPA generated networks (marked in bold text in

August 2013 | Volume 8 | Issue 8 | 70174
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Table 5. Biological functions of genes surrounding the 603 top associated SNPs. Results from IPA.

Function p-value B-H p-
Annotation (Raw) value* Molecules Molecules
non-insulin-  0.0000057  0.025 ABCC8. ADRA1B. ADRA1D. AGT. APOA5. ATP10A. BCL2L11. CCR5. CD38. CNTNAP2. FOXP1. FTO. HFE. 30
dependent HFE2. INS. INSR. KCNJ11. KIRREL3. KLF10. mir-154. mir-448. MTTP. PBX3. PIEZO2. PPARA. PPP3CA. PRDM10.
diabetes RGS5. VEGFA. ZMYM2
mellitus
quantity of  0.0000082 0.025 ABCC8. ADRA1B. AGT. APLP2. ATP2B3. BCL2. BMP2. BTK. CAMLG. CCR5. CD247. CD38. CHGA. CX3CR1. 44
metal CXCL13. DARC. DCN. DVL1. EGF (includes EG:13645). FBXL5. FCER1A. GNA14. GNB1. HFE. HFE2. IGF2. INS.
INSR. KCNJ11. LTF. NTS. NUCB2. POMC. PRL. PRNP. PTGDR2. RGS1. RYR3. SELL. SOD1. TRPM8. TXNIP.
VAV3. VEGFA
incorporation 0.000010  0.025 AGT. AKAP13. BMP2. CD40. EGF (includes EG:13645). IGF2. INS. INSR. PRL. THBS2. TNFSF13B. VEGFA. WT1 13
of thymidine
quantity of  0.000018  0.033 ABCC8. ADRA1B. AGT. ATP2B3. BCL2. BTK. CAMLG. CCR5. CD247. CD38. CHGA. CX3CR1. CXCL13. DARC. 37
Ca2+ DCN. DVL1. EGF (includes EG:13645). FCERTA. GNA14. GNB1. IGF2. INS. INSR. KCNJ11. NTS. NUCB2. POMC.
PRL. PRNP. PTGDR2. RGS1. RYR3. SELL. SOD1. TRPM8. VAV3. VEGFA
eye 0.000022 0.033 BID. BMPR1B. CD247. CHD7. CRYBB2. CX3CR1. DLX1. DNMT3A. EBF3. EGF (includes EG:13645). FJX1. FTO. 37
development GJA3. H19. HESX1. IFT88. IGF2. IRX3. ITGA6. LUM. MITF. OGN. PAX5. PROM1. PRRX2. PYGO1. SEMA5A. SOD1.
STAT1. TGFB2. TH. THBS2. THRB. TUB. USH2A. VEGFA. WT1
diabetes 0.000027 0.034 ABCC8. ABCG1. ABT1. ADRA1B. ADRA1TD. AGT. APOA5. ATP10A. BCL2. BCL2L11. BTC. BTN2A1. BTN3A2. CBLB. 58
mellitus CCR5. CD200. CD38. CD40. CNTNAP2. CYBA. E2F3. ENAH. FOXP1. FTO. GABRD. HFE. HFE2. HIST1H3A
(includes others). HTR2C. ICOS. IGF2-AS1. INS. INSR. KCNJ11. KIRREL3. KLF10. mir-154. mir-448. MTTP. PBX3.
PDE8A. PGM1. PIEZO2. PPARA. PPP3CA. PRDM10. PRSS16. PRUNE2. PXDNL. RGS1. RGS5. SELL. SOD1. TH.
THRB. TSPO. VEGFA. ZMYM2
angiogenesis 0.000032 0.034 BMP2. NOG. TGFB2. VEGFA 4
of bone
quantity of ~ 0.000071 0.043 ABCC8. ADRA1B. AGT. ATP2B3. BCL2. BTK. CAMLG. CCR5. CD247. CD38. CHGA. CX3CR1. CXCL13. DARC. 38
metal ion DCN. DVL1. EGF (includes EG:13645). FCERTA. GNA14. GNB1. IGF2. INS. INSR. KCNJ11. NTS. NUCB2. POMC.
PRL. PRNP. PTGDR2. RGS1. RYR3. SELL. SOD1. TRPM8. TXNIP. VAV3. VEGFA
development 0.000069  0.043 BCL2. BCL2L11. BID. BMP2. BMPR1B. CD247. CHD7. CRYBB2. CX3CR1. DLX1. DNMT3A. EBF3. EGF (includes 42
of head EG:13645). FJX1. FTO. GJA3. H19. HESX1. IFT88. IGF2. IRX3. ITGA6. LUM. MITF. MYO5A. NOG. OGN. PAX5.
PROM1. PRRX2. PYGO1. SEMA5A. SOD1. STAT1. TGFB2. TH. THBS2. THRB. TUB. USH2A. VEGFA. WT1
migration of 0.000057 0.043 ADIN (includes EG:104923). AGT. APLP2. APPL1. ARHGAP5. B3GAT1. BCL2. BGN. BID. BMP2. BTC. BTK. CBLB. 108
cells CCR5. CD200. CD247. CD36. CD38. CD40. CD99. CHGA. CMA1. CNTNAP2. CSF2RA. CTBP2. CTNNA2. CTSG.

CX3CR1. CXCL13. DARC. DCDC2. DCN. DISC1. DLX1. DYX1C1. E2F3. EBF3. EGF (includes EG:13645). ELMO?2.
FCERTA. FH. FHL2. GFRA1. GNA12. GRIA2. GZMB. HTATIP2. ICOS. IGF2. INS. INSR. ITGA6. KIAA0319. LAMA2. LPP.
LSP1 (includes EG:16985). LTF. LUM. LY96 (includes EG:17087). MAPK1. MNX1. MTAP. MYO10. MYOTF. NAV1.
NOG. NPTX2. NTS. NUCB2. PAEP. PDPN (includes EG:10630). PEX11B. PEX13. POMC. POU3F2. PPARA. PPM1F.
PRKCQ. PRKCZ. PRL. PRNP. PROK2. PTGDR2. PTGES. PTK2 (includes EG:14083). PVR. RASSF5. RGS1. SATB2. SELL.
SEMASA. SOD1. STAT1. TDP2. TGFB2. THBS2. TIAM1. TNFAIP8. TNFRSF18. TNFRSF4. TNFSF13B. TSPO. UNC5C.
VASH1. VAV3. VEGFA. VIM. WWOX

cell movement0.000073 0.043 ADCY10. ADI (includes EG:104923). AGT. APLP2. APPL1. ARHGAP5. B3GAT1. BCL2. BGN. BID. BMP2. BTC. 118
BTK. CATSPER3. CBLB. CCR5. CD200. CD247. CD36. CD38. CD40. CD99. CHGA. CMAT1. CNTNAP2. CSF2RA.
CTBP2. CTNNA2. CTSG. CX3CR1. CXCL13. DARC. DCDC2. DCN. DISC1. DLX1. DYX1C1. E2F3. EBF3. EGF (includes
EG:13645). ELMO2. ENAH. FCERTA. FH. FHL2. GFRA1. GNA12. GNB1. GRIA2. GZMB. HTATIP2. ICOS. IFT88. IGF2.
INS. INSR. ITGA6. KIAA0319. LAMA2. LPP. LSP1 (includes EG:16985). LTF. LUM. LY96 (includes EG:17087). MAPK1.
MNX1. MTAP. MYO10. MYO1F. NAV1. NCK2. NOG. NPTX2. NTS. NUCB2. PAEP. PDPN (includes EG:10630). PEX11B.
PEX13. POMC. POU3F2. PPARA. PPM1F. PRKCQ. PRKCZ. PRL. PRNP. PROK2. PTGDR2. PTGES. PTK2 (includes
EG:14083). PVR. RASSF5. RGS1. RGS10. SATB2. SELL. SEMA5A. SOD1. SPAG16. STAT1. TASTR3. TDP2. TGFB2. THBS2.
THRB. TIAM1. TNFAIP8. TNFRSF18. TNFRSF4. TNFSF13B. TSPO. UNC5C. VASH1. VAV3. VEGFA. VIM. WWOX

apoptosis 0.000069 0.043 ABCG1. ADCY10. ADIT (includes EG:104923). ADRATB. ADRATD. AGPAT2. AGT. APPL1. ATXN1. BCL2. BCL2L11. 153
BCL2L13. BGN. BID. BIK. BMP2. BMPR1B. BTC. BTK. CACNA1A. CBLB. CCDC86. CCNI. CCNL2. CCR5. CD200.
CD247. CD36. CD38. CD40. CD5L. CD99. CDK11A/CDK11B. CSF2RA. CTBP2. CTSG. CX3CR1. CYBA. DACH1. DCN.
DLX1. DNMT3A. DUSP10. DVL1. E2F3. EGF (includes EG:13645). EPHA7. EPHX1. EPM2A. FABP1. FANCC. FBXLS5.
FCER1A. FHL2. FOXP1. FSTL3. GFRA1. GNA12. GRIA2. GZMB. HFE. HSF2. HTATIP2. ICOS. IFNE. IGF2. IKBKE.
IL17RD. INS. INSR. IPPK. ITGA6. ITGB3BP. ITPK1. IVNSTABP. KIFAP3. KLF10. LAMA2. LIG4. LSP1 (includes EG:16985).
LTF. LUM. MAGED1. MAGEH1. MAPK1. mir-154. mir-506. MITF. MLLT3. MNAT1. MTCH1. NELL1. NOG. NPTX2. NTS.
PAEP. PAWR. PAX5. PDCD6IP. PEX11B. PKN2. POLH. POMC. PPARA. PPM1F. PPP2R4. PPP3CA. PRAME. PRKCH.
PRKCQ. PRKCZ. PRL. PRNP. PRPF19. PRUNE2. PTGES. PTK2 (includes EG:14083). PUS10. RASSF5. RGS5. RNASEH1.
SELL. SGCG. SLC25A6. SMARCA2. SMOX. SOD1. SPAG16. ST14. STAT1. TFAP4. TGFB2. THBS2. TIAM1. TMEM109.
TMEM132A. TNFAIP8. TNFRSF18. TNFRSF4. TNFSF13B. TREX2. TRPS1. TSPO. TUB. TXNIP. UNC5C. VEGFA. VIM.
VPS13A. WT1. WWOX. XPO1. ZMYM2

quantity of  0.000076 0.043 AGT. BCL2. BCL2L11. BID. BIK. BST1 (includes EG:12182). BTK. CARD11. CBLB. CCR5. CD200. CD247. CD36. 65
leukocytes CD38. CD40. CD5L. CRLF2. CX3CR1. CXCL13. DCN. DMD. DUSP10. FABP1. FANCC. FCER1A. FOXP1. GNA12.

HESX1. ICOS. IGF2. INS. ITGA6. KDM5A. KIFAP3. KLF10. LAMA2. LIG4. LSP1 (includes EG:16985). LUM. NOG.

PAWR. PAX5. PRKCQ. PRL. PRNP. PROK2. PTGDR2. PTGES. PTK2 (includes EG:14083). RASSF5. RGS1. RGS10.

SELL. SOD1. ST14. STAM. STAT1. TNFRSF4. TNFSF13B. TOX. TXNIP. VAV3. VEGFA. VPREB1. WWOX

A total of 823 genes surrounding the 603 top associated SNPs were put into the IPA software.

Surrounding genes were defined by either Grail (www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genome.ucsc.edu/). Gene families located in the
same region were manually curated so that only one gene in each family remained in each region, based on a similar official gene symbol.

*Hochberg Y, Benjamini Y. Statistics in medicine 1990; 9:811-8.

doi:10.1371/journal.pone.0070174.t005
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Table 7. Biological functions of genes surrounding SNPs from the two-locus interaction. Results from GeneTrail.

p-value
Category rank Subcategory expected observed (raw) enrichment Genes
KEGG 1 Amoebiasis 1.01 4 0.0178 up ACTN1 CTSG GNA14 TGFB2
KEGG 2 T cell receptor signalling 1.04 4 0.0196 up CBLB CD247 ICOS VAV3
KEGG 3 PPAR signaling pathway 0.66 3 0.0282 up APOA5 CD36 FABP1
KEGG 5 Ubiquitin mediated proteolysis 134 4 0.0438 up CBLB KLHL9 TCEB1 UBR5
KEGG 6 Primary immunodefciency 0.34 2 0.0441 up BTK 1COS
KEGG 7 Basal transcription factors 0.35 2 0.0465 up GTF2B TAF7L
NIA human 1 Hyperlipoproteinemias 0.07 2 0.0017 up APOAS5 FABP1
disease
gene sets
NIA human 2 Diabetes Mellitus Type 2 2.80 6 0.0493 up APOA5 CCR5 CD36 CMA1 FABP1 TH
disease
gene sets

Size of test set: 186 (173 known). Number of known ref. IDs: 44829.
KEGG: number of annotated genes in test set: 52. Genes in reference set: 5405.

doi:10.1371/journal.pone.0070174.t007

Table 8). Another gene present in these networks was the gene
encoding for the immune molecule CD40 (associated SNP
rs6065961, Table S1). CD40 has been shown to regulate immune
responses to another parasite, Leishmania Major, by shared
signaling through p38 MAPK and ERKI1/2 [35]. CD40 also
regulates DUSP expression and activity, which in turn contribute
to anti-leishmanial functions [35]. It has been suggested that
Leishmania Major inhibits CD40-triggered p38 MAPK signaling
as part of an immune evasion strategy [36].

Another overrepresented category from GeneTrail was the
extracellular matrix (ECM) (Table 6). Also, in the two most
significant Ingenuity networks from the 603 marker analyses,
ECM molecules and matrix metalloproteinases (MMPs) were
included (Table 8). The ECM represents a major barrier to
parasites like amoebas and leishmania. Parasites produce a wide
variety of proteases to break down the ECM in order to access
essential nutrients and invade host tissue [37]. A different situation
when the ECM is degraded is during nutrient deprivation. In this
way the ECM can provide energy for starving host cells. Just like
gluten, the ECM has an unusually high proline content. MMPs
are enzymes, which break down ECM making proline readily
available as a nutritional source. Pandhare and co-workers have
shown that energy or nutrient stress activates MMPs as well as the
degradation of proline and furthermore demonstrated that, as the
levels of glucose decreased to 1 mM and lower in the medium,
intracellular proline increased almost 2-fold [38]. If gluten
lingering in the intestine conveys a signal of ECM degradation
(due to increased proline levels), several other mechanisms will
most likely signal that there is food available at the same time
(salivary secretion as one example is shown in Table 6). In this
case, the immune system will rule out starvation as a possibility
and the only other sensible option would be to search for an
invasive intruder breaking down the ECM. The autoantigen in
CD, TGM2, counteracts proteolysis and degradation of ECM by
crosslinking ECM proteins [39]. If DUSP10 and PRRL5 up-
regulate TNF-at and subsequently TGM2 [17,18,25], in CD, the
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A total of 187 genes from the interaction analysis were put into the GeneTrail software.
Surrounding genes were defined by either Grail (www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genome.ucsc.edu/). Gene families located in the
same region were manually curated so that only one gene in each family remained in each region, based on a similar official gene symbol.

NIA human disease gene sets: number of annotated genes in test set: 20. Genes in reference set: 1487.

purpose may very well be for TGM2 to help prevent an apparent
or illusory pathogenic invasion. It has also been shown that down-
regulation of SVIL protects against ECM invasion by pathogens
[40]. In our gene expression analysis SVIL was nominally
significantly down-regulated in cases (Table 9).

When the body “senses” a pathogen disturbing energy balance
or breaking down ECM, but there are no pathogenic antigens
present, maybe there could be a risk that “self” antigens become
our immune systems futile attempt to rid the perceived pathogen.
In HLA-DQAI1*02/05 and HLA-DQBI*02 carriers, peptides
derived from TGM2 could constitute such “self” antigens. It is
possible that individuals carrying other HLA molecules still
respond to this “phantom pathogen” and that under these
circumstances, various other antigens present in the intestine at
the time could become triggers of other autoimmune diseases. If
the expression or presence of an autoantigen, like TGM2, was
stimulated by the disturbed proline/glutamine homeostasis, it can
explain why symptoms in CD also disappear by withdrawal of
gluten.

Conclusion
At least four major functional components together with gluten,
all seem to play a role in forming an individual’s risk for CD:

1) polarity and epithelial cell functionality, e.g. nutrient/vesicle
transport, proliferation and apoptosis, important for cell
migration from the crypt to the shedding (apoptosis) at the
apical villi.
intestinal smooth muscle, which is important for the
movement of the bowel as well as the villi.
growth and energy homeostasis, which includes proline and
glutamine metabolism, and finally

the innate and adaptive immune system.
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Table 8. The top four networks generated by the Ingenuity IPA software (allowing only direct connections between proteins/

1: Cell Morphology,
Cellular Assembly and
Organization, Hair and
Skin Development and
Function. Ingenuity Score:
155, 109 focus molecules.

2: Cell Signaling,

Molecular Transport, Vitamin
and Mineral Metabolism.
Ingenuity score: 97,

86 focus molecules.

3: Cellular Assembly

and Organization, Cellular
Function and Maintenance,
Developmental Disorder.
Ingenuity score:

77, 69 focus molecules.

4: Post-Translational
Modification, Carbohydrate
Metabolism, Lipid
Metabolism. Ingenuity

score: 74, 67 focus molecules.

ABT1,ACAP3,Ant,APLP2,APOA5,ARID1B,ASB6,
ASPN,ATXN1,BASP1,BGN,BICD2,BIK,C1q,Cbp/p300,LCDC50,CCNL2,C
D200,CD5L,CDK11A/CDK11B,CEP55,CHGA,COL22A1, collagen, Collagen type |,Collagen type,IV,Creb,
CSF2RA,CXCL13,CYBA,CyclinA,CyclinE,DACH1,DCAF6,DCN,DDB1,DPP6,DUSP10,
E2F3,E2f,EAPP,EFCAB7,ELOVL6, EPB41L2, FABP1,FCER1A,Fibrinogen,FOXD3,GGA1 (includes
EG:106039),GLS,GLTPD1,GRIA2,GSPT2,GSTT2/GSTT2B,GTF2B,HESX1,

HIST1H3A (includes others),Histone h3,Histone h4,HMG20B,Holo
RNApolymerasell,HTATIP2,IGF2,Immunoglobulin,INS,Insulin,ITGA6,ITG

A10,ITGB3BP,IVNS1ABP,KDM5A KLF12,LAMA2,Lamin b, Laminin1,Laminin,LBR (includes EG:368360),
LIG4,LSAMP,LUM,MMP17,Mmp,MMP23B,MNAT1,MTTP,MVD,N-

cor,NAP1L3,NBPF11, (includes others),

NCOA5,NFkB(complex),NFRKB,NTS,PAX5,PBX3,PCBD2, PKIB,POU2F1, POU3F2,
PPARA,PPM1F,PRL,PRMT3,PRMT8,PRNP,PTGES,PVR,pyruvate kinase, Rb,RBM8A,RGST,RNA polymerase
1,LRNF126,SLC25A6,SMC2,SRSF7,SYT8,TAF7L,TCEB1,TEAD4, Tof beta,TGFBz,TGFﬁ\N,THBSZ,thymidine,
kinase,thyroid hormonereceptor, TNFRSF4, TRHDE, TSPO,TXNIP,Ubiquitin,UBR5,Vegf,VEGFA,
VIM,VPREB1,VPS37C,WT1,ZRANB1

14-3-3,Actin, ADRA1B,ADRA1D,ADRBK2,AGT,AKAP13,Akt,alcohol group acceptor phosphotransferase,
ACTN1, Alpha tubulin,Angiotensin Il

receptor type 1,Ap1, ARHGAP5, ARHGEF18,BCL2,BCL2L11,BTK,Calmodulin,CaMKII,CARD11,caspase,C
BLB,CCR5,CD3,CD6,CD36,CD38,CD40,CD247,chemokine, CTSG,CX3CR1,DARC,

DISC1,DMD,DVL1,Dynamin, Dynein,dystroglycan,EGF (includes
EG:13645),EPB41L3,EPHA7,ERK,ERK1/2,estrogen receptor,F Actin,FCRL4,FHL2,Focal adhesion kinase,G
protein,Gap,GLRX3,GNA12,GNB1,Gpcr, GPR20,GPR27,GPR33,GPR45,GPR111,GPR115,GPR149,GPR161,growth
factor receptor,GZMB,Hsp70,Hsp90,HTR2C, /COS,Iga,INADL,INSR,JAK,Jnk KLF10,LIN7A,LPHN2,LTF,MAPK1,
Mapk,MHC Class | (complex), MHC Class Il (camplen,Mlec,MRO (includes EG:100286774),
MYT1L,NADK,NCK2,Nfat(family), NMDA

Receptor,O3FAR1,0R51E2, P38 MAPK, p85 (pik3r), Pak,PAWR,PDCD6IP,PDK1,PDPN (includes EG:10630),PI3K
(complex),PI3K p85,Pkc(s),PKN2,PLC gamma,POMC,PP2A,PPP3CA,PRKCH,PRKCQ,PRKCZ, PTGDR2,PTK2
(includes EG:14083),Rac,Ras,RASSF5,Rxr,SGCG, SMARCA2,SOD1,Spectrin,
STAM,STAT1,STAT,STAT5a/b,TAB1,TAST1R3,TCR,TH,THRB, TIAM1,TIMM8A,TNNT3,Troponin t, TUB,Tubulin,
UTRN,VAV3,VAV,VN1R5

ABCG1,ABTB2,ACAD9,ACAD10,ACADSB,ADI1 (includesEG:104923), AGPAT2,AGPAT3,AGPAT4,
AGPAT5,AGPAT6,ALDH18A1,ARL6,ATL2,B9D1,BAIAP2L1,BCL2L13, BRP44,C100rf35,C100rf88,
CAMLG,CC2D2A,CCBL2,CCNI,CDH18,CDK5RAP2,CHIC2,CNTNAP2,CPSF3L,CRYL1,
CTNNA2,DDX46,DMXL1,DOCK4,DSE,EBNA1BP2,ELMO2,ELMO3,ERGICT,
ERGIC2,ERGIC3,FAM125A,FAM125B,FAM175B,FBXO8,GEMIN6,GEMIN8,GLA,GNL1,HAUS2,H
AUS3,HAUS5,HAUS7,HAUS8,HCN1,HCN2,HERC3,HERC4,HERC6,HFE,HNRNPH2,HNRPLL,
IFT20,IFT52,IFT57,IFT88,IL13RA1,IL13RA2,INTS2,INTS9,LPPLSG1,MAD2L1BP,MAGEH1,MAOA MCAT,MICAL3,MKS1

(includes EG:287612),MOAP1,MRPL23,MRPL20 (includes EG:39477),MRPL3 (includes EG:11222),MRPL40
(includesEG:18100),MRPS21,MTAP,MYLIP,MYO1F,NDUFAB1, OSTF1,0XA1L, PALM,PCMTD1,PHKA1,PHRF1, PIGQ,PIGY,PPAP2B,
PRAME,PTPN14,PYGB,REEP5,RIC3,RNF122,RNF166,RTN3,SARS2,SCYL3,SEC24A,SEC24B, SEMAS5A, SERINC1, SGSH,SHPRH,SIL1
(includesEG:100334837),SIPA1L2,SIPA1L3,SLC17A2, SLC23A2,SMEK2,SMOX,SSU72,STK19,TBC1D15,TCTN2,TFAP4,
TFR2,TGM3,THAPS5, TIPRL, TOP3B,TRIM17,TRIM44,TUBG2,UBC,USP44,VEZT VPS37A,ZDHHC8,Z

MIZ1,ZNF259

AGXT2L1,AHCYL2,ANGEL1,ANKRD17,ANKRD34A,ARMC9,ASXL1,ASXL2,AURKAIP1,B3GALT6,
BAP1,BTN3A2,C150rf41,C10rf112,C10rf198,C2CD2,C90rf106,CCDC86,CCNDBP1,CCPGT,CENPP,COX20 (includes
EG:116228),CTU2,CXXC4,DAK,DENND3,DHRS3,DLST,EFR3B,ELF2,ENDOV,FBXL4,FIST (includes EG:288584), FTO,GDAP1,
HAT1,HSPA2,IER3IP1,IFIH1,IMP3,INPP5A,INPP5B,INPP5E,INPP5K;IPO4,IPPK,KANK4,KCNK10,KDM1B,KHNYN,LMBR1,MB21D2,
MCF2L,ME

D20,METTL10,MRPL15 (includes EG:27395),MRPS18A,MRPS9

(includesEG:301371), MTCH1,MTMR8,MTMR9,PABPC5,PAN2,PITRM1,
PMPCA,POLR3GL,PPM1G,PRDM10,PRPSAP2,PRUNE2, PSMB10,
PSTK,PUSL1,PXDNL,RCN3,RPL28,SAR1B,SCAF4,SCNN1D,SDR39U1,
SEC13,SEC16A,SEC16B,SEC23A,SIRT6,SLC35C2,SLC39A10,5LC45A4,SLC6A3,SYF2 (includes
EG:170933),SYNGR1,SYNJ2,TAPT1,TMEM70, TMEM132A,TPTE/
TPTE2,TRMT5,TSPAN9,TTYH2,TTYH3,TXNDC15,UBC,UBE20,UCHL1,UCHL3,USP2,USP3,USP5,USP6,
USP10,USP13,USP16,USP18,USP21,USP24,USP25,USP28,USP30,USP32,USP33,USP34,USP35,USP36,USP37,USP38,
USP40,USP42,USP44,USP45,USP47,USP48,USP53,USP54,USP27X,USP9Y, XXYLT1,ZC3H13,ZNF131,

ZNF334,ZNF608

expression analysis (Table 9).

PLOS ONE | www.plosone.org

The results of the network analysis included our genome-wide significant finding (DUSP10) within the top scoring network. P38 MAPK which interacts with DUSP10 is
included in the second top network. Also the MHC class Il complex is part of the second network. Genes within ours (P38 MAPK and DUSP10) and previously identified
genome-wide significant regions are marked in italic, bold text. Only bold text show genes involved in amoebiasis. Underlined genes showed differences in our gene

Rank; Top functions; Ingenuity score; Number of focus molecules; Molecules in Network.
doi:10.1371/journal.pone.0070174.t008
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Figure 4. Gene expression results. Fold change on the y-axis is plotted for each individual in the two groups, 46 CD cases and 52 control
patients. Each circle in the graph represents an individual. The mean expression value of the control group is set to 1.

doi:10.1371/journal.pone.0070174.9g004

A slight dysfunction combining these categories together with
gluten consumption would result in a metabolic imbalance which
in turn could convey enough stress or “danger signal”, to trigger
the immunological process and tissue destruction. A schematic
illustration showing a rough outline of a possible disease model is
presented in Figure 6.

In this study, we identified DUSPI0 to be significantly associated
with celiac disease. We also identified mechanisms, which we
believe influence the risk of developing disease. Our data points
towards genes that are involved in cancer as well as metabolic and
cardiovascular diseases. Besides understanding how they work in
celiac disease, our findings could also have consequences for these
other common diseases.

Whole genome analysis allows for discovering completely
unknown mechanisms behind disease. Even if the discovered
genes and gene variants won’t be able to predict who will develop
disease in the future, they can be used to identify the underlying
molecular pathways that influence disease. These molecular
pathways would then be valuable targets for drug intervention.
Our data provides new insights and hypotheses to the research
field of CD and autoimmunity. However, the functional variants
behind associations as well as mechanisms causing differences in

PLOS ONE | www.plosone.org
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gene expression and if and how these are relevant for disease,
remains to be identified.

Materials and Methods

Ethics Statement

The regional ethics board in Gothenburg approved this study
and participants in the study gave written informed consent after
being fully informed about the aim of the study. For all children in
the study, parental written consent was obtained.

Study Population

A total of 106 families with multiple affected individuals, mostly
nuclear families with an affected sib pair (ASP) were collected from
Sweden and Norway. There were 403 subjects and 97 families
with DNA to complete the analysis. A total of 226 of the family
members had CD, including 20 parents. The makeup and
selection process regarding the families has been described
previously in detail [41].

Small-intestinal biopsies, for the gene expression analysis, were
collected at four pediatric clinics in Sweden: Skane University
Hospital in Malmo, Sach’s Childrens’ Hospital and Karolinska
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Figure 5. NPL results. Non-Parametric Linkage score displayed as -log10(p-value) on the y-axis and chromosome 1-22 and X on the x-axis.

doi:10.1371/journal.pone.0070174.g005

all method [49]. Marker allele frequencies were estimated from the
founders.

Transmission Disequlibrium Test (TDT). Spielman et al
introduced the Transmission Disequilibrium Test (ITDT) in 1993
[50].

The imputation analysis provides us with (posterior) probabil-
ities for each of the possible genotypes at each locus and to utilize
all posterior probabilities, we performed an analysis where we use
the expected values of the transmission counts. The test statistic
will then have the following form,

Table 10. Non Parametric Linkage (NPL) results.

chr  from(Mb) to(Mb) max NPL p-value
6 12,5 52,6 542 3,03E-08
5 124,5 149,3 3,33 4,36E-04
1 200,2 231,8 3,12 9,20E-04
1 122,2 130,2 2,95 1,59E-03
9 30,3 34,7 2,82 2,40E-03
4 96,5 11,3 2,81 2,46E-03
3 104,7 108,6 2,70 3,49E-03
14 85,7 86,4 2,57 5,16E-03
6 160,4 161,0 2,54 5,50E-03
11 77,6 784 2,48 6,64E-03
18 55,0 55,1 2,45 7,20E-03
1 29,7 29,9 2,42 7,87E-03
2 127,0 1271 241 8,00E-03
2 106,3 106,4 2,37 8,89E-03

Regions showing significant linkage (the HLA region only) and putative linkage
(nominal p<<0.01. Regions in the table are defined as the Megabase (Mb)
interval showing a nominal p<0.01. Neighbouring regions were merged if
<15 Mb pairwise distance.

Max NPL - the maximum Z score across the region between the positions ‘from’
and ‘to’.

p-value - the p-value for the max NPL score.

@=The HLA region.

doi:10.1371/journal.pone.0070174.t010
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(E[b] —E[d])*

E[p]+E[] ° (m

Timp =

Timp has approximately the same distribution as the test statistic
T in [50].

Stratified TDT. We implement a stratified TDT analysis
where trios are split into a low-risk and a high-risk group based on
the HLA genotype of the affected offspring. Children carrying the
HLA-DQA1*02/05 risk allele and homozygous for the HLA-
DQB1*02 risk allele (i.e. individuals carrying the DR3/DR3 or
the DR3/DR?7 haplotypes) were put in the “high-risk” group and
the remaining children were put in the “low-risk” group. The
rationale behind this is explained in the introduction and further
information about this stratification can be found in our previous
Linkage study [14]. A standard TDT analysis, with the 0.95 cut-off
for imputation probabilities, was applied to each of these groups
using PLINK [47].

Test for two-locus interaction. To examine possible
Interactions between marker variants, we used a pairwise test
based on the one introduced by Kotti [51]. Consider two biallelic
markers without linkage disequilibrium between their alleles. In
the general model Mg the penetrance matrix has 9 parameters,

Joo for Jfo2
=1/l fm fia |
S fa f2

Let n be the 3x3 matrix of genotype counts among the cases for
the two markers, and let m be the corresponding matrix for the
non-transmitted allele combinations. The likelihood for the models
is

August 2013 | Volume 8 | Issue 8 | e70174
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Figure 6. Proposed disease model. lllustrating a possible scenario for disease development. Genetic variation contributing susceptibility to
disease can be found in at least four, somewhat overlapping, biological functions. The result is an “overload” or imbalance of proline vs glutamine.
Due to the abundance of proline within the extracellular matrix (ECM) as well as in gluten, the proline from gluten is interpreted as degradation of
ECM. When the body is not starving, the ECM is normally not degraded, unless there is a pathogen attempting to break through this barrier. The
immune system mounts an attack against an invasive “phantom pathogen” which is believed to degrade the ECM. When proline is catabolized,
reactive oxygen species (ROS) are released. In order to start re-building and crosslinking ECM molecules, Tissue transglutaminase (TGM2) expression is
up-regulated by TNFa which in turn is stimulated by DUSP10 and Protor-2 (PRR5L). This rebuilding of the ECM counteracts the degradation by the
imagined pathogen. However, the phantom pathogen remains and the adaptive immunity is brought in. Searching for antigens, it finds an
abundance of TGM2 beside the ECM and forms antibodies against its own soldier. Some susceptibility genes can be found in the center of this model
and some can be found within the spiral. Genes like HLADQ and other genes from the adaptive immunity are likely to be found in the spiral.
doi:10.1371/journal.pone.0070174.g006

L(f)=11
i

( fyP(A;B))

"ij
Zk,,szP(AkB])> Pag®y. @ Jy=a+y—af

where o; and P are the penetrance factors for the genotypes A; and

. . . . B; [53] respectively.
For this analysis we use one affected subject from each family

and markers were chosen based on the expected counts TDT e M,;: Multiplicative model,

(equation 1) and three different inclusion criteria: e M: the general model.

. P-value less than 3.0x10"", The restricted model used in [51] is the multiplicative model.
2. P-value less than 0.01 in our analysis and with a p-value less We use the Mg-versus-My; test to filter out false positives, based
than 0.05 in the GWAS by Dubois et al. [3] and if the product on that if one or both of the SNPs were marginally significant by
of these p-values were less than 5.0x10™” and the association chance, then the joint distribution (penetrance) of these markers
were in the same allelic direction. should follow a multiplicative model.
3. An allele transmission ratio of <0.2 or >5 combined with a p- We have the likelihood ratio statistic
value less than 2x1072,
. , o . max L,
We defined 383 regions using the inclusion criteria above (Fig. 2 Tj=—2log max L,
and Table S1) a region consisted of a set of markers where the J
distance _between adjacent markers was le‘ss Fhan IQO kb. With T will follow a x* distribution under the restricted model if M; is
th.ese. reglons.deﬁned we analyze(;l all pairwise 1.nteract10ns using a nested in M,. The maximum likelihood estimates of the
Likelihood Ratio (LR) tests comparing the following four models: penetrance parameters and allele frequencies do not have a

simple explicit expression, so to maximize the likelihoods we use

® Mj: None of the two loci is associated with CD . S ..
o ’ the function optim in the statistical software R.

® My: Heterogeneity model [52], with penetrance

Gene Selection
Out of the 603 SNPs selected from the three inclusion criteria
(Fig. 2 and Table S1), we were able to identify genes surrounding

PLOS ONE | www.plosone.org 20 August 2013 | Volume 8 | Issue 8 | 70174



444 SNPs using GRAIL [54]. Grail uses known recombination
hotspots in order to limit the region of interest surrounding each
SNP marker. Genes around the remaining SNPs were identified
with the Genome Browser (http://genome.ucsc.edu) and the 5
closest genes within 250 kb from the associated SNPs were
included. In cases where there were no genes within this distance
we included the closest gene.

Pathway Analysis

We analyzed connections between genes in different regions,
using GeneTrail [13] and the Ingenuity Pathway Analysis (IPA)
software (Ingenuity Inc. CA, USA). Within each associated region,
all but one gene from the same gene family were removed. This
was done in order not to amplify the significance of homologous
gene clusters, (i.e. chemokine receptor-, interferon- and histone-
gene clusters).

URLs
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/)
KEGG (www.genome.jp/kegg/)
Gene Ontology (www.geneontology.org/).
GWAS catalog, http://www.genome.gov/gwastudies/
GRAIL (http://www.broadinstitute.org/mpg/grail/)
SNAP (http://www.broadinstitute.org/mpg/snap/ldplot.php/)
GeneTrail (http://genetrail.bioinf.uni-sb.de/)
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