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Abstract A daily stochastic spatiotemporal precipitation generator that yields precipitation realizations that
are quantitatively consistent is described. The methodology relies on a latent Gaussian field that drives both
the occurrence and intensity of the precipitation process. For the precipitation intensity, the marginal distribu-
tions, which are space and time dependent, are described by a composite model of a gamma distribution for
observations below some threshold with a generalized Pareto distribution modeling the excesses above the
threshold. Model parameters are estimated from data and extrapolated to locations and times with no direct
observations using linear regression of position covariates. One advantage of such a model is that stochastic
generator parameters are readily available at any location and time of the year inside the stationarity regions.
The methodology is illustrated for a network of 12 locations in Sweden. Performance of the model is judged
through its ability to accurately reproduce a series of spatial dependence measures and weather indices.

1. Introduction

Precipitation modeling has attracted a lot of attention the last 50 years or so, mainly due to its many appli-
cations in hydrology, ecology, agriculture, and so many other aspects of everyday life. Realistic sequences of
precipitation are key inputs in many models, and synthetic data are used routinely to fill in gaps both in
time and/or space in historical records.

Traditionally, most models were individual location models although, recently, there have been many
attempts to construct spatiotemporal stochastic models capable of generating temporally and spatially cor-
related fields of precipitation. These statistical models, also known as weather generators, can be used
among others, to generate synthetic precipitation records where none are available, to extrapolate short
observed records and to downscale climate change scenarios in both space and time. Additionally, they
have the great advantage of providing not only with precipitation estimates but also quantitative measures
of uncertainty. Daily rainfall simulators are by far the most common, partly because of the wide availability
of data in this time scale, and partly due to an abundance of process-based models, like electricity demand
models or crop models [see e.g., Robertson et al., 2007], that are driven by daily inputs.

The most prominent characteristic of precipitation is that its distribution is a mixed distribution with a dis-
crete part corresponding to occurrence or not of precipitation, and a continuous part modeling the nonzero
amounts. As a consequence, precipitation generators can be built up using the familiar chain-dependent
stochastic model, a two-stage approach, modeling separately the discrete and continuous part [see e.g.,
Todorovic and Woolhiser, 1975; Katz, 1977; Wilks, 1998, and references therein]. The occurrence component
is usually modeled by means of Markov chains of different orders [see Katz, 1977; Lennartsson et al., 2008],
including nonhomogeneous Markov chains [see Katz and Parlange, 1995; Furrer and Katz, 2008], semi-
Markov models, and multistate Markov chains [Flecher et al., 2010]. On the other hand, the most common
models for the precipitation part are parametric statistical non-Gaussian models to which the underlying
atmospheric physical processes are related only implicitly [see Hutchinson, 1986; Stern and Coe, 1984,
among others]. Alternatively, Bell [1987], Hutchinson [1995], Glasbey and Nevison [1997], Durban and Glasbey
[2001], Allcroft and Glasbey [2003], and Sigrist et al. [2012] have used a monotonic data transformation to
achieve marginal normality. Using a different approach, Hughes et al. [1999] and Ailliot et al. [2009] have sug-
gested instead use of hidden Markov models. Variable is defined so that dry conditions correspond to cen-
sored values below a given threshold.
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Recently, Allard and Bourotte [2015] and Sigrist et al. [2012] have additionally assumed that both parts of the
precipitation process—occurrence and intensity—can be modeled using the same latent Gaussian process.
Various well known transformation functions have been suggested, for example, Allcroft and Glasbey [2003]
use a quadratic power function, Sigrist et al. [2012] use a power function, and Allard and Bourotte [2015] use
a power-exponential function to transform the Gaussian value to the desired intensities. Recently, Kleiber
et al. [2012] applied a two-part transformation function, with one part being the standard normal distribu-
tion and the second part be given by the inverse of a gamma distribution. We found, in accordance with
Allard and Bourotte [2015], that although the gamma distribution model is adequate for low and moderate
rainfall, it fails to model properly the most extreme intensities.

On the other hand, a variety of methods have been suggested to tackle the problem of multisite rainfall
precipitation. In a simplistic approach, the sites are mutually independent in space and time given the
weather type [see Zucchini and Guttorp, 1991; Hughes and Guttorp, 1994], an autologistic model was used in
Bellone et al. [2000] and Bardossy and Plate [1992]. Ailliot et al. [2009] used a censored, power-transformed
Gaussian distribution for daily rainfall, while Kleiber et al. [2012] developed a multiscale extension of the
chain-dependent model. Alternatively, Buishand and Brandsma [2001] used techniques based on resam-
pling, Hughes et al. [1999] and Charles et al. [1999] used techniques based on unobserved underlying
weather states, and Yang et al. [2005] employed generalized linear models. Recently, Burton et al. [2008] pre-
sented RainSim, a stochastic rainfall field generator where rainfall fields are sampled from a spatial-
temporal Neyman-Scott rectangular pulses process. Finally, Stehl�ık and B�ardossy [2002] suggested trans-
forming the rainfall distribution to approximate normality with zeros corresponding to negative trans-
formed values.

The novelty of our work is that we model simultaneously both the occurrences and intensities using a latent
Gaussian field. Using the truncated normal with negative observations being registered as dry days, we
model the monotonic transformation function, referred to hereafter as anamorphosis function, as a compo-
sition of a gamma and a generalized Pareto distribution for the excesses above a high level. We also sug-
gest a new method for estimating the spatiotemporal covariance function.

The paper is organized as follows: the data are introduced in section 2. The proposed model together with
the model fitting and parameter estimation methodology is presented in section 3. In section 4, we present
the validation results. Finally, in section 5, we discuss the pros and cons of the proposed model and suggest
possible future research directions.

2. Data

Daily precipitation records from a small network of 14 weather stations across southern Sweden, covering
an area from the West coast to the East coast in the Baltic Sea were used, 12 of them for model fitting and
the remaining two for validation. The altitudes of the stations vary from 2 meters above sea level (station 4)
to 305 meters (station 7). The data consist of 51 years (2 January 1961 to 31 December 2011) of daily
precipitation (days with accumulated precipitation less than 0.1 mm are considered as dry) with less than
10% of observations missing from each station. The observation network is quite dense with distances
between the stations ranging between 30 and 290 km. The climate in the area is dominated by the effects
of the South Swedish highland, an area situated more than 200 m above the ocean with the prevailing
western winds resulting in orographic precipitation in the surrounding areas.

We assume that daily rainfall from the 51 years of each month is 51 realizations of the same stochastic field,
i.e., we assume that the stochastic model during each month is stationary and data from each year are an
independent realization of that stochastic model. This assumption is not uncommon for meteorological
processes. Most of the results will be presented for one location and the months of January and July as rep-
resentative of the winter and summer season, respectively, but the rest of the months and stations gave
similar results.

3. Stochastic Model

In this section, we present the stochastic approach used to model the temporal and spatial dependence for
daily precipitation. We suggest using a latent Gaussian field to model the occurrence process and a
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transformation of the same latent field to model the nonzero amounts. Use of the same variable for occur-
rence and intensity is preferred mainly for two reasons. First, the number of parameters is small and second,
we avoid the edge effect, in which unrealistically large intensities can be generated near the boundary of
dry areas when the occurrence and intensity processes are modeled separately [see Bardossy and Plate,
1992; Wilks, 1998; Schleiss et al., 2014, and references therein].

Hence, we assume the precipitation field Yðs; tÞ at location s and time t depends on the latent Gaussian ran-
dom variable Zðs; tÞ, through the following relation:

Yðs; tÞ5
wðZðs; tÞÞ; if Zðs; tÞ > 0

0; if Zðs; tÞ � 0
;

(
(1)

where w is a nondecreasing function referred as anamorphosis. This idea of using meta-Gaussian processes
where the marginal distribution of Gaussian process is transformed to non-Gaussian distribution has been
suggested by Guillot [1999]. The advantage of using a meta-Gaussian random field model is twofold. First, it
is compatible with any marginal distribution, even with discontinuous cumulative distribution functions
[see Guillot, 1999, for more details] and second, the latent Gaussian field is completely described by the first
two moments (mean and covariance function) while exhibiting remarkable flexibility.

3.1. Marginal Model
Model (1) suggests that the nonzero amounts of precipitation are modeled as a transformed censored
Gaussian random field. Traditionally, at single locations, the precipitation amounts have been modeled
using a Box-Cox transformation [see Box and Cox, 1964], a quadratic power transformation [see Glasbey and
Nevison, 1997; Durban and Glasbey, 2001] or a power-exponential transformation of the censored Gaussian
distribution [see Allard and Bourotte, 2015]. In Lennartsson et al. [2008], a generalized Pareto (GP) distribution
modeled heavy rainfall above a high level. Kleiber et al. [2012] used a gamma distribution, while mixtures of
exponential distributions were used in Wilks [1998].

In this work, our interest is not only in modeling accurately the lower and middle parts of the distribution,
where the majority of the data falls, but also the extreme, although rare, amounts of precipitation. The latter
have a profound impact on agriculture [see e.g., Rosenzweig et al., 2002; Furrer and Katz, 2008], infrastructure
[see Larsen et al., 2008], and the society [see McMichael et al., 2006]. Moreover, one of the objectives of this
work is to reproduce some of the weather indices [see Karl et al., 1999; Peterson et al., 2001] and section 4,
which are greatly influenced by the tail of the distribution. A gamma distribution alone, although flexible
enough, is not quite adequate to model the tail of the distribution since it underestimates large values [see
e.g., Kleiber et al., 2012]. The fit improves considerably when we use the so-called hybrid gamma and GP dis-
tribution [see Li et al., 2012; Furrer and Katz, 2008]. This hybrid distribution is a result of coupling a gamma
distribution with a GP distribution and has its origin in the one introduced by Carreau and Bengio [2009],
where Gaussian and GP distributions were stitched together.

So we choose the transformation:

Yðs; tÞ5G21
s;t � UlðZðs; tÞÞ; (2)

where Gs;t is the cumulative distribution function (cdf) of a hybrid gamma with GP at location s and time t and
Ul is the cdf of a censored normal random variable with mean value l and unit variance. This type of anamor-
phosis transformation [see Chil�es and Delfiner, 2012; Kleiber et al., 2012] retains the hybrid gamma with GP distri-
bution at the individual locations while it allows different types of spatial correlation between the sites.

For the distribution G, we use the cdf of a hybrid gamma with GP distribution

Gðx; uÞ5Fcðmin fx; ug; a; cÞ1ð12Fcðu; a; cÞÞFuðx; n; r; uÞ; (3)

where Fc and Fu are the cdfs of a gamma and a GP, respectively. The GP is supported on ðu;1Þ where u is
the threshold to the excesses of which the GP model is fitted. The normalizing factor 12FcðuÞ ensures that
G is a distribution function. It is clear that G has a point of discontinuity at threshold u. Furrer and Katz
[2008] suggested refining the hybrid model through a compromise by estimating the gamma distribution
from all the data, the GP distribution from the data above the threshold and then using only the estimated
shape parameter n of the GP while adjusting its scale parameter in order to achieve a continuous density.
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We have decided not to follow
this compromise since the
meta-Gaussian model allows for
discontinuous distributions [see
Guillot, 1999] and because the
fit of the distribution to data did
not improve.

The proposed parametric
approach, which can be seen in
Figure 1, is a modification of the
semiparametric one in Lennarts-
son et al. [2008], where the part
below the threshold was mod-
eled using the empirical distri-
bution, and is preferred over
that since it simplifies extending
the model, in a homogeneous
way, in space and therefore
making predictions possible at
locations where no measure-
ments are available.

Finally, Ul is the cdf of a censored Gaussian random variable with mean value l and unit variance which is
given by

UlðzÞ5
Uðz2lÞ2Uð2lÞ

UðlÞ ; if z > 0

0; if z � 0;

8><>: (4)

where / and U are the pdf and cdf of a standard normal random variable, respectively. Therefore, the trans-
formation w in (1) is fully parameterized by the parameters of the G distribution, ½a; c; u; n;r�, and the mean
value l of the latent Gaussian field. We next turn to the problem of their estimation.

3.2. Mean Function
There is a clear link between the mean function of the latent field Z and the precipitation data Y through
the frequency of wet days:

Pðwet t day at location sÞ5PðYðs; tÞ > 0Þ5PðZðs; tÞ > 0Þ5Uðlðs; tÞÞ: (5)

Estimation of the mean value is therefore straightforward by simply inverting (5) to obtain

blðs; tÞ5U21ðbps;tÞ; (6)

where bps;t is the estimate of the proportion of wet days at location s and for the tth day of the year for
t51; . . . ; 365=366. Hereafter, we shall denote by bx the estimate of any parameter x.

The mean value estimates at each station exhibit seasonality which is accounted for by means of finite Fou-
rier series with spatially varying parameters:

blðs; tÞ5bl0ðsÞ1
XJ

j51

bl j;1ðsÞsin
2pj
365

t1bl j;2ðsÞ
� �

; t51; . . . ; 365=366; (7)

with J being finite and not exceeding 2. Parameter estimation is done by the Weighted Least Square (WLS)
method, while the number of covariates included is determined using the Bayesian Information Criterion
(BIC) [see Schwarz, 1978]. The BIC gave 1 as optimal value of trigonometric terms in (7) for about half of the
stations and 2 for the rest. We have decided to use J 5 1 for all stations since the gain for using the most
complex model was not substantial. This resulted to
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Figure 1. Illustration of the anamorphosis function w transforming a Gaussian distribution
(dashed line) to the hybrid gamma with generalized Pareto G characterized by an atom at 0.
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blðs; tÞ5bl0ðsÞ1bl1ðsÞ

sin
2pj
365

t1bl2ðsÞ
� �

;

t51; . . . ; 365=366:

(8)

Since direct estimates of the
mean are available only at the
weather stations, as is the case
with the rest of the model
parameters too, the estimates
are interpolated to ungauged
locations by regressing the spa-
tial coefficients in (8) on position
covariates

bl iðsÞ5d
0
li

wðsÞ; i50; 1; 2; (9)

where dli
5 dli ;0; dli ;1; dli ;2; dli ;3
� �0

with dli ;0 being the intercept and
wðsÞ the covariates (1, latitude,
longitude, altitude). The two
steps in the estimation proce-

dure could probably be combined in one by building a composite likelihood, although this was not
explored any further. If available one could additionally include such covariates as climate model output or
broad scale atmospheric conditions. Additional covariates could also include slope, vegetation, orientation,
or distance from the coast. A different approach was adapted in Kleiber et al. [2012], where the authors
assumed that the parameter estimates were themselves a realization of some random field.

In Figure 2, we present the proportion of wet days with the model probabilities superimposed for one
example location, the city of Halmstad. The cyclic behavior of the series is apparent. In Figure 3, we have
gathered the observed and model proportions of wet days for stations 1–12 as estimated for the 15th of
each month. Notice that while in January we have precipitation for about half of the time this reduces to a
little more than a third of the time during July. Although we consider only linear functions, this basic model
exhibits significant flexibility and replicates properly the probability of precipitation at most stations.

3.3. Hybrid Gamma and Generalized Pareto Distribution
The hybrid gamma with the GP distribution is fitted to data in the Peaks over Threshold (POT) framework
using a gamma distribution for the values that fall below a given threshold u and the GP distribution for the
positive excesses of the u level.

Selection of threshold u is a difficult task in practice since given a data set it is difficult to pinpoint the level
at which the extreme value theory is based, and its selection is usually based on the stability properties of
the generalized Pareto distribution and the mean residual life plots [see for example, McNeil, 1997; Davison
and Smith, 1990; Frigessi et al., 2002]. To circumvent this problem, Vrac and Naveau [2007] and Hundecha
et al. [2009] suggested the use of a dynamic mixture of gamma and generalized Pareto distribution. The
drawback with this model is that its application is constrained by functional complexity, numerical instabil-
ity, and computational demand [see Li et al., 2012]. In this work, we have decided to use a fixed level of
u510 mm. We recognize that this is a strong assumption but this threshold worked reasonably well for all
stations and months and we do not want to delve further into the problem of threshold selection, which is
a difficult problem that deserves further attention.

After the threshold level is chosen, a gamma distribution is fitted assuming that data are independent and
maximizing a modified version of the likelihood

Ls5Pfðs;tÞ:Yðs;tÞ>0gpðYðs; tÞ; aðs; tÞ; cðs; tÞÞ; (10)

with
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Figure 2. Empirical and model estimates of U21ðbp s1 ;tÞ.
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pðx; a; cÞ5
fcðx; a; cÞ; x � uð1

u
fcðx; a; cÞdx; x > u;

8><>: (11)

where fcðx; a; cÞ is the pdf of a gamma distribution with parameters a and c. The modified likelihood with the
pdf in (11) is preferred over the usual one, since in this way, the excesses of threshold u are treated as censored
and the information they contain is not cast away. Durban and Glasbey [2001] used a similar approach to obtain
estimates for the trend of censored values. Maximizing (10) results to estimates of the gamma parameters at
the gauge locations. The observed seasonality is accounted for by fitting Fourier harmonics to obtain

baðs; tÞ5ba0ðsÞ1ba1ðsÞsin
2p

365
t1ba2ðsÞ

� �
; t51; . . . ; 365=366 (12)

and

bcðs; tÞ5bc0ðsÞ1bc1ðsÞsin
2p

365
t1bc2ðsÞ

� �
; t51; . . . ; 365=366: (13)

Interpolation to the rest of locations, where no measurements are available, is again by regressing on spatial
covariates, i.e.,

bai ðsÞ5d
0
ai wðsÞ and bci ðsÞ5d

0
ci

wðsÞ; i50; 1; 2; (14)

where dai ; dci
, and wðsÞ are as in (9).

Next, the generalized Pareto distribution is fitted to the positive excesses. Dependence in the excesses is
reduced by declustering the data and using only one excess per cluster. Clusters are determined using the
extremal index, which is defined as the reciprocal of the mean cluster size, and is estimated by log likeli-
hood [see Suveges and Davison, 2010, equation (3)]. Running the algorithm on the data using threshold level
of 10 mm resulted to cluster lengths ranging from 2 to 8 days with a mean value of 4.7 days. Once data are
declustered the shape nðs; tÞ and scale rðs; tÞ parameters are estimated by maximizing the likelihood

~Ls5Pfðs;tÞ:Yðs;tÞ2AgpðYðs0; tÞ; u; nðs; tÞ; rðs; tÞÞ;

where A is a set that contains a single excess per cluster per location and

pðx; u; n; rÞ5 1
r

11
nðx2uÞ

r

� �ð21
n21Þ

:
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Figure 3. Observed proportion of wet days (y axis) and model probability of wet day (x axis) on (left) 15 January and (right) 15 July.
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The generalized Pareto estimates could also be regressed on Fourier harmonics for time dynamics with spa-
tially dependent parameters but as it turns out for the data set in Sweden, this is not necessary since they
do not exhibit any cyclic behavior. Spatial interpolation of the generalized Pareto parameters to locations
with no observations is by using a regression like the one in (9).

3.4. Covariance Structure
To fully characterize the latent Gaussian random field Zðs; tÞ what remains is to specify the covariance func-
tion CovðZðs1; t1Þ; Zðs2; t2ÞÞ5Cðs1; s2; t1; t2Þ.

For the dependence over space and time, we follow the traditional geostatistics paradigm of assuming a para-
metric covariance function. For simplicity, we have considered only stationary and isotropic covariance func-
tions. While the assumption of stationarity does not seem to be very restrictive, the area of southern Sweden
seems to be homogeneous enough, this is not the case with spatial isotropy. The isotropy can be partly cor-
rected by forming an anisotropic covariance function by applying to the isotropic C a non-Euclidean measure
formed as Euclidean distance in a linearly transformed spatial coordinate system, as can be seen in section
3.4.1. Additionally as can be clearly seen in the data, precipitation is moving from south/south-west to north/
north-east, hence the covariance function should also include some kind of dynamics, a feature that is not
accounted for in the present choice of covariance structure but should be further investigated.

Several parametric functions specifying explicitly the joint space-time covariance structure have been fitted.
For a collection of valid spatiotemporal covariances, see Cressie and Huang [1999], Ma [2003], and Stein
[2005] among others. The covariance structure that gave the best fit in terms of Weighted Least Squares
(WLS) criterion is the following:

Cðh; sÞ5CovðZðs; tÞ; Zðs1h; t1sÞÞ5g jjhjj50; s50f g1 ð12gÞ
ajsj11

e2
bjjhjj2
ajsj11; (15)

where g > 0 and {A} stands for the indicator function that equals one when property A is satisfied and zero
otherwise. The function gf�; �g models the nugget effect which allows for a discontinuity at zero, and is
used to account for the undistinguishable microscale variability and measurement error. The nonnegative
parameters a and b are the scaling parameters of time and space, respectively, controlling the degree of
dependence. For temporal lag equal to 0, the spatial covariance simplifies to Gaussian which allows the
latent field to be smooth over space.

3.4.1. Estimation of the Correlation
Estimation of the correlation structure of the latent Gaussian field Z (we assume the random field has unit
variance) is challenging for two distinct reasons. First, for dry days, the Gaussian variable is censored and
second, there exist no direct observations of the Gaussian variable.

One way of estimating the correlation coefficients at a particular time lag for a censored Gaussian variable
is by numerically maximizing the likelihood of the observed bivariate histogram of the censored latent vari-
able [see Glasbey and Nevison, 1997] or by maximizing a modified version of the likelihood for censored val-
ues [see Durban and Glasbey, 2001]. Guillot [1999] proposed a method of estimating the covariance function
of the latent field which consists of computing the empirical covariance of raw data, then fitting a positive
definite function to it, computing the inverse of this function through the Hermite polynomial expansion of
the anamorphosis function, fitting a positive definite function to it, and then reversing it again with the use
of the same Hermite polynomial expansion of the anamorphosis function to finally obtain an estimate of
the desired covariance. We propose an alternative method of moments approach, which we feel is simpler
than the method proposed in Guillot [1999], by inverting the theoretical expression for the mean of the cen-
sored cross product. We turn to this next.

The following relation holds for a bivariate Gaussian random variable Z5ðZ1; Z2Þ with mean l5ðl1; l2Þ and
correlation q (unit variances):

EZ1
1 Z1

2 5

ð1
0

gðx; l; qÞ/ðxÞ dx; (16)

where Z1
i 5maxðZi; 0Þ; / denotes the pdf of a standard normal random variable and the function g is given

by
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gðx; l; qÞ5x/ðx2l1Þ qðx2l2Þ1l1ð ÞU l11qðx2l2Þffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p !
1

ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p
/

l11qðx2l2Þffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p !" #
: (17)

Therefore, using (16), correlation qijðsÞ between locations si and sj and time lag s can be estimated by
minimizing

minq z1
i � z1

j 2

ð1
0

gðx; lij; qijÞ/ðxÞ dx

���� ����; (18)

where z1
i � z1

j denotes the average of the product of the censored values at locations indicated by the sub-
indices for the given s and lij denotes the vector ðlðsiÞ;lðsjÞÞ. Note that function g is not a simple function
of pairwise correlations which can be analytically inverted. The integral in (18) needs to be computed using
numerical integration.

Once estimates bq ijðsÞ of the pairwise correlations (which, since variances equal one, coincide withdCovðZðsi; tÞ; Zðsj; t1sÞ) are obtained, the covariance parameters are estimated through the following
method of moments minimization:

ming;a;b;g;h

X
t

X
i 6¼j

nobsði; j; sÞ bq ijðsÞ2CovMðZðsi; tÞ; Zðsj; t1sÞÞ
� �2

; (19)

where CovM is the corresponding model covariance and nobs is the number of observations used in the esti-
mation in which varies with location and time of the year.

As model covariance CovM, we use the covariance C in equation (15) but with a non-Euclidean distance
measure formed as Euclidean distance in a linearly transformed spatial coordinate system. The new coordi-
nate axis is obtained by rotating the old isotropic axis x, y by an angle h, forming new coordinates

x0

y0

 !
5

cos h sin h

2sin h cos h

 !
x

y

 !
(20)

and then dilating them by a factor � to form the new coordinates

x00

y00

 !
5

ffiffi
�
p

0

0 1=
ffiffi
�
p

 !
x0

y0

 !
: (21)

The distance h in the new coordinate system is transformed to
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Figure 4. Spatiotemporal covariance function (15) (lines) for the latent Gaussian field with empirical covariances (?) for (left) January and (right) July for time lags s50; 1; 2; 3 from top to
bottom.
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jjAh;�hjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxcos h1ysin hÞ21

1
�
ð2xsin h1ycos hÞ2

r
; (22)

with isotropy attained for �5 1. There is some nonuniqueness in this formulation since adding p to the ani-
sotropy angle h gives an identical correlation, and correlation with anisotropy angle h1 p

2 and factor 1
� is

identical to correlation with angle h and factor �. This nonuniqueness can be removed by adding some con-
straints on the ranges of the parameters [see Haskard, 2007].

To obtain estimates of the censored values, z1 we transform the observed precipitation amounts y, as
follows:

z15U21bl � FempðyÞ; (23)

with Fempð�Þ denoting the empirical cdf of the precipitation intensity during each month and Ul as in (4).
Then, having obtained estimates bq ij for different time lags using (18), we fit the model covariance function
C in (15) to obtain estimates of the parameters by minimizing (19). The constant nobsði; j; sÞ equals the num-
ber of observations used in the estimation of the empirical covariance between station si on some day and
station sj after s days. The minimization is performed for each time lag s separately and results in a set of
parameters ½a; b; g; h; ��. This procedure resulted in a set of 12 (months)35.

To illustrate the fitting of the spatiotemporal covariance function, Figure 4 shows the fitted spatial covari-
ance function for different time lags together with the empirical covariances for the two example months
of January and July. Our method of moments approach to estimating the parameters of the covariance
shows reasonable performance. A simulation study showed that the method of moments approach per-
formed considerably better than the modified maximum likelihood (MLE) used in Durban and Glasbey
[2001] in terms of bias of the estimated correlation. The modified MLE severely overestimated the correla-
tion when the dependence between censored bivariate Gaussian data was strong but performed reason-
ably well when data were independent. On the other hand, the method of moments approach performed
equally well for any type of dependence between data.

4. Model Validation

In this section, we validate the performance of the spatiotemporal stochastic model introduced in section 3.
For this, we generate 100 trajectories of the 51 years of data using the proposed stochastic generator and
then we examine the results.
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Figure 5. The observed and model daily mean intensity of rainfall during wet days with corresponding approximate 90% confidence inter-
val at Halmstad.
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4.1. Simulations
To simulate precipitation data at site s on day t, we perform the following steps:

1. A realization of a normal random field Zðs; tÞ with mean function bl and covariance bC is generated.

2. For every location and day, there is zero precipitation if Zðs; tÞ � 0:

3. For location and day with positive precipitation, the simulated intensity is set to Yðs; tÞ5bwðZðs; tÞÞ; wherebw is estimated according to the method described in section 3.3.

4.2. Temporal Model
Mean intensity of precipitation, i.e., the average amounts of precipitation over days with positive precipita-
tion, is a fundamental measure the stochastic weather generators attempt to replicate. Figure 5 presents
the observed and model mean intensities of precipitation together with an approximate 90% confidence
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Figure 6. The observed (dots) and simulated (line) proportions of wet day given previous (left) wet and (right) dry days at Halmstad, with a pointwise 90% confidence interval based on
100 simulations.
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Figure 7. The empirical distribution (dots) of number consecutive (left) wet and (right) dry days, and the ones based on simulations (1) with a 90% confidence interval superimposed at
Halmstad.
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interval computed using the estimated bG dis-
tribution in (2), for a specific location, the city
of Halmstad. The marginal distribution at indi-
vidual locations reproduces the mean inten-
sity very well. It can be noticed that the
variability of the intensity of precipitation is
higher during days 150–300, which corre-
spond to the Swedish summer and fall. Simi-
lar plots were obtained for the rest of months
and weather stations.

We have already seen in Figure 2 that the stochastic generator accurately models the unconditional
probability of precipitation over the year. As is well known, the previous day’s property of dry or wet
greatly influences next day’s weather [see e.g., Lennartsson et al., 2008]. For this reason, transition proba-
bilities with previous dry and wet days are estimated. Figure 6 illustrates these observed and simulated
transition probabilities at Halmstad together with a pointwise 90% confidence interval based on 100

Table 1. The Weather Indices Concerning Precipitation Defined
by ETCCDI

Index Description

RX1dayj Highest 1 day precipitation amount in month j
RX5dayj Highest 5 day precipitation amount in month j
R20mm Number of annual days with precipitation above 20 mm
CDD Max annual number of consecutive dry days
CWD Max annual number of consecutive wet days
PRCPTOT Annual total precipitation
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Figure 8. The empirical distribution (line) of (top) RX1day and (bottom) RX5day in (left) January and (right) July, and the one based on simulations (dashed) with a 90% confidence inter-
val superimposed at Halmstad. (Years with more than 10 days missing were removed. Same holds for Figures 9 and 10.)
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simulations. As it can be seen the probability of next day to be wet is about 0.2 higher if present day is
wet than if it is dry. The weather generator underestimates the transition probability of a wet day given
the previous day is wet and it overestimates the corresponding probability given previous day is dry.
Since the simulated proportions depend on the choice of level u, the threshold of the GP distribution,
the estimated parameters of the marginal distribution as well as the mean function and temporal corre-
lation, there are a lot of possible sources of error which could contribute to the differences from the
observed proportions.

We turn now to the dry/wet behavior of the stochastic generator. We remind that the distribution of the
length of the wet and dry spells, i.e., the time the precipitation is above zero or equal to zero, respectively,
is an essential feature of any weather generator. Notice that these characteristics depend solely on the
latent process since they coincide with the time the process spends above (below) the zero level. The
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Figure 9. (left) The empirical distribution (line) of PRCPTOT, and the one based on simulations (dashed) with a 90% confidence interval superimposed at Halmstad. (right) The empirical
distribution (line) of R20mm, and the one based on simulations (dashed) with a 90% confidence interval superimposed at Halmstad.
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Figure 10. The empirical distribution (line) of (left) CWD and (right) CDD and the ones based on simulations (dashed) with a 90% confidence interval superimposed at Halmstad.
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empirical distribution of wet (left) and dry (right) spells can be seen in Figure 7 together with the model dis-
tribution and a 90% confidence interval superimposed. The length of the wet spell is very well replicated
for any spell length, and the same is true for most of the dry spell lengths.

Finally, we check if the proposed stochastic generator replicates properly extreme weather. In order to
quantify extreme properties of weather, the joint work-group CCI/CLIVAR/JCOMM Expert Team on Climate
Change Detection and Indices (ETCCDI) (Web page http://etccdi.pacificclimate.org/list_27_indices.shtml)
[see also Karl et al., 1999; Peterson et al., 2001] have suggested a number of weather indices monitoring of
which can be used for weather change detection. Six of these indices (see Table 1) are of relevance to this
study. Two indices (CDD and CWD) consider only the dry/wet behavior of the precipitation process. The
remaining indices (RX1day, RX5day, R20mm, and PRCPTOT) consider both the dry/wet behavior and the
marginal distribution. Figures 8–10 illustrate the empirical distribution function of each index with the simu-
lated distribution and 90% confidence interval superimposed.

Figure 8 shows the 1 day maximum (RX1day) and the 5 day accumulated maximum (RX5day) of precipita-
tion for the months of January and July at Halmstad. The model seems to be working better for July than
January, which maybe suggests that using the same threshold u for all months is not optimal. Note that the
results for the RX5day index additionally indicate that the temporal dependence is properly modeled.

0.25 0.3 0.35 0.4 0.45
0.25

0.3

0.35

0.4

0.45

Simulated

O
bs

er
ve

d

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54

0.4

0.45

0.5

0.55

0.6

Simulated

O
bs

er
ve

d

0.3 0.35 0.4 0.45 0.5

0.35

0.4

0.45

0.5

0.55

Simulated

O
bs

er
ve

d

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Simulated

O
bs

er
ve

d

Figure 11. The proportions of (top) simultaneously dry and (bottom) simultaneously wet days in (left) January and (right) July. The proportions of observations are given on y axis with
the corresponding simulated proportions on the x axis with a 90% confidence interval based on 100 simulations given by lines.
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Figure 9(left) illustrates the total amount of precipitation per year (PRCPTOT) at Halmstad. The stochastic
generator seems to underestimate these quantities. Another essential feature that weather generators
should be able to replicate accurately is the annual number of days with extreme weather, which depends
on both the latent process and the transformation w. Figure 9(right) shows the number of days per year
with precipitation above 20 mm at Halmstad. The fit of index R20mm is really good which in another indica-
tion that the latent process and the transformation w are properly modeled.

Figure 10 shows the maximum number of consecutive dry and wet days per year. The annual maximum
number of consecutive dry days (CWD) is very well replicated by the stochastic generator (see Figure
10(left)). On the other hand, the model consistently overestimates the probability of the maximum number
of consecutive dry days (see Figure 10(right)). Note that the model has not been tuned to reproduce these
statistics.

However, both CWD and CDD are
very complex measures that only
capture the extreme occurrences
of wet and dry spells on an annual
basis. Overall, the model seems to
simulate the temporal behavior of
precipitation at individual loca-
tions properly.

4.3. Spatial Model
A positive feature of the defined
stochastic generator is in corre-
lating occurrences and amounts
of precipitation across space. In
order to illustrate the fit of spa-
tial dependence, we have con-
sidered all 66 pairs of stations
and then computed the observed
and model proportions of days
that were simultaneously dry and
simultaneously wet at each sta-
tion pair in January and July. The
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Figure 12. The correlation of intensity in (left) January and (right) July, where the observed correlations are given on y axis with the corresponding quantities for the simulations on the x
axis with a 90% confidence interval given by lines.
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Figure 13. The proportions of observed number of stations that are simultaneously wet
and the corresponding quantity for the stochastic model with a 90% confidence interval.
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results are gathered in Figure 11. The latent Gaussian field seems to replicate well the simultaneous wet behav-
ior and the simultaneous dry for July but not so well for January.

The stochastic generator’s ability to adapt to seasons, due to monthly dependent covariance parameters,
allows for a substantial increase in spatial correlation between two stations during winter as compared to
summer season. It should not be surprising that the pairwise correlations in January are more variable
than in July, since the nugget effect is substantially larger, and hence suppresses the spatial (and temporal)
dependence for the summer months. Figure 12 displays the observed and model correlations of
precipitation intensity for all station pairs. Note here that only days with simultaneous positive precipitation
have been used to estimate the respective correlations. The stochastic generator seems to slightly overesti-
mate the correlations for moderate values (0.4–0.7) during winter months, but overall the fit is satisfactory.

Another interesting feature of the spatial dependence structure is whether it properly replicates the number
of wet stations each day. Figure 13 displays the observed proportion of number of stations with positive
precipitation. Days where data are missing for at least one of the stations were removed. The stochastic
generator seems to replicate quite well the observed frequency of total number of stations with
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Figure 14. The empirical distribution (line) of (top) RX1day and (bottom) RX5day in (left) January and (right) July, for the domain aggregated data, together with the simulated (dashed)
and a 90% confidence interval superimposed.
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simultaneously positive precipi-
tation. It is interesting to notice
that the probability to have no
observed precipitation at any
of the stations is about 0.22,
while the probability to observe
precipitation at all stations is
about 0.17 and higher than the
probability to observe precipita-
tion in any subset of locations.

In general, we feel that the
model replicates spatial aspects
of the precipitation process
well.

4.4. Spatiotemporal Model
The most difficult feature of
multisite precipitation data is
the spatiotemporal dependence
structure. We have already seen
in Figure 4 that the parametric
covariance function of the latent
Gaussian field fits well the empir-

ical covariance for at least a few time lags. Following Kleiber et al. [2012], we validate the fit of the spatiotemporal
structure by checking the domain aggregated behavior. The domain aggregated precipitation is the total precip-
itation from all stations at each given day. Further, a domain aggregated dry spell is defined as the number of
days where all stations are dry and similarly, a domain aggregated wet spell is the number of days where at least
one station is wet.

So we have computed the relevant weather indices for the domain aggregated data and the results are pre-
sented in Figures 14 and 15. The model, as was the case when data from each gauge were treated sepa-
rately, replicates the weather indices of maximum 1 and maximum 5 day precipitation amount very well.

5000 6000 7000 8000 9000 10000 11000 12000 13000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

precipitation (mm)

Figure 15. The empirical distribution (line) of PRCPTOT for domain aggregated precipitation
and the corresponding distributions for the stochastic generator (dashed) with a 90% confi-
dence interval based on the 100 simulations, where missing observations are replaced with
only dry days (blue) or all days corresponding to the mean intensity (red).
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Figure 16. The pairwise lagged occurrence proportions in (left) January and (right) July, where the observed proportions are given on the y axis and the corresponding quantities for
the stochastic generator are represented on the x axis with a 90% confidence interval for the model values given by lines.
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Turning now to the analysis of domain aggregated precipitation, we need to note that missing data may
have a substantial influence on the different indices. For this reason, we have computed the distribution of
PRCPTOT, having replaced all missing observations with dry days and then with wet days where the amount
of precipitation equals the mean intensity. The results are gathered in Figure 15. As we can notice, the
annual domain aggregated data are well replicated by the stochastic generator.

Due to missing data, the domain aggregated precipitation becomes too noisy which makes such indices as
CWD and CDD as well as the domain aggregated dry and wet spells almost irrelevant.

An alternative way to the spatiotemporal aspects of the generated dry/wet behavior is by examining pair-
wise lagged occurrence probabilities defined as follows:

PðYðsi ; t21Þ50; Yðsj; tÞ > 0Þ and PðYðsi ; t21Þ > 0; Yðsj ; tÞ50Þ: (24)
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Figure 17. Spatiotemporal covariance function for the latent Gaussian field with empirical covariances for the validation set locations for (left) January and (right) July for time lags s50;
1; 2; 3; 4 from top to bottom.
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Figure 18. The interpolation model of daily probability of precipitation and the observed proportions of wet day for Borås and Malmsl€att.
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Each point in Figure 16 represents observed and model proportions of either one of the pairwise lagged
occurrences for January and July. The fit of the pairwise lagged occurrence probabilities in January is good,
while the stochastic generator overestimates the quantity for small proportions in July. The deviation is only
of order 0.02 and unlikely to have a significant impact in practice.

4.5. Cross-Validation
Finally, what remains to be validated is the ability of the stochastic generator to reproduce the precipitation
behavior at locations with no available data. For this reason we have excluded two stations at Borås and
Malmsl€att, from the data that were used to tune the model parameters and now we check how the model
performs at these two stations.

To illustrate the fitting of the spatiotemporal covariance function, Figure 17 shows the model and empirical
spatial covariance function for a few time lags for these two stations. Having in mind that these data have
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Figure 19. The empirical distribution of number of consecutive (left) wet and (right) dry days, and corresponding distributions for the stochastic generator with a 90% confidence inter-
val at Borås.
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Figure 20. The observed and model pairwise lagged occurrence probabilities as defined in equation (24) for (left) January and (right) July for one station among stations 1–12 and one
of the validation stations 13 and 14.
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not been used in the calibration of the model, the parametric covariance C seems to fit the empirical covari-
ance rather well.

Next, we check the performance of the regression used to interpolate the mean function to ungauged loca-
tions. Figure 18 presents the observed daily proportions of wet days with the corresponding probability
given by the stochastic generator superimposed. While the results for Borås are good, there is a constant
bias of the order of 0.1 in Malmsl€att. This could also be due to the fact there is only one station close to this
one with data used in the model fitting.

As we have seen a very important characteristic that the weather generator should possess is the ability to
reproduce the correct dry/wet behavior. Figure 19 illustrates the observed and model distributions of wet
and dry spell lengths, which seem to fit well.

Next, we examine the pairwise lagged occurrence probabilities as defined in (24) with one station being
used in the tuning of the model and the second station being one of the two stations left out for validation
purposes. These probabilities are gathered in Figure 20. It seems like the model slightly overestimates the
probabilities of pairwise lagged occurrence for small proportions (p< 0.23) in July. For moderate and high
proportions, the bias in the probability is too small and unlikely to have any impact in practice.

Finally, Figure 21 displays observed and model pairwise station correlations of precipitation intensity, where
one station was used in the model fitting and the other was not. Note that only days with simultaneous
positive precipitation have been used. The fit is rather good for July but for January the model seems to
overestimate the pairwise correlations.

Overall, we feel that the stochastic model suggested captures the important aspects of the precipitation
data when interpolated to locations with no available information.

5. Conclusions

This paper has presented a spatiotemporal stochastic model for daily precipitation observations based on a
common latent Gaussian field driving both the occurrence and intensity process. A composite transforma-
tion consisting of a gamma and a generalized Pareto distribution was fitted to the marginal distribution of
the nonzero amounts of precipitation. The mean function was estimated using daily observations from
weather stations and then interpolated in time and space using regression with Fourier components and
location covariates, respectively. A parametric covariance function was used to model the observed
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Figure 21. Estimates of observed (y axis) and model (x axis) correlation of the intensity in (left) January and (right) July, for station used in the fitting and one station not used.
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spatiotemporal correlations with the fitting performed using a method of moments approach and certain
relations that hold for censored Gaussian moments.

Realistic spatiotemporal artificial sequences of precipitation have been generated and used to validate dif-
ferent aspects of the proposed model. We have shown that while the stochastic generator seems to be able
to reproduce the dependence between different days and stations, it does not capture all the essential
properties of the mean function and the marginal distribution. The possibility to include other covariates
such as climate model output or broad scale atmospheric conditions in order to model the corresponding
spatial extrapolation of the parameters should be investigated. The method of combining the anamorphosis
transformation with the one stage approach of modeling dry and wet behavior simultaneously seems to be
very flexible and to produce the desired results.
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