
 

 

Defining Technical Risks in Software Development 
 

Vard Antinyan
1
, Miroslaw Staron

1
, Wilhelm Meding

3
, Anders Henriksson

4
 Jörgen Hansson

2
 and Anna Sandberg

3)
 

Computer Science and Engineering 
1)

 University of Gothenburg | 
2)

 Chalmers 
3) 

Ericsson, Sweden 
4)

 AB Volvo, Sweden 

SE 412 96 Gothenburg 

 
Abstract—Challenges of technical risk assessment is difficult to 

address, while its success can benefit software organizations 

appreciably. Classical definition of risk as a “combination of probability 

and impact of adverse event” appears not working with technical risk 

assessment. The main reason of this is the nature of adverse event’s 

outcome which is rather continuous than discrete. The objective of this 

study was to scrutinize different aspects of technical risks and 

provide a definition, which will support effective risk assessment and 

management in software development organizations. In this study we 

defined the risk considering the nature of actual risks, emerged in 

software development. Afterwards, we summarized the software 

engineers’ view on technical risks as results of three workshops with 

15 engineers of four software development companies. The results 

show that technical risks could be viewed as a combination of 

uncertainty and magnitude of difference between actual and optimal 

design of product artifacts and processes. The presented definition is 

congruent with practitioners view on technical risk. It supports risk 

assessment in a quantitative manner and enables identification of 

potential product improvement areas. 

 
Keywords—risk, forecast, measure, software, code, technical, model. 

I. INTRODUCTION 

Managing risks of inefficient product design is of great 

importance for large software development organizations. The 

general features of inefficient design are well-known: error-

prone or unmaintainable code and models, untestable or 

untraceable requirements, etc. Chittister and Haimes [1] 

define the technical risk as the probability and impact of an 

adverse event. Boehm [2] defines the risk similarly and 

discuss the top ten risks in software development, most of 

which are related or directly affect software design. The 

Software Engineering Institute [3] relies on this definition 

when outlining the risk management processes. In these 

studies the definition of risk enables risk quantification by 

regarding the expected loss as a product of probability and 

impact of an adverse event. In order to avoid the “probability” 

element from risk quantification, which is not always possible 

to estimate explicitly, Barki defines risk as a product of 

uncertainty and loss [4]. Also, there are others, who view the 

risk as a qualitative concept that can be estimated subjectively 

[5, 6].  

At present, either classical risk management approaches are 

applied, which view the risks as a combination of discrete 

values of probability and impact, or qualitative assessment is 

performed. However, in practice it is rare to have a discrete 

value of impact. For example, we cannot assume that a 

software program either will have an error or will not, because 

the program might have one, ten or 60 errors, and one error 

might be acceptable for a product. Similarly we cannot expect 

a piece of code to be either maintainable or unmaintainable, a 

requirement to be either traceable or not traceable, etc.  

The presence of a continuous component in the risk concept 

disables quantification of risk exposure as a product of 

probability and impact of an adverse event. As a result no 

comprehensive definition of technical risk appears to exist in 

the field of software engineering, which would permit an 

effective risk assessment. Therefore an open question remains: 

How can we define technical risk in order to support 

effective risk assessment? 

The aim of this paper is to explore the essence of technical 

risk and define it in a manner that it supports risk assessment 

and management. 

In this study we identified a list of technical risks based on 

input from four large software development companies; 

Ericsson, Volvo Car Corporation (CC), Volvo Group Truck 

Technology (GTT) and Saab. We show that the uncertainty on 

the difference between actual and optimal designs of product 

is a key indicator of technical risks; Ones this difference is 

identified the risk converts into a problem. Provided new 

definition of technical risk uses the concepts of uncertainty 

and difference from optimal design as two continuous 

measures. Mitigation of such risks becomes a task of 

identifying and reducing the potentially inefficient design 

decisions. 

The remainder of this paper consists six sections. First we 

introduce the motivation of this study. Then the definition of 

technical risk is presented. In section four a list of technical 

risks, identified in the four companies, are discussed. Section 

five proposes a risk forecast model for risk assessment. 

Subsequently we give a brief overview of related studies, and 

make concluding remarks. 

II. MOTIVATION OF STUDY 

In our previous research which was initiated by Ericsson, 

we were requested to create a method for identifying risks 

associated with source code delivery. That is, to create a 

method for identifying the most error-prone or hard-to-

maintain source code before delivery. The results of research 

were also applied in Volvo GTT and Saab to identify risky 

source code [7]. Approximately a year after, we conducted 

research at Volvo GTT to do similar analysis with textual 

requirements. The purpose was to identify risky requirements 

in early development phases in order to permit early reviews 



 

and improvements. From the companies’ side there is an 

increasing need for conducting similar analysis on such 

aspects of development as “identifying risky Simulink models” 

and “risk based test selection”. However, ones the research 

question was formed, it was unclear how the risk should be 

regarded. How can we clearly state what is a risk and if the 

risk occurs what is the impact or the loss? If the risk is viewed 

as a probability and impact of adverse event it will not be 

possible to define the impact explicitly, since in practice it 

does not have a fixed value. For example maintainability, 

readability and fault-proneness of source code, traceability, 

feasibility and ambiguity of requirements, efficiency and 

effectiveness of executed test cases are properties of software 

artifacts the impact of which are not fixed values. These 

properties are comparative, which means that a requirement 

can be more or less traceable, a source code function can be 

more or less error-prone etc. As there is no explicit value for 

the impact, the probability of having that impact cannot be 

defined also. Particularly in our research the risk of low 

maintainability and high error-proneness could not be viewed 

as a risk that has distinct probability and fixed impact. This 

kind of risk could be assessed rather by predicting the possible 

level of maintainability and error-proneness of the code. One 

way of doing this could be so: if majority of experienced 

designers have a strong feeling, that the code consumes twice 

more maintenance time than they expect, then there is a 

tangible risk that the organization might spend significant 

amount of cost over long run of development. Quantitatively 

assessing different levels of maintainability and error-

proneness of the code is not an easy task, but its success can 

determine the effective applications of proactive decisions. 

The presence and increasing role of technical risk 

assessment in software development, as well as difficulties of 

adopting classical risk definition for technical risks of 

software development in practice led us to define the risk in a 

manner that supports technical risk identification, assessment 

and mitigation. 

III. DEFINING TECHNICAL RISKS 

In various fields the risk is defined differently. In finance 

the risk is usually considered as a combination of the 

probability and the variance of the actual and expected return. 

In health care, the risk is viewed as a combination of 

probability and damage. In ISO 31000 the risk is defined as an 

effect of uncertainty on objectives [8]. All of these definitions 

contain events which ultimately might have an impact on a 

person or organization (group of people) that have targeted a 

specific objective to achieve. In certain definitions people or 

organizations are not mentioned explicitly, but they are 

implicitly considered. Generally the risk is defined for a 

particular person or a group of people and it can influence a 

particular objective that is targeted to be achieved. In software 

development organizations technical risks can be described as 

possibility of undesirable events which ultimately affect 

software engineers and software development organizations. 

These risks usually accompany various process or product 

design decisions and can affect processes and product artifacts. 

Prior to defining the technical risk we emphasize three 

pivotal concepts which will be underlaid in our risk definition: 

1. The objective that a person or an organization want to 

achieve  

2. The person or organization that the risk emerges for 

3. And their decisions or solutions which can change the 

impact of risk 

The first concept stresses the fact that a certain objective can 

be influenced by the risk. The second concept indicates that 

the objective is defined for a person or an organization. If 

there are more than one interrelated persons or organizations 

the same risk can affect them differently; defining the risk 

from one particular person’s or organization’s perspective 

creates a possibility of a situation, where reducing the risk 

exposure for one person might cause an increase of risk 

exposure for the other person. This might happen because the 

two persons have different objectives to achieve, and the 

reduction of the same risk for them might mean making 

contradictive decisions. The third concept is the taken design 

decision (solution) which the organization implements in 

order to develop a particular artifact of the product. It is 

important to notice that the risk is usually associated with a 

decision where multiple scenarios are possible. When 

encountering such situations, it is not always explicit which 

decision is optimal for a particular person or organization. 

Moreover, the more uncertainty there is associated with 

decisions, the more unpredictable the outcomes of those 

decisions are. In the presence of complete uncertainty there is 

no way of determining which decision is preferable. While 

there is always an actual design decision for a particular 

development operation, we assume that there is always an 

existing optimal decision for that operation. Furthermore, we 

consider that for any decision there is a technical risk 

associated with it; if the taken decision is an optimal solution 

than the risk exposure is minimal. Making no decision is also 

a decision that is, leaving the current condition as it is. 

Considering that the risk is about possibility of suffering 

loss in whatever design decision (solution) the organization 

makes, the impact of the risk can be defined as the magnitude 

of difference between actual and optimal design solutions. As 

long as this difference is not known, the organization takes on 

a technical risk. The more uncertainty is associated on how 

much this difference is the more risky the situation is. But 

ones the organization knows this difference precisely, the risk 

converts into a problem. By this understanding of risks, for a 

given person or organization and for a given development 

operation, when there are several possible design solutions to 

achieve an objective, we define the risk as: 

The technical risk is the degree of uncertainty on the 

magnitude of difference between the actual and optimal 

design solutions. 

We consider that this magnitude of difference is measured 

either by internal metrics of software quality [9], time or cost 

of design. The advantage of this definition is that there is a 

target level of risk minimization which can be achieved by a 

specific design solution. From this standpoint, addressing 

technical risk management means to identify the magnitude of 



 

difference between optimal and current solutions, and 

minimize that difference as much as possible. The magnitude 

of difference can be viewed as the loss in classic definition of 

risk. In practice, however, the optimal design solution cannot 

be determined precisely. Advanced methods and measures 

might be applied for determining the most preferable design 

of an artifact, which can be considered as an optimal design.  

A symbolic visualization of risk exposure is illustrated in 

Figure 1. The figure illustrates the concept of technical risk as 

a combination of the uncertainty of the actual non-optimal 

design solution and the unknown unnecessary cost generated 

as a result of that solution (dark grey area of the figure). When 

the deficiency of the design solution is identified, the 

organization has a known design problem (lower-right square). 

When the current solution is the optimal one but the 

organization is uncertain about it, it means there is a problem 

of insufficient assessment, which should show how well the 

product artifact or process is designed (upper left square). In 

practice this case is rather rare. If there is an optimal solution 

and the organization is certain about it by relying on well-

established assessment methods, then there is an opportunity 

of gaining minimal development cost and reusing the current 

design solutions in the product design. 

 

Figure 1 The technical risk as uncertainty on inadequate design 

 

The arch-arrow in the Figure 1 shows the transaction path 

from risk to opportunity. Ideally the organization pursues the 

transaction from risk to opportunity directly but in practice 

this happens by first identifying the non-optimal design 

solutions (moving to the low-right area) and then redesigning 

them (moving to the low-left area). The aforementioned 

explanation outlines the main characteristic of technical risk: 

It is the non-optimal design solution of process or product, 

which the organization is unaware of. In next section we 

present a list of risks identified at four companies and discuss 

them. 

IV. SOFTWARE ENGINEERS VIEW ON TECHNICAL RISKS 

We discussed technical risks of software development with 

designers, architects and line managers of large software 

development organizations in four companies. We organized 

two company specific workshops on technical risk 

identification at Volvo GTT and at Ericsson. Subsequently 

one final workshop was organized with all four companies to 

identify the main list of technical risks that designers face in 

software development. 

At Ericsson workshops had a specific focus on risks 

associated with developed source code. At Volvo GTT the 

purpose of the workshops was identifying main risks 

specifically associated with requirements implementation and 

delivery. 

The final workshop with all companies was meant to 

harmonize previously identified technical risks and 

complement with new ones if there are. The list of all risks, 

that were identified during the workshops at Ericsson and 

Volvo and was crystalized during the last workshop with four 

companies, is presented in Table 1. In the first column of the 

table we have registered the main description of risks. The 

risks that are written with bold text are previously identified 

by other researchers [10, 11]. The risks that are written in 

italic texts are similar to risks found by other researchers but 

are not exactly the same. 

The descriptions of risks in Table 1 imply that the possible 

outcomes of these risks are not two discrete values; that is, 

either the described adverse event will happen or not. All of 

risks in the table are decisively dependent on product or 

process design solutions. The better the design solutions are 

the little the risk is.  

Table 1 Main technical risks identified at four companies 

N Risk Description 

1 Multiple “wishes” in one 

requirement 

This requirement contains multiple requests which might make it difficult to develop and test 

2 Inappropriate representation 

of requirements  

This requirement contains pseudo-code,  references to other documents or requirements, etc. 

which might decrease its understandability from semantic point of view 

3 Untraceable requirements This requirement has extensive coupling with other requirements which might make it 

vulnerable towards outer factors. Late changes of this requirements is highly likely 

4 Notes and assumptions in 

requirements 

This requirement contain notes and assumptions which might result in developing wrong 

functionality 

5 Unfeasible, unclear or 

untestable requirements 

High likelihood that this requirement is hard to understand and implement because of unclear 

syntactic description 

6 Requirements’ changes  This requirement is changed often because of strong business objectives but it might cause risk 

of late product delivery 



 

7 Adding requirements in late 

phases 

This requirement is added after “freezing” the requirements which might delay the product 

delivery 

8 Inadequate architectural 

solutions 

This component has unwanted hidden dependencies which might create maintainability and real 

time performance issues 

9 Simple design mistakes For some unclear reasons designers often make simple mistakes in this file. The reasons might 

be lack of cohesion, non-commented code and complexity. This causes many errors in that file 

10 Unrealistic time and cost 

estimates 

Because of semantic complexity designers often underestimate the effort in this file. It creates 

additional efforts for reconsidering the development plans 

11 Gold plating This file is a result of an over-flexible design which makes the file difficult-to-maintain 

12 Dependence on external 

supplied components 

This file is directly and “heavily” dependent on components outside of our control. It might 

cause late errors 

13 Dependency on other tasks This file is directly and "heavily" dependent on execution of tasks outside of its control. It might 

cause late errors 

14 Real-time performance 

shortfalls  

This file is vulnerable to real-time performance of the system. There is high likelihood to get 

post-delivery error reports from the customers 

15 Error-prone, unmaintainable or 

unmanageable code 

This file is complex and non-cohesive which might increase its error-proneness and decrease the 

maintainability 

16 Insufficient or ineffective testing This test is insufficient; many post-delivery defects might be reported 

17 Low number of builds on the 

integration branch 

Low number of builds indicates high likelihood that after integration many defects might appear 

and impede the smooth delivery 

18 Accessing test objects  Missing test objects might create development disruption 

19 Queuing  Several processes might be waiting for the completion of this particular process which seems to 

be delayed. 

20 Underestimating the delivery  time between “ready” and actual integration of build in main code branch seems to be 

underestimated which can create high likelihood of late delivery 

21 Mismanaging software variants The likely non-optimal separation or combination of software variants for different platforms 

creates a risk of additional cost 

22 Defect turnaround time’s 

underestimation 

Underestimation of defect turnaround time creates high likelihood for unsatisfied expectations 

of customers 

23 Splitting software into parallel 

releases 

Parallel releases of software might create unexpected additional cost 

24 Missing key-specialist in 

development 

Certain development process is heavily dependent on a key-specialist the absence of whom can 

create disruption of development and queuing 

For example the source code cannot be either maintainable or 

not. Instead, the maintainability can be regarded as more or 

less maintainable. If we quantify the probable loss as 

consequence of these risk, we get an interval instead of a fixed 

value, because the more maintainable the code is the less the 

loss is. Other examples are: (i) increasing changes of 

requirements causes increasing changes and late errors in a 

file, (ii) increasing number of “wishes” in one requirement 

causes decreasing testability and feasibility and (iii) longer 

queuing time causes higher development cost. 

For several risks there is no explicit mitigation strategy that 

can reduce the risk. These risks contain high level of 

uncertainty for decision making. For example according to 

designers, the over-flexible design of the file triggers a risk of 

undesirable growth of size and complexity; nonetheless, it 

does not mean that the simplest design minimizes the risk. 

Practically, at some point the simplification of this file’s 

design might trigger the increase of risk again, because the 

error-proneness of the file might increase due to its inability of 

operating in variety of conditions. Another example is: Volvo 

GTT produces similar electronic control units for several 

trucks (Renault, Volvo, Mack, etc.). The question is, should 

these variants be developed with having completely different 

requirements design and source code or they can have 

common design with defined variation points? How this 

variation points can be determined and how much the 

development can be carried out jointly or separately? On the 

one extreme, if everything is separate, the organization might 

run into big amount of additional costs, because of extensive 

number of requirements and code that is not reused for all 

software variants. On the other extreme, there is likelihood 

that certain part of code and requirements that are different for 

truck variants, are reused and defects can be left in the 

software. In this types of risks trade-offs between multiple 

design choices should be considered. 

The risks listed in the table are dependent on design 

solutions of particular process or product artifact. The design-

oriented nature of risks implies that in order to mitigate the 

risk there is a need of optimal design solutions. In other words 

the minimal risk exposure can be achieved when optimal 

solutions are applied. In the next section we discuss the 

relevance of risk forecast models by application of measurable 

properties of software product or processes.  

V. RISK ASSESSMENT BY FORECAST MODEL 

We propose that technical risks can be assessed by risk 

forecast model which relies on measurable characteristics of 

software design and processes. The use of software measures 

as risk predictors are widely suggested [12-14] and software 

organizations that we collaborated with, where using various 

measures as technical risk predictors. 



 

Figure 2 shows that the risk has consequences, which can 

be measured and which the organization would like to 

minimize. The risk also has indicating characteristics which 

can be measured for risk assessment. The task is to develop 

such a mathematical model that using measures of product 

properties can forecast the consequences of risk. In many 

cases it is not possible to forecast the consequences precisely 

as a single number for quality or cost, but an interval of loss 

can be predicted by certain confidence level. In our previous 

research [7] for Ericsson we developed a measurement system, 

which predicted the risk of error-proneness and 

maintainability of source code. 

 

Figure 2 Risk forecast model 

The representation of our measurement system by risk 

forecast model is illustrated in Figure 3. As the figure shows 

the consequences of risk are additional maintenance time and 

error-proneness of files. The software engineers at Ericsson 

had a perception that the maintenance time is higher and the 

source files are more error-prone than expected. This means 

that there was initial information about non-optimal design of 

source code but it was not thoroughly known. 

 

Figure 3 Risk forecast model for Ericsson 

In order to assess the risk we identified the risk-indicating 

characteristics, which were code complexity and change 

frequency. Complexity and change frequency were measured 

by calculating cyclomatic complexity (M) and number of 

revisions (NR) of source code files.  Then we designed a 

model and measurement system based on these measures to 

assess the risk. Ones the files were assessed, the level of 

uncertainty on previous design decision of files sharply 

dropped, revealing the existing problems. Afterwards the 

designers made decisions of resolving the problem. 

In practice, however, there are noticeable problems with 

assessing what the best design of source code is and how the 

current design differs from that of optimal design. The 

identification of optimal design seems to be dependent on 

more parameters of source code than we are able to measure 

currently. In foregoing example the superposition (combined 

metric) of number of revisions and cyclomatic complexity can 

give an insight how well a source code file is designed, but 

that combined metric by no means gives a direct estimate on 

the magnitude of difference between optimal and actual 

designs of source code file. In fact, what this combined 

number gives is an estimate how well this particular file is 

designed compared with other files in the system. We know 

that from certain point the increasing cyclomatic number and 

increasing number of revisions indicate decreasing code 

quality; however this certain point cannot be precisely 

understood as it can be different for different files. This 

difference arises from the limitedness of cyclomatic 

complexity and number of revisions as measures.  

VI. RELATED WORK 

A comprehensive definition of risk can be found in 

Kaplan’s and Garrick’s work [15], where the risk is defined as 

a superposition of uncertainty and loss. They claim that the 

risk as a product of probability and consequence is misleading. 

Furthermore, the authors show that the risk cannot be 

represented by a single number but rather with a curve, where 

the risk is not a point on that curve as an expected value but 

the curve itself.  

The term technical debt coined by Cunningham [16] is used 

to discuss the cost that organization pays over time due to  

non-optimal design of product artifacts.  Kruchten, et al. [17] 

solidifies this term in the context of whole software 

engineering and define it as “postponed opportunities” or 

“poorly managed technical risks”. This view is a support for 

our work, or we may say, our work is harmonious with this 

view because the difference between actual and optimal 

design is viewed as the main composite part of the technical 

risk. Chawan, et al. [18] notice that technical risks emerge 

because of excessive constraints on the development and 

poorly defined parameters or dependencies in the organization. 

Ropponen and Lyytinen [19] conclude that much of the time 

project risks are not well-understood and their effective 

assessment and management should be carried out by 

experienced and well educated managers. We believe that our 

new definition of risk provides a tangible insight to technical 

risks so it could be better understood. Bannerman [20] found 

that the risk management procedures, defined in the literature, 

do not necessarily support the risk management activities in 

practice. Bannerman observed that in software engineering on 

one hand the risk management research lags the needs of 

practice and on the other hand risk management in practice 

does not adhere to the research. The current study can be 

considered as a step for linking general concepts of software 

risk with its practical needs of management. 

VII. CONCLUSIONS 

In software development organizations continuous 

identification and assessment of technical risks is an essential 

activity. The consequences of technical risks can include 

overall increase of development time and cost, and decrease of 

pre-delivery product quality. Despite the importance of 

technical risk assessment, the existing definitions of risks 

appear not supporting risk assessment. The reason is that in 

software development technical risks mostly emerge due to 



 

inadequate design solutions of processes and product artifacts, 

but these solutions cannot be regarded as explicit adverse 

events. 

In this research we outlined the essence and main 

characteristics of technical risks in software development. We 

showed that while in other fields the risk can be viewed as a 

product of probability and loss, in software development an 

explicit occurrence of an adverse event does not exist thus a 

probability for that occurrence cannot be assessed. Instead we 

regarded the loss as a continuous variable which is strongly 

dependent on how good the design solutions of product and 

processes are. Bigger difference of actual and optimal design 

solutions and higher uncertainty associated with actual design 

indicates higher risk exposure. This view of technical risk 

facilitates the formulation of risk mitigation strategy; (i) 

identification of optimal design prerequisites and (ii) redesign 

of product artifacts. 

ACKNOWLEDGMENT 

We would like to express our thanks to the companies for 

their support in the study. This research has been carried out 

in the Software Center, Chalmers, University of Gothenburg, 

Ericsson, Volvo Group Truck Technology, Volvo Car 

Corporation and Saab. 

REFERENCES 

 
[1] C. Chittister and Y. Y. Haimes, "Risk associated with software 

development: a holistic framework for assessment and management," 

Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, pp. 
710-723, 1993. 

[2] B. Boehm, Software risk management: Springer, 1989. 

[3] R. P. Higuera and Y. Y. Haimes, "Software Risk Management," DTIC 
Document1996. 

[4] H. Barki, S. Rivard, and J. Talbot, "Toward an assessment of software 
development risk," Journal of management information systems, vol. 

10, pp. 203-225, 1993. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

[5] R. Naik, "Software Risk Management," International Journal of 
Advances in Engineering Sciences, vol. 3, pp. 17-21, 2013. 

[6] A. A. M. Chowdhury and S. Arefeen, "Software Risk Management: 

Importance and Practices," IJCIT, ISSN, pp. 2078-5828, 2011. 

[7] V. Antinyan, M. Staron, W. Meding, P. Osterstrom, E. Wikstrom, J. 

Wranker, et al., "Identifying risky areas of software code in Agile/Lean 

software development: An industrial experience report," in Software 
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 

2014 Software Evolution Week-IEEE Conference on, 2014, pp. 154-

163. 
[8] "Risk Management Principles and Guidelines," AS/NZS ISO 

31000:2009. 

[9] "ISO/IEC 9126, Information Technology - Software product e 
valuation - Quality characteristics and guidelines for their use, 

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749." 

[10] T. Arnuphaptrairong, "Top ten lists of software project risks: Evidence 
from the literature survey," in Proceedings of the International 

MultiConference of Engineers and Computer Scientists, 2011, pp. 1-6. 

[11] J. Ropponen and K. Lyytinen, "Can software risk management improve 
system development: an exploratory study," European Journal of 

Information Systems, vol. 6, pp. 41-50, 1997. 

[12] N. E. Fenton and M. Neil, "Software metrics: roadmap," in 
Proceedings of the Conference on the Future of Software Engineering, 

2000, pp. 357-370. 

[13] D. E. Neumann, "An enhanced neural network technique for software 
risk analysis," Software Engineering, IEEE Transactions on, vol. 28, 

pp. 904-912, 2002. 

[14] L. E. Hyatt and L. H. Rosenberg, "Software metrics program for risk 
assessment," Acta astronautica, vol. 40, pp. 223-233, 1997. 

[15] S. Kaplan and B. J. Garrick, "On the quantitative definition of risk," 

Risk analysis, vol. 1, pp. 11-27, 1981. 
[16] W. Cunningham, "The WyCash portfolio management system," in 

ACM SIGPLAN OOPS Messenger, 1992, pp. 29-30. 

[17] P. Kruchten, R. L. Nord, and I. Ozkaya, "Technical Debt: From 
Metaphor to Theory and Practice," IEEE Software, vol. 29, 2012. 

[18] P. Chawan, J. Patil, and R. Naik, "Software Risk Management," 2013. 

[19] J. Ropponen and K. Lyytinen, "Components of software development 
risk: how to address them? A project manager survey," Software 

Engineering, IEEE Transactions on, vol. 26, pp. 98-112, 2000. 
[20] P. L. Bannerman, "Risk and risk management in software projects: A 

reassessment," Journal of Systems and Software, vol. 81, pp. 2118-

2133, 2008. 
 

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749.

