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1. INTRODUCTION

Interpretations are about ‘seeing something as something else’, an elusive
yet intuitive notion that has been around since time immemorial. It was sys-
tematized and elaborated by astrologers, mystics, and theologians, and later
extensively employed and adapted by artists, poets, and scientists. At first ap-
proximation, an interpretation is a structure-preserving mapping from a realm
X to another realm Y , a mapping that is meant to bring hidden features of X
and/or Y into view. For example, in the context of Freud’s psychoanalytical
theory [7], X = the realm of dreams, and Y = the realm of the unconscious; in
Khayaam’s quatrains [11], X = the metaphysical realm of theologians, and Y =
the physical realm of human experience; and in von Neumann’s foundations for
Quantum Mechanics [14], X = the realm of Quantum Mechanics, and Y = the
realm of Hilbert Space Theory.

Turning to the domain of mathematics, familiar geometrical examples of in-
terpretations include: Khayyam’s interpretation of algebraic problems in terms
of geometric ones (which was the remarkably innovative element in his solution
of cubic equations), Descartes’ reduction of Geometry to Algebra (which moved
in a direction opposite to that of Khayyam’s aforementioned interpretation), the
Beltrami-Poincaré interpretation of hyperbolic geometry within euclidean geom-
etry [13]. Well-known examples in mathematical analysis include: Dedekind’s
interpretation of the linear continuum in terms of “cuts” of the rational line,
Hamilton’s interpertation of complex numbers as points in the Euclidean plane,
and Cauchy’s interpretation of real-valued integrals via complex-valued ones
using the so-called contour method of integration in complex analysis.

In this expository note we will focus on interpretations between classical
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mathematical theories formulated in first order logic1, for example between ZF
(Zermelo-Fraenkel theory of sets) and PA (Peano’s axioms for number theory),
or between RCF (real-closed fields) and ACF (algebraically closed fields). This
notion (relative interpretability) was introduced by Tarski and his colleagues in
the landmark monograph [19], where it was developed as an effective tool for
establishing powerful undecidability results. On the other hand, Tarski’s paper
[18] shows that a substantial fragment of Euclidean geometry known as elemen-
tary geometry is decidable since it is interpretable in RCF (the decidability of
RCF is one of Tarski’s seminal results). By now there is a large literature in
mathematical logic on interpretations and their domain of interest and applica-
bility has been extended far beyond those initially envisaged by Tarski’s initial
work on the subject that focused on decidability and undecidability issues. In
particular, as Visser [17] has emphasized, interpretations allow us to:

• explicate intuitions of “reducible to” and “sameness” of theories and struc-
tures;

• transfer certain types of information from one theory or structure to an-
other;

• compare theories and structures with each other; and

• import conceptual resources from one theory to another.

2. PRELIMINARIES

2.1. Definition. Suppose L is a list2 of relation symbols R1, R2, · · ·, con-
stant symbols c1, c2, · · ·, and function symbols f1, f2, · · · . An L-structure is a
sequence of the form

M := (M,R1, R2, · · ·, c1, c2, · · ·, f1, f2, · · ·) ,

where each Rn is a relation on M of the same arity as Rn, each fn is a function
on M of the same arity as fn, and each cn ∈ M. M is often referred to as the
‘domain of discourse’ of M.

2.2. Examples.

(a) If L consists of a single binary function symbol, then M1 := (R,+) and
M2 := (P(N),∪) are L-structures.

(b) If L consists of two binary function symbols, one binary relation symbol, and
two constant symbols, then the following are L-structures:

1Here we will not discuss interpretations between different logics, e.g., between classical
logic and intuitionistic logic, or between second order logic and first order logic; nor will we
discuss mathematical interpretations of physical theories.

2The list is allowed to be empty, or to have uncountably many symbols (there is no a priori
upper bound on the cardinality of L).
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M1 := (R,+,×,≤, 0, 1) , and M2 := (P(N),∪,∩,⊆,∅,N).

(c) If L consists of a single binary relation symbol, then M1 := (Z, <) and
M2 := (P(N),⊆) are L-structures.

2.3. Definition. Given an L-structure M = (M,f, · · ·, R, · · ·, c, · · ·), and
some X ⊆ Mn (where n is a positive integer) we say that X is M-definable
(equivalently: X is definable in M) if there is an L-formula φ(x0, · · ·, xn−1)
(using the logical symbols of first order logic, along with the symbols of L, with
precisely n free variables as indicated) such that:

X = {(a0, · · ·, an−1) ∈Mn :M |= φ(a0, · · ·, an−1)} .

2.4 Examples.

(a) The set of non-negative real numbers is definable in (R,×) via the formula
φ(x0) := ∃y(x0 = y2).

(b) The usual ordering ≤ on R is definable in (R,+,×) via

ψ(x, y) := ∃z ((x+ z = y) ∧ φ(z)) ,

where φ is as in (a) above.

(c) The usual ordering ≤ on Z is not definable in (Z,+). The easiest way of
seeing this is to take advantage of the fact that definable subsets are invariant
under automorphisms, along with the fact that that the map f(n) = −n is an
automorphism of (Z,+).

(d) Neither N nor Q is definable in (R,+,×). These two highly nontrivial un-
definability facts follow from putting the decidability of the first order theory
of (R,+,×) (due to Tarski, see [1]) together with the undecidability of the first
order theories of (N,+,×) (due to Gödel, see [19]) and (Q,+,×) (due to Julia
Robinson, see [5]).

3. INTERPRETABILITY AMONG STRUCTURES

3.1. Definition. Given two structures M and N , we say that M is inter-
pretable in N , written M E N , if the universe of discourse of M, as well as all
the relations, functions, and constants of M, are all definable in N .

3.2. Examples.

(a) (Q,+,×) E (Z, +, ×) since (Q,+,×) ∼= (Z× Z# / ≈, ⊕, ⊗), where:

(a, b) ≈ (c, d) iff ad = bc and ⊕, ⊗ are defined as follows:

[(a, b)]⊕ [(c, d)] = [(ad+ bc, bd)] and [(a, b)]⊗ [(c, d)] = [(ac, bd)].
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(b) (N,+,×) E (Z,+,×) since by Lagrange’s “four squares theorem” we have:

N =
{
x ∈ Z : ∃a, b, c, d ∈ Z x = a2 + b2 + c2 + d2

}
.

(c) (C,+,×) E (R,+,×) since (C,+,×) ∼= (R× R , ⊕, ⊗), where:

[(a, b)]⊕ [(c, d)] = (a+ b, c+ d), and (a, b)⊗ (c, d) = (ac− bd, ad+ bc).

(d) Every structure with at least two elements can be interpreted in a lattice.
This result is due to Taitslin (1962), see Theorem 5.5.2 in Hodges’ text Model
Theory [8].

(e) (R,+,×) 5 (Q,+,×). This is an immediate consequence of the fact that R
is uncountable but Q is countable.

(f) (R,+,×) 5 (C,+,×). This is a nontrivial result.3

4. INTERPRETABILITY AMONG THEORIES

Suppose U and V are first order theories. An interpretation of U in V , writ-
ten I : U → V is given by a translation τ from the language of Uto the language
of V , with the requirement that V proves all the translations of sentences of U ,
i.e.,

U ` ϕ =⇒ V ` ϕτ .

The translation (for an n-dimensional interpretation) is given by a domain
formula δ(x0, ···, xn−1), and a mapping P 7→τ AP from the predicates of Uto for-
mulas of V , where an k-ary predicate P is mapped to a formulaAP (x0, . . . , xkn−1).
In the translation, the equality relation of U is allowed to be translated as an
2n-ary formula E of V . The translation is then lifted to the full first order lan-
guage in the obvious way making it commute with the propositional connectives
and quantifiers, where the translated quantifiers are relativized to the domain
specified by δ. See Visser’s paper [15] or Friedman’s paper [6] for more detail.

Each interpretation I : U → V gives rise to an inner model construction that
uniformly builds a model AI |= U from a model of A |= V . In other words,
each interpretation

I : U → V

induces a contravariant functor

F : Mod(V )→ Mod(U).

3For the cognoscenti: this follows from the fact that the first order theory of the complex
field is stable, but the first order theory of the real line is unstable.
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4.1. Definition. Suppose U and V are first order theories. U is interpretable
in V , written U E V , if there is an interpretation I : U → V.
U and V are mutually interpretable when U E V and V E U.

It is easy to see that if U and V are axiomatizable theories, then U E V
implies Con(V ) ⇒ Con(U), but the converse may fail, e.g., consider Zermelo-
Fraenkel set theory ZF and Gödel-Bernays theory of classes GB. It has long
been known that Con(ZF) ⇒ Con(GB), but GB 5 ZF. The first result is easy
to see with a model-theoretic reasoning that shows that every model of ZF is
expandable to a model of GB. The second result follows from combining three
fundamental results: Gödel’s incompletenss theorem, the reflection theorem for
ZF, and the finite axiomatizabiliy of GB.

4.2. Examples.

(a) PA E ZF but ZF 5 PA. The first result is folklore and is based on implement-
ing arithmetic in set theory via von Neumann ordinals. The main ingredients of
the second proof are Gödel’s incompleteness theorem along with the fact that
ZF can prove the formal consistency of PA.

(b) The theory of real closed fields RCF interprets the theory of algebraically
closed fields, but not vice-versa. The former result follows from a well-known
theorem of Artin and Schreier that asserts that adjoining the square root of −1
to any real closed field results in an algebraically closed field. See footnote 3 for
the explanation of the latter fact.

(c) PA + ¬Con(PA) E PA, but PA + Con(PA) 5 PA. Both of these results are
due to Feferman [4].

(d) ZFC+GCH + AC and ZF are mutally interpretable. The nontrivial direction
of this fact is due to Gödel, who introduced the class of constructible sets in
which, provably in ZF, the axioms of choice (AC) and generalized continuum
hypothesis (GCH) hold. See Jech’s text [9] for more detail.

(e) ZFC +¬CH + ¬AC and ZF are mutually interpretable. The nontrivial direc-
tion of this fact can be established with the help of the Scott-Solovay approach
to proving independence results in set theory. See Jech’s text [9] for more detail.

(f) Q E First Order Group Theory, where Q is be the theory consisting of the
following axioms:

S(x) 6= 0, (Sx = Sy)→ x = y, y 6= 0→ ∃x(Sx = y),

x+ 0 = x, x+ Sy = S(x+ y), x0 = 0, xSy = (xy) + x

This result was established in [19], and was used to show that First Order Group
Theory is undecidable.

(g) AST is mutually interpretable with Q, where AST (Adjunctive Set Theory)
is defined as follows:
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AST := {Emptyset, Adjunction}, with:

Emptyset := ∃x ∀y y /∈ x, and

Adjunction := ∀x ∀y ∃z ∀t (t ∈ z ↔ (t ∈ x ∨ t = y))︸ ︷︷ ︸
z = x ∪ {y}

.

This result is due to Visser [16] who refined earlier results by Tarski and others.

4.3. Definition. Suppose U and V are first order theories. U is a retract of V
if there are interpretations I and J with:

I : U → V and J : V → U ,

and a binary U -formula F such that F is, U -verifiably, an isomorphism between
idU and J ◦I. In model-theoretic terms, this translates to the requirement that
the following holds for every model A |= U :

FA : A
∼=−→ A∗ :=

(
AI
)J

.

U and V are bi-interpretable if there are interpretations I and J with:

I : U → V and J : V → U ,

and is a binary U -formula F , and a binary V -formula G, such that F is, U -
verifiably, an isomorphism between idU and J ◦ I, and G is, V -verifiably, an
isomorphism between idV and I ◦J . Note that if U and V are bi-interpretable,
then given models A |= U and B |= V , we have:

FA : A
∼=−→ A∗ :=

(
AI
)J

and GA : B
∼=−→ B∗ :=

(
BJ
)I
.

4.4. Examples.

(a) PA is bi-interpretable with ZFfin+TC, where

ZFfin := ZF\{Infinity} ∪ {¬Infinity},

and TC is the axiom that states that every set has a transitive closure. This
result was established by Kaye and Wong [10]. The precursor of this result is a
key theorem of Ackermann, who showed that if one defines the relation E on the
set N of natural numbers by aEb iff the a-th element of the base-2 expansion of
b is 1, then we we have:

(N, E) ∼= (Vω,∈),

where Vω is the set of hereditarily finite sets (the ω-th level of von Neumann’s
hierarchy of sets).
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(b) PA is not bi-interpretable with ZFfin, indeed, ZFfin is not even a retract of
PA (but PA is a retract of ZFfin).This was established in the joint work of the
author with Schmerl and Visser [2].

(c) Z2 +Π1
∞-AC (Second Order Arithmetic + Choice Scheme) is bi-interpretable

with ZFC\{Power}+V = H(ℵ1), and each of these two theories is bi-interpretable
with KMfin, where KM is the Kelley-Morse theory of classes, and

KMfin := KM\{Infinity} ∪ {¬Infinity}.

The former bi-interpretability result is detailed in section VII.3 of Simpson’s
monograph [12], the latter one is folklore.

(d) KM + Π1
∞-AC is bi-intepretable with ZFC\{Power}+ ∃κ(κ is strongly inac-

cessible and V = H(κ). This result is folklore.

(e) Suppose U and V are deductively closed extensions of PA both of which
are formulated in the language of PA; then U is a retract of V iff V ⊆ U. In
particular, U and V are bi-interpretable iff U = V. This result is due to Visser
[15]. The same results holds for deductively closed extensions of ZF (with a very
different proof), as shown in the author’s forthcoming paper [3].
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