
Influence of Software Complexity on ISO/IEC
26262 Software Verification Requirements

Miroslaw Staron∗, Rakesh Rana∗, Jörgen Hansson†
∗Computer Science and Engineering
Chalmers / University of Gothenburg

Email: name.surname@gu.se
†University of Skövde

Email: jorgen.hansson@his.se

Abstract—With the emergence of new IT technologies our ve-
hicles evolve from being machines to becoming self-driving cyber-
physical systems of systems. The abilities of modern computers
and software allow the car manufacturers to develop and deploy
increasingly complex functions such as automated parking, colli-
sion avoidance or the upcoming self-driving. However, as the new
functions are implemented, the electronics and software of the
cars has more possibilities to intervene with the driver’s actions,
which leads to the more careful need to evaluate the decisions
made by software. In this talk we explore how the growing
complexity of software requires even more effort to validate it
in the context of ISO/IEC 26262. Our results show that soon we
need to change the way we work with verification and validation
as the growing complexity makes it virtually impossible to achieve
full certainty that the software is correct.

I. INTRODUCTION

Modern vehicles have an increased amount of software which
is used to control functionality which is safety critical [1].
Since the software-based functions become more advanced and
can intervene with the driver’s decisions it is important that
they fulfill the safety requirements. ISO/IEC 26262 standard
for functional safety in the automotive domain is one of the
major baselines in this area, the other ones are the practices of
the automotive software development companies (both vehicle
manufacturers and their suppliers).

In this talk we discuss the challenges related to the growing
complexity of software and its impact on the verification
requirements in ISO/IEC 26262. We address the following
research questions:

1) What is the complexity of software in modern vehi-
cles?

2) Which ISO/IEC 26262 verification methods are in-
fluenced by software complexity?

3) Which non ISO/IEC 26262 required verification
methods exist that could increase the effectiveness
of verification and decrease its cost?

In this paper we base our work on the data set presented in
[2] from the automotive domain which contains the data about
complexity, size and defects found in software components.
The data set has been published recently and can be used
to draw conclusions about the status of software in modern
cars. To address the second research question we conduct an
analysis of testing methods mentioned in ISO/IEC 26262 or

which could be used to fulfill the requirements posed by the
standard (e.g. branch coverage).

In order to address the third research question we perform
a semi-systematic literature review and a meta-analysis of pub-
lications in the area of fault injection and reliability prediction.

II. SOFTWARE COMPLEXITY

In general software complexity can be measured in multiple
ways, but there is a small number of measures which have
been found to be correlated with each other – e.g. McCabe
cyclomatic complexity, lines-of-code. The inherent correlations
(c.f. [3]) allow us to simplify the problem to only one of
them (for the sake of the discussion) – we choose the McCabe
complexity due to its spread in practice. In short the metric
measures the number of independent execution paths in the
source code.

In the automotive sector, in the data from open domain we
find that the complexity of software modules is highly over
the theoretical limits of 30 (execution paths) as it is presented
in figure 1.

0

20

40

60

80

100

120

140

160

180

Cyclomatic complexity

Total

filename

Max of lm_MVG

Fig. 1. Complexity of software modules (C programming language) as a
McCabe cyclomatic complexity

What the data shows is that there are components where
the number of execution paths is over 160 which means that
only to test each of the execution path once there is a need
for 160+ test cases. However in order to achieve full coverage
one needs more than 500 test cases for the entire component.
If we need to test each path as a positive and negative case (so
called boundary case) we need to at least double the number



of test cases. Exploring the other metrics provided in the same
data set shows that the trends are very similar – the numbers
are highly over the theoretical complexity limits.

These numbers indicate that it is increasingly more difficult
to provide full verification of the software functionality in order
to ensure safety of software systems. Therefore we need new
approaches than just testing.

III. ISO/IEC 26262 VERFICATION REQUIREMENTS FOR
SOFTWARE

Chapter 6 of the ISO/IEC 26262 standard explicitly recognizes
the problems related to software complexity, but does not
provide normative guidelines for what the levels should be
(”Enforcements of low complexity” by modelling and coding
guidelines). Such a situation is understandable as there is
no single measure of complexity or a consensus on what
complexity really is.

However, in general there is a consensus that the complex-
ity is in correlation to size of software (c.f. [3], [4]). So in this
talk we discuss the measures of both complexity and software
size – e.g. McCabe cyclomatic complexity for source code and
number of blocks/signals for Simulink models.

In another part of ISO/IEC 26262 another types of soft-
ware complexity are recognized such as coupling (”Restricted
coupling between software components”), which is related to
the measures of complexity by Henry and Kafura which we
have explored in our previous studies on the architecture level
of an electrical system of a car [5].

In our talk we present the principles of how to calculate
these types of complexity measures and what that means for
the testing/verification methods prescribed in ISO/IEC 26262,
e.g. control flow monitoring at the architectural level, and
interface tests at the unit of code level. We show the difficulty
of achieving high levels of coverage based on examples and
reflect on the difficulty of achieving certainty of code quality
based on the data set from the public domain from the
embedded software in cars [2].

IV. ALTERNATIVE METHODS

Mutation testing is one of the techniques where the object of
analysis is not only the system itself (SUT – System Under
Test), but also the test suite. In mutation testing parts of
correct source code are replaced by a defective code – e.g.
by changing the condition of an if statement from ”true” to
”false”. When testing the replaced code (so called the mutant)
the defect should be found. Using this kind of testing can
improve the ”certainty” in the results of the verification process
as described by Rana et al. [6], [7].

Another way of achieving higher reliability of software is
to perform defect-oriented root cause analyses based on defect
classifications (c.f. [8], [9]) and using that in improving predic-
tions (c.f. [10]). We also explore how the use of abstractions
and transformations can increase the predictability of software
development processes (c.f. [11]).

V. CONCLUSION

In this talk we highlight the challenges with the growing
complexity of software in modern cars. We present the trends
in the complexity growth and we discuss the impact of
these trends on the transportation systems in general – e.g.
autonomous driving, safety assessment. We present examples
of the challenges based on the ISO/IEC 26262 standard and a
publicly available data set from the automotive domain.

We contribute to the discussion on the implications of
software-controlled functionality both for the vehicles and for
the entire transportation network. We conclude the talk by
forecasting a possible development of software complexity
based on extrapolating the trends in the open data set and
based on the new features which the automakers present today
in their marketing materials.

ACKNOWLEDGMENT

The research presented here is done under the VISEE project
which is funded by Vinnova and Volvo Cars jointly under
the FFI programme (VISEE, Project No: DIARIENR: 2011-
04438).

The research presented here is done under the SSF mobility
project (Swedish Strategic Research Foundation) under the
grant number SM13-0007.

REFERENCES

[1] M. Broy, “Challenges in automotive software engineering,” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 33–42.

[2] H. Altinger, S. Siegl, Dajsuren, Yanja, and F. Wotawa, “A novel industry
grade dataset for fault prediction based on model-driven developed
automotive embedded software,” in 12th Working Conference on Mining
Software Repositories (MSR). MSR 2015, 2015.

[3] V. Antinyan, M. Staron, J. Hansson, W. Meding, P. Osterström, and
A. Henriksson, “Monitoring evolution of code complexity and magni-
tude of changes,” Acta Cybernetica, vol. 21, no. 3, pp. 367–382, 2014.

[4] D. I. Sjøberg, B. Anda, and A. Mockus, “Questioning software mainte-
nance metrics: a comparative case study,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2012, pp. 107–110.

[5] D. Durisic, M. Nilsson, M. Staron, and J. Hansson, “Measuring the
impact of changes to the complexity and coupling properties of auto-
motive software systems,” Journal of Systems and Software, vol. 86,
no. 5, pp. 1275–1293, 2013.

[6] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Increasing efficiency of iso 26262 verification and validation by
combining fault injection and mutation testing with model based de-
velopment.” in ICSOFT, 2013, pp. 251–257.

[7] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,
“Evaluating long-term predictive power of standard reliability growth
models on automotive systems,” in Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 2013,
pp. 228–237.

[8] N. Mellegård, M. Staron, and F. Törner, “A light-weight software defect
classification scheme for embedded automotive software and its initial
evaluation,” Proceedings of the ISSRE 2012, 2012.

[9] N. Mellegård and M. Staron, “Characterizing model usage in embedded
software engineering: a case study,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume.
ACM, 2010, pp. 245–252.

[10] M. Staron and W. Meding, “Predicting short-term defect inflow in large
software projects–an initial evaluation,” 11th International Conference
on Evaluation and Assessment in Software Engineering, EASE, 2007.



[11] L. Kuzniarz and M. Staron, “On practical usage of stereotypes in uml-
based software development,” the Proceedings of Forum on Design and
Specification Languages, Marseille, 2002.


