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Abstract. In this paper we examine the reporting pattern of more than
7000 issue reports from five large open source software projects to eval-
uate two main characteristics: (1) when do defects get reported - does
there exist any distinct patterns, and (2) is there any difference between
reported defect inflow and actual defect inflow for these projects. The
two questions evaluated here are important from practical standpoint.
Detailed knowledge of specific patterns in defect reporting can be use-
ful for planning purposes, while differences between reported and actual
defect inflow can have implications on accuracy of dynamic software re-
liability growth models used for defect prediction/reliability assessment.
Our results suggest that while there exist distinct variation over when
defects are reported, the ratio of reported to actual defects remains fairly
stable over period of time. These results provide more insights into pos-
sible group of people who contribute to OSS projects and also enhance
our confidence in applying SRGMs using reported defect inflow. Our
test with logistic growth model show that using reported bugs provided
asymptote (total expected bugs) predictions that were on average only
4.8% different than using actual bugs for making such predictions.
Keywords Software defects, Issue reporting, Mining software repositories,
Bug reports, Data quality, Open source software, SRGMs.

1 Introduction

An important source of information in proprietary and open source software
projects is the issue tracking systems. A large part of development and mainte-
nance activities can be tracked and traced to reports from issue tracking systems.
While there has been much effort devoted to find out who actually contributes
to OSS system development and maintenance [1] [2], little is known about when
such contributions are made. Understanding when issues are reported can pro-
vide useful insights into the characteristics of OSS contributors. Śliwerski et al.
[3] analysed bug database of MOZILLA and ECLIPSE to investigate fix induced
changes, one of their interesting observation was that the likelihood that a change
will induce a fix was highest on Friday. We use the time stamp of all issues to
analyse when issues and actual bugs are reported for five studied OSS projects.
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Another important aspect related to using information from OSS issue track-
ing systems is the quality of data, which has been a topic of much research [4]
[5] [6]. While in closed-source projects issue tracking may be strictly used only
for recording and managing bugs, in open source projects issue tracking sys-
tems usually tend to serve as interface for discussion between developers and
users. Thus often apart from listing bugs, issue tracker of OSS projects contain
entries requesting new features, perfective or preventive maintenance, architec-
tural discussions, need for re-factoring, etc. [7]. Also usually different kinds of
issues submitted to OSS issue tracking systems are simply labelled “Bug” which
can introduce potential bias to defect prediction models as highlighted in study
by Herzig et al. [8].

Software Reliability Models (SRM) are defined as “mathematical expression
that specifies the general form of the software failure process as a function of
factors such as fault introduction, fault removal, and the operational environ-
ment.” [9]. SRGMs can be classified as white box models referring to models
that use source code metrics for making assessment/prediction of defect prone-
ness of given software artefact - these have been shown to be affected due to
misclassification of non-bugs as bugs [8]. The other class of SRM are black box
models usually refereed to as Software Reliability Growth Models (SRGMs) that
only uses bug/defect inflow data to make prediction of future defects/reliability
growth of given software system [10] [11] [12]. While the effect of misclassification
on white box models has been studied, it is not clear if such misclassification can
also affect the use of dynamic models (SRGMs). Since black box models only
use the trend of number of bugs reported for modelling reliability growth they
can provide satisfactory results as long as the misclassification ratio is stable i.e.
percentage of issues misclassified as bugs remains fairly stable. We analyse the
two ratios for investigating this - ratio of actual bugs to total issues, and ratio
of actual bugs to reported bugs. Our results suggest that while there exist large
variation in total issues and bugs being reported over day, week and months -
the ratio of actual bugs to total issues and reported bugs remains much more
stable.

The rest of paper is organised as follows, the next Section (2) describes
the data used in this study. Section (3) provides an overview of background
and related work, followed by section 4 outlining the results from the study. In
section 5 we test the effect of misclassification of issues on application of SRGMs
which is followed by conclusion of paper and future work in the section 6.

2 The Data

We studied five open source Java projects with active development and since
these projects are developed and maintained by APACHE and MOZILLA com-
munity they also tend to follow a strict bug reporting and fixing process. The
main reason of choosing these projects was also the availability of manual classi-
fication of issues for the studied period, Herzig et al. [8] examined and manually
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classified the issue reports from these projects to study the rate of misclassifica-
tion and resulting bias on bug prediction models. In this study we examined all
issue reports in the same period for analysing when do issues and bugs actually
get reported and if misclassification can also introduce bias in SRGM models.
The details of project and study period are summarised in table 1.

Table 1. Table with OSS project details and studied time period

OSS Project Time Period Maintainer No of Issues Ref.

HttpClient 11/2001-04/2012 APACHE 746 Website1

Jackrabbit 09/2004-04/2012 APACHE 2402 Website2

Lucene-Java 03/2004-03/2012 APACHE 2443 Website3

Rhino 09/1999-02/2012 MOZILLA 584 Website4

Tomcat5 05/2002-12/2011 APACHE 1226 Website5

To collect the data, we first mined all issue reports from the five OSS projects
including all details (issue id, time stamp, original classification, description etc.),
we then matched each issue id to data on manual classification of Herzig et
al. [8] made publicly6 available by the authors. We then used the timestamp
information of all issues to analyse when issues were reported by the individual
contributors and utilized original and manual classification to check the trend of
actual bugs to reported bugs.

3 Background and Related Work

Software issues, defects and bugs are frequently used in software literature and
this paper, we distinguish between them as follows:
Term software issue is used to refer to a report filed by users or developers into
the given OSS projects’ issue database. These issues can be further classified as
Defects/Bugs, request for enhancements, improvement requests, documentation,
refactoring requests, etc. [8]. Defect and Bug are used interchangeably in this
paper referring to issues that require a corrective maintenance tasks usually
achieved by making semantic changes to the source code.

In the OSS development, a large percent of issue reports generally gets re-
ported by the users. The core member of the OSS team usually review these
issue reports and identify which of these report as valid, invalid, require correc-
tive maintenance (defect/bug) and so on. If the described defects are valid, the

1 https://hc.apache.org/httpcomponents-client-ga/
2 https://jackrabbit.apache.org/jcr/index.html
3 https://lucene.apache.org/
4 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
5 http://tomcat.apache.org/
6 http://www.softevo.org/bugclassify
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core team will start to repair it or adopt the patches provided by the users. The
terms used frequently in this context here are:

– Total issues: The total number of issues reported by all users and contrib-
utors of a given OSS project.

– Reported bugs: Number of issues that are indicated (flagged/classified) as
a Bug by the individual filing/reporting the given issue.

– Actual bugs: refer to number of issues that are identified as actually bugs
using the manual classification of all issues as reported by Herzig et al. [8].
Kim et al. [13] highlighted the impact of noise in defect data on defect pre-

diction models. The authors list guidelines for acceptable noise level and also
propose algorithm for noise detection and elimination to address the problem.
Ramler and Himmelbauer [14] also studied the effect of noise (misclassification)
in bug reports data on the predictive accuracy of defect classification models for
an industrial software system. They investigated the causes of noise in bug re-
port data and experimented the effect of noise level on the performance of defect
classification models. In this paper we investigate if noise can also effect appli-
cation of software reliability growth models which are black-box models used
for predicting the shape of defect inflow and total expected defect in the con-
text of software defect predictions. Misclassification of failures can also lead to
implications to effectiveness of verification and validation (V&V) as highlighted
in study by Falessi et al. [15]. Knowing in which periods a project is likely to
have large inflow of issues/defects can help OSS core team to plan and allocate
their resources effectively helping them to minimize classification errors leading
to enhanced V&V effectiveness.

Earlier studies by Staron and Meding [16][17] emphasized the importance of
predicting short-term defect inflow for project planning and monitoring purposes
in large industrial software projects. The short term and weekly defect inflow pre-
diction models proposed in their work are intended to support project mangers
towards helping them make more accurate resource allocation decisions. While
the earlier work has been evaluated in the context of large industrial software
projects, in the paper we look closely into the OSS projects. By understanding
when most issues (and actual bugs) are reported over time and effect of noise in
defect data on total defect count predictions, this research is aimed at helping
OSS core members to manage their project more effectively. Close examination
of patterns of software issues inflow over time also leads us towards better un-
derstanding of OSS project contributors.

4 Results

4.1 Issues inflow profile

First we examined the inflow frequency of reported issues for the five open source
projects. Figure 1 provide the number of issues reported weekly and also the cu-
mulative issues inflow profile over the studied period. A detailed inspection of
issues inflow can provide insights into the software development/maintenance
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process, help with planning resource/work delegation. Further issues/defect in-
flow profile can also be used to model and thus predict the expected number of
issues inflow in future or model the reliability characteristics of software product
using modelling techniques such as software reliability growth models (SRGMs)
[10].
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Fig. 1. Total issues inflow per week and cumulative inflow profile

From figure 1, we note that issues inflow varies widely (not surprising) for
different OSS projects. What is interesting here are the differences in the pattern
of weekly defect inflow which are also evident from the cumulative defect inflow,
we observe that.
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1. The issue intensity (number of reported issues per time unit) for OSS project
HttpClient and Rhino remained pretty low and stable for the studied period.
The cumulative issues profile for such projects is more or less a linear in
nature which has been associated with incremental development and main-
tenance activities.

2. The issues inflow of Jackrabbit project show a start with low issues intensity,
which maximizes in the middle followed by the fall in issues intensity. The
issues inflow pattern observed for this project is associated with S-shaped
issues inflow (see cumulative issues profile) and indicates lower issues inflow
as the associated product matures.

3. In case of Lucene-Java project, the issues intensity has an increasing trend
that translates into an convex shaped issues inflow profile. Such issues in-
flow can either result from rapid development and deployment/adoption and
needs more resources for managing the issues inflow increase with time.

4. The OSS project Tomcat5 issues inflow starts with high issues intensity in
the early stages of studied period and which falls substantially as the time
progress. Such pattern produces a concave issues profile where majority of
issues are reported early in the project and as these issues are resolved and
product matures the reported issues intensity decreases. The small issues
intensity at late phases can also be a result of new release of given product.
Thus examination of issues inflow of different OSS projects revel that their

reported issues inflow can be quite different from one another given number of
factors that affect the project such as pace of development, active community,
adoption, maturity, and release management. Nonetheless understanding of is-
sues inflow of given OSS project release can not only enhance our knowledge of
these factors for given OSS project, but can also help OSS communities to plan
for their following releases.

There have been reports that had questioned the quality of defect/bug reports
from OSS projects [8] [4]. These studies suggest that about 40% of files marked as
defective in reality does not have any associated bugs [8]. While misclassification
of defects can pose a serious threat to defect prediction/classification models
trying to predict which files/modules are defect prone, such misclassification
may not pose a serious risk to application of SRGMs which model reliability on
the trend of reported defects as long as the ratio of reported defects to actual
defects is stable over time.

4.2 Issues reported on monthly basis

From figure 2, we observe that total issues reported, issues reported that were
classified as bugs (reported bugs) and issues that were actually bugs (as per
manual classification from [8] study - actual bugs) is fairly stable for each month
of the year. Total issues and reported bugs were lower than their mean value
for month of December which is understandable due to public holidays, but
surprisingly the actual reported bugs were close to their mean value. One reason
for this observation could be due to the result of larger use of particular OSS
products leading to discovery of real bugs that counter the expected depression of
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actual bug reports from the holiday season in the given month. It is also observed
that total reported issues, reported and actual bugs register growth for the first
three months of the year and lower than mean values for the summer months
(April to July). The depression in the summer months period be partly explained
by onset of busy (exam) periods in Universities, end of financial year/quarter
over many countries that could put higher pressure on OSS project contributors
that work full-time for private companies, and the associated vacation period.
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Fig. 2. Monthly distribution of total issues, reported bugs and actual bugs over the
five OSS projects
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Taking a closer look at what proportion of total reported issues are marked
as Bugs (by the issue reporter) and proportion of actual bugs to the total and
reported bugs provide a fairly stable trend. About 58% of all reported issues are
classified as bugs by the original reporter, this ratio does not vary much although
a small trend that follows the total issues reported is observed where slightly
higher percentage of all issued reported in early months of year are reported
bugs, while the ratio is lower than its mean value for the summer period. With
respect to actual bugs to reported bugs, which is an important ratio to know
if application of SRGMs using reported bugs could produce misleading results -
the trend is quite linear with about 68% of reported bugs were actual bugs over
the period of time. The two months that had different values of this ratio were
July and December when the ratio of actual to reported bugs were approx. 62%
and 73% respectively. Except for these two months the actual to reported bugs
ratio stays quite close to its mean value and thus the probability of large impact
on the SRGMs models that use reported bugs is likely to be low.

4.3 Issues reported on weekly basis

The trends of issues and bugs reporting we saw on monthly basis (figure 3) can
be examined in more details by breaking them down on weekly basis. From figure
??e observe that the total issues, reported and actual bugs start to fall rapidly
in last three weeks of year and recovers close to its mean value just in the second
week of new year. Week 2-8 usually register close to mean value of issues and bug
reports while it stays much higher than mean for the next 5 weeks. Over weeks
14-32, total issues, reported and actual bugs were almost consistently lower than
their respective mean values.

With regard to the ratio of actual bugs to total issues and reported bugs,
the trend stayed close to its mean value with some fluctuations over weeks. But
given the variation of these ratio is not too high, it is safe to interpret that using
total reported issues or reported bugs as a proxy for actual bugs is likely to work
for most practical purposes such as projection of how many actual bugs may be
needed to handle next month etc.

4.4 Issues reported by week day

There have been many studies trying to figure out who really contributes to the
development of OSS projects, but little is known about when do these contribu-
tions occur. We examined about 7000 issues from the five OSS projects to see
when do they get reported.

While it is not too radical to expect that most OSS issue reports may be re-
ported over the weekends when contributors who have full time education/jobs
have spare time to work on their hobby projects - the empirical data suggest
otherwise. On average majority of issues, reported and actual bugs are accounted
during the work week. The pattern seen here (greater than mean reports orig-
inating on Tue-Sat, while lowest number of issues and bugs being reported on
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Fig. 3. Weekly distribution of total issues, reported bugs and actual bugs over the five
OSS projects

Sunday and Mondays) indicate towards majority of OSS contributors coming
from individuals with full time studies/jobs.

The following characteristics could have contributions to the observed distri-
bution of issues reporting for OSS projects:
1. The first day of week (Mon), most contributor are busy at their primary

task (education/job) and do not find enough time to contribute to the OSS
project.

2. As the week progress (Tue-Fri), the number of total issues and bugs reported
increases as a large proportion of contributors probably works alongside their
primary duties of education/jobs.
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Fig. 4. Distribution of total issues, reported bugs and actual bugs over the five OSS
projects by week day

3. On Saturday which is the first week day off in most western countries fol-
lowing 5-day work week, while there is drop in absolute number of issues
compared to peak of Thr/Friday, but still a large number of issues and bugs
are registered (over how many are reported on Tuesday). This suggest that
OSS contributors may be using the momentum of work week and utilizing
the free time available on the day off to contribute to their choice of OSS
project.

4. Finally on Sunday, it seems most contributors take time off before the next
week start to refresh themselves before staring a new work week.
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And while the ratio of actual bugs over total issue and reported bugs is quite
stable over week days, interestingly on Sunday and Mondays as there are lower
number of issues and bugs reported they also tend to be slightly less inclined to
be referring to actual bug into the system than on other days of week.

5 Does misclassification of issues lead to bias in SRGM
predictions?

Next to empirically evaluate if using reported bugs as proxy for actual bugs can
lead to bias results or not when using dynamic/black box software reliability
models. We applied Logistic model to data on reported and actual bugs from
the five projects, the Logistic model was chosen as it has been shown to provide
high predictive accuracy in our earlier studies [10]. Logistic model is an S-shaped
model [18] with mean value function given by equation 1, where a represents the
asymptote, b, the growth rate of curve, and c is the constant.

m(t) =
a

(1 + e−b(t−c))
(1)

For the experiment following steps were performed:
1. We first took the actual bug inflow data (manually classified bugs), logistic

model was applied on the 90% of data points and model parameters were
noted.

2. Then we used reported bug inflow data (issues classified as bug by original
contributor, i.e. data with misclassification noise) and used same model again
on 90% of data points and model parameters were recorded.

3. The asymptote obtained from using reported bugs was then adjusted to re-
flect the proportion of actual bugs out of reported bugs for the given project.
This number can be easily obtained for an OSS project by manually classify-
ing a sample of user classified bug reports as follows. Assuming we manually
analysed a sample s of issues reported (flagged) as bugs by the issue reporter,
but only m, (m ≤ s) were found to be actual bugs on manual examination.
Then the asymptote obtained from using reported bugs can be adjusted for
actual bugs as:
Adj Predicted Asymptote = s

m∗(Predicted Asymptote using reported bugs).
4. Finally we compare the parameters (Asymptote, growth rate) obtained from

using reported bugs to model parameters obtained from using actual bug
inflow data. The results are summarized in table 2.
As it can be noted from the table 2, the SRGM (in this case logistic model)

parameters obtained using reported bug inflow are close to parameters using
actual bug inflow data. While these exist some variation across the projects, in
general we observe that using reported bug inflow can provide actual bug inflow
profile with good accuracy without actually need for manual classification of all
issues. The relative error between asymptote prediction obtained using reported
bugs is close to asymptote prediction obtained using actual bugs which require
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Table 2. Table of parameters obtained by applying logistic SRGM on reported bugs
(proxy) and actual bugs

 

OSS Project 

Asymptote (a) Growth rate (b) Constant term (c) 

Reported 
bugs (Adj) 

Actual 
bugs 

Reported 
bugs 

Actual 
bugs 

Reported 
bugs 

Actual 
bugs 

HttpClient 261 260 0.051 0.050 39.7 41.3 

Jackrabbit 901 923 0.069 0.065 42.3 44.6 

Lucene-Java 741 685 0.049 0.054 67.6 65.7 

Rhino 338 301 0.035 0.040 76.4 64.5 

Tomcat5 644 640 0.082 0.084 36.7 33.3 

 

 

 

 

OSS Project 

Asymptote (a) Growth rate (b) Constant term (c) 

Reported 
bugs (Adj) 

Actual 
bugs 

Relative 
Error 

Reported 
bugs 

Actual 
bugs 

Reported 
bugs 

Actual 
bugs 

HttpClient 261 260 0.4% 0.051 0.050 39.7 41.3 

Jackrabbit 901 923 -2.4% 0.069 0.065 42.3 44.6 

Lucene-Java 741 685 8.2% 0.049 0.054 67.6 65.7 

Rhino 338 301 12.3% 0.035 0.040 76.4 64.5 

Tomcat5 644 640 0.6% 0.082 0.084 36.7 33.3 

 

manual classification of each reported issue. The average relative error (magni-
tude) over five projects was 4.8% and thus provided good proxy for predicting
expected number of total defects using the readily available data on reported
issues and bugs.

6 Conclusions and Next Steps

In this paper we examined two important aspects of open source software de-
velopment. Using more than 7000 issue reports from 5 large OSS projects. We
also closely inspected when the issues and actual bugs are reported for the OSS
projects. The most productive periods for issue and bug reporting was identified
as periods between Jan-Mar and Aug-Nov, while the activity over December and
summer months being lower than average. Another interesting observation made
was that activity with respect to issues and bug reporting was at its minimal
on first (Monday) and last day (Sunday) of week, while maximum occurred at
middle of week on Thursday. A large proportion of issues and bug reports are
also filed on Saturday which can be indicative of individuals contribution to OSS
projects using their free time.

There have been concerns raised about data quality of issue reports for OSS
projects, specifically regarding the misclassification of issues as bugs when they
were not bugs in reality. Misclassification of bugs can pose serious threat to defect
prediction/classification studies that aim to detect/predict which files/modules
are defect prone. We examined if misclassification can affect also mislead the
planning or projections using dynamic software reliability growth models that
only uses the defect inflow data. Our results suggest that while number of issues
and reported bugs vary over time, the ratio of actual bugs to total issues and
reported bugs stay pretty stable over time, thus predictions that uses total issues
as proxy for actual bugs and SRGMs using total issues/reported bugs are less
likely to be impacted by misclassification compared to models predicting the
likelihood of a particular file/module being defective.

In this research, the focus has been on reporting of issues and bugs in OSS
projects, the future work in this direction can look into more closely the pattern
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of commits that can reveal further information on OSS project contributions.
Some of the research questions and directions that can be pursued are:

– Analysis of at what local time these commits and issue reports are made can
also help us build better profile of who actually contributes to OSS project
and when these contribution occur,

– How much can we learn more about the patterns within reported issues and
have better understanding of OSS contributors by using defect classification
techniques (for e.g. Orthogonal defect classification [19]) to the issues from
OSS bug repositories,

– How does patters of issues and bug reporting differ for cases where OSS
projects are managed by government or commercial organizations, etc.
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