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Abstract. We consider parabolic stochastic partial differential equations dri-
ven by multiplicative Lévy noise of an affine type. For the second moment of

the mild solution, we derive a well-posed deterministic space-time variational

problem posed on tensor product spaces, which subsequently leads to a deter-
ministic equation for the covariance function.

1. Introduction

The covariance function of a stochastic process provides information about the
correlation of the process with itself at pairs of time points and, hence, about the
strength of their linear relation. In addition, it shows if this behavior is stationary,
i.e., whether or not it changes when shifted in time and if it follows any trends.
Since the covariance of the solution process to a parabolic stochastic partial dif-
ferential equation driven by an additive Q-Wiener process has been described as
the solution to a deterministic, tensorized evolution equation in [7], the immediate
question has arisen, if it is possible to establish such a correspondence also for co-
variance functions of solutions to stochastic partial differential equations driven by
multiplicative noise.

In this paper, we extend the investigation of the covariance function to solution
processes of parabolic stochastic partial differential equations driven by multiplica-
tive Lévy noise considered, e.g., in [9]. The multiplicative operator is assumed
to be affine-linear. Clearly, under appropriate assumptions on the driving Lévy
process, the mean function of the mild solution satisfies the corresponding deter-
ministic, parabolic evolution equation as in the case of additive Wiener noise, since
in both cases the stochastic integral is a martingale. However, the presence of a
multiplicative term changes the behavior of the second moment and the covari-
ance. We prove that also in this case the second moment as well as the covariance
of the square-integrable mild solution satisfy deterministic space-time variational
problems posed on tensor products of Bochner spaces. In contrast to the case of
additive Wiener noise considered in [7], the resulting bilinear form does not arise
from taking the tensor of the corresponding deterministic parabolic operator with
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itself, but it involves a non-separable operator in the dual space. Because of this
term, well-posedness of the derived deterministic variational problems is not an
immediate consequence.

The present paper is structured as follows: In Section 2 we present the parabolic
stochastic differential equation, whose covariance function we aim to describe, as
well as some auxiliary results. More precisely, in Section 2.1 we first define the mild
solution of the investigated stochastic partial differential equation. In addition, we
impose appropriate assumptions on the initial value and on the affine operator in
the multiplicative term such that existence and uniqueness of the mild solution are
guaranteed. In Section 2.2 we state and establish some results which we need in
order to prove the main theorems of this paper in Sections 3 and 5: the deterministic
space-time variational problems satisfied by the second moment and the covariance
of the mild solution. We derive a series expansion for the Lévy process as well as
an isometry for the weak stochastic integral.

In Theorem 3.5 of Section 3 we show that the second moment of the mild solution
solves a deterministic space-time variational problem posed on tensor products of
Bochner spaces. In order to be able to formulate this variational problem, we need
some additional regularity of the second moment which we prove first.

The aim of Section 4 is to establish well-posedness of the derived variational
problem. According to the Nečas theorem, this is equivalent to showing that the
inf-sup constant of the arising bilinear form is strictly positive and that a certain
surjectivity condition is satisfied. Therefore, in Section 4.1 we investigate the inf-
sup constant using the knowledge about the positivity of the inf-sup constant for
space-time variational problems considered in [13]. Theorem 4.8 of Section 4.2
provides surjectivity and well-posedness is deduced.

Finally, in Section 5 we use the results of the previous sections to obtain a well-
posed space-time variational problem satisfied by the covariance function of the
mild solution.

2. Definitions and preliminaries

In this section the investigated stochastic partial differential equation as well
as the setting, that we impose on it, are presented. In addition, we prove some
auxiliary results that will be needed later on, in Section 3 and 5, respectively, to
derive the deterministic equations for the second moment and the covariance of the
solution process to the stochastic partial differential equation.

2.1. The stochastic partial differential equation. For two separable Hilbert
spaces H1 and H2 we denote by L(H1;H2) the space of bounded linear operators
mapping from H1 to H2. In addition, we write Lp(H1;H2) for the space of the
Schatten class operators of p-th order. Here, for 1 ≤ p < ∞ an operator T ∈
L(H1;H2) is called a Schatten-class operator of p-th order, if T has a finite p-th
Schatten norm, i.e.,

‖T‖Lp(H1;H2) :=

(∑
n∈N

sn(T )p

) 1
p

< +∞,

where s1(T ) ≥ s2(T ) ≥ . . . ≥ sn(T ) ≥ . . . ≥ 0 are the singular values of T , i.e., the
eigenvalues of the operator (T ∗T )1/2. Here, T ∗ ∈ L(H2;H1) denotes the adjoint
of T . If H1 = H2 = H we abbreviate Lp(H;H) by Lp(H). For the case p = 1
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and a separable Hilbert space H with inner product 〈·, ·〉H and orthonormal basis
(en)n∈N we may introduce the trace of an operator T ∈ L1(H) by

tr(T ) :=
∑
n∈N
〈Ten, en〉H .

The trace tr(T ) is independent of the choice of the orthonormal basis and it satisfies
| tr(T )| ≤ ‖T‖L1(H), cf. [3, Proposition C.1]. By L+

1 (H) we denote the space of all
nonnegative, symmetric trace class operators on H, i.e.,

L+
1 (H) := {T ∈ L1(H) : 〈Tϕ, ϕ〉H ≥ 0, 〈Tϕ, ψ〉H = 〈ϕ, Tψ〉H ∀ϕ,ψ ∈ H} .

In the following U and H denote separable Hilbert spaces with inner products
〈·, ·〉U and 〈·, ·〉H , respectively.

Let L := (L(t), t ≥ 0) be an adapted square-integrable U -valued Lévy process
defined on a complete filtered probability space (Ω,A, (Ft)t≥0,P). More precisely,
we assume that

(i) L has independent increments, i.e., for all 0 ≤ t0 < t1 < . . . < tn the U -
valued random variables L(t1)− L(t0), L(t2)− L(t1), . . ., L(tn)− L(tn−1)
are independent;

(ii) L has stationary increments, i.e., the distribution of L(t) − L(s), s ≤ t,
depends only on the difference t− s;

(iii) L(0) = 0 P-almost surely;
(iv) L is stochastically continuous, i.e.,

lim
s→t
s≥0

P(‖L(t)− L(s)‖U > ε) = 0 ∀ε > 0, ∀t ≥ 0.

(v) L is adapted, i.e., L(t) is Ft-measurable for all t ≥ 0.
(vi) L is square-integrable, i.e., E‖L(t)‖2U < +∞ for all t ≥ 0.

Furthermore, we assume that for t > s ≥ 0 the increment L(t) − L(s) is inde-
pendent of Fs and that L has zero mean and covariance operator Q ∈ L+

1 (U), i.e.,
for all s, t ≥ 0 and x, y ∈ U it holds: E〈L(t), x〉U = 0 and

(2.1) E [〈L(s), x〉U 〈L(t), y〉U ] = min{s, t} 〈Qx, y〉U ,
cf. [9, Theorem 4.44]. Note that under these assumptions, the Lévy process L is a
martingale with respect to the filtration (Ft)t≥0 by [9, Proposition 3.25].

In addition, since Q ∈ L+
1 (U) is a nonnegative, symmetric trace class operator,

there exists an orthonormal eigenbasis (en)n∈N ⊂ U of Q with corresponding eigen-
values (γn)n∈N ⊂ R≥0, i.e., Qen = γnen for all n ∈ N, and for x ∈ U we may define

the fractional operator Q1/2 by

Q
1
2x :=

∑
n∈N

γ
1
2
n 〈x, en〉U en,

as well as its pseudo inverse Q−1/2 by

Q−
1
2x :=

∑
n∈N : γn 6=0

γ
− 1

2
n 〈x, en〉U en.

We introduce the vector space H := Q1/2U . Then H is a Hilbert space with respect
to the inner product 〈·, ·〉H := 〈Q−1/2·, Q−1/2·〉U .

Furthermore, let A : D(A) ⊂ H → H be a densely defined, self-adjoint, positive
definite linear operator, which is not necessarily bounded, but which has a compact
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inverse. In this case −A is the generator of an analytic semigroup of contractions
S = (S(t), t ≥ 0) and for r ≥ 0 the fractional power operator Ar/2 is well-defined

on a domain D(Ar/2) ⊂ H, cf. [8, Chapter 2]. We define the Hilbert space Ḣr as
the completion of D(Ar/2) equipped with the inner product

〈ϕ,ψ〉Ḣr := 〈Ar/2ϕ,Ar/2ψ〉H .

We obtain a scale of Hilbert spaces with Ḣs ⊂ Ḣr ⊂ Ḣ0 = H for 0 ≤ r ≤ s. Its
role is to measure spatial regularity. We denote the special case when r = 1 by
V := Ḣ1. In this way we obtain a Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗,

where H∗ and V ∗ denote the dual spaces of H and V , respectively. In addition,
although the operator A is assumed to be self-adjoint, we denote by A∗ : V →
V ∗ its adjoint to clarify whenever we consider the adjoint instead of the operator
itself. With these definitions, the operator A and its adjoint are bounded, A,A∗ ∈
L(V ;V ∗), since for ϕ,ψ ∈ V it holds

V ∗〈Aϕ,ψ〉V = 〈A1/2ϕ,A1/2ψ〉H = 〈ϕ,ψ〉V = V 〈ϕ,A∗ψ〉V ∗ ,
where V ∗〈·, ·〉V and V 〈·, ·〉V ∗ denote dual pairings between V and V ∗.

We are investigating the stochastic partial differential equation

dX(t) +AX(t) dt = G(X(t)) dL(t), t ∈ T := [0, T ],

X(0) = X0,
(2.2)

for finite T > 0. In order to obtain existence and uniqueness of a solution to
this problem as well as additional regularity for its second moment, which will be
needed later on, we impose the following assumptions on the initial value X0 and
the operator G.

Assumption 2.1. X0 and G in (2.2) satisfy:

(1) X0 ∈ L2(Ω;H) is an F0-measurable random variable.
(2) G : H → L2(H;H) is an affine operator, i.e., G(ϕ) = G1(ϕ) + G2 with

operators G1 ∈ L(H,L2(H;H)) and G2 ∈ L2(H;H).

(3) There exists a regularity exponent r ∈ [0, 1] such that X0 ∈ L2(Ω; Ḣr) and

Ar/2S(·)G1 ∈ L2(T;L(Ḣr;L2(H;H))), i.e.,∫ T

0

‖A r
2S(t)G1‖2L(Ḣr;L2(H;H))

dt < +∞.

(4) A1/2S(·)G1 ∈ L2(T;L(Ḣr;L2(H;H))), i.e.,∫ T

0

‖A 1
2S(t)G1‖2L(Ḣr;L2(H;H))

dt < +∞,

with the same value for r ∈ [0, 1] as in (3).

Note that the assumption on G1 in part (4) implies the one in part (3). Condi-

tions (1)–(3) guarantee Ḣr regularity for the mild solution (cf. Theorem 2.3), but
we need all four assumptions for our main results in Sections 3 and 5.

Before we derive the deterministic variational problems satisfied by the second
moment and the covariance of the solution X to (2.2) in Sections 3 and 5, we have to
specify which kind of solvability we consider. In addition, existence and uniqueness
of this solution must be guaranteed.
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Definition 2.2. A predictable process X : Ω × T → H is called a mild solution
to (2.2), if sup

t∈T
‖X(t)‖L2(Ω;H) < +∞ and

(2.3) X(t) = S(t)X0 +

∫ t

0

S(t− s)G(X(s)) dL(s), t ∈ T.

It is a well-known result that there exists a unique mild solution for affine-linear
multiplicative noise of the form considered above. More precisely, we have the
following theorem.

Theorem 2.3. Under the conditions (1)–(2) in Assumption 2.1 there exists (up
to modification) a unique mild solution X of (2.2). If additionally condition (3) of
Assumption 2.1 holds, then the mild solution satisfies

sup
t∈T
‖X(t)‖L2(Ω;Ḣr) < +∞.

Proof. The first part of the theorem follows from [9, Theorem 9.29]. Suppose now
that condition (3) is satisfied. By the dominated convergence theorem the sequence
of integrals ∫ T

0

‖A r
2S(τ)G1‖2L(Ḣr;L2(H;H))

χ(0,T/n)(τ) dτ,

where χ(0,T/n) denotes the indicator function on the interval (0, T/n), converges to

zero as n→∞. Therefore, there exists T̃ ∈ (0, T ] such that

κ2 :=

∫ T̃

0

‖A r
2S(τ)G1‖2L(Ḣr;L2(H;H))

dτ < 1.

Define T̃ :=
[
0, T̃

]
, Z := L∞

(
T̃;L2(Ω; Ḣr)

)
and

Υ: Z → Z, Υ(Z) := S(t)X0 +

∫ t

0

S(t− s)G(Z(s)) dL(s).

Then Υ is a contraction: For every t ∈ T̃ and Z1, Z2 ∈ Z we have

‖Υ(Z1)(t)−Υ(Z2)(t)‖2
L2(Ω;Ḣr)

= E
∥∥∥∫ t

0

S(t− s)G1(Z1(s)− Z2(s)) dL(s)
∥∥∥2

Ḣr

= E
∥∥∥∫ t

0

A
r
2S(t− s)G1(Z1(s)− Z2(s)) dL(s)

∥∥∥2

H
,

since A and, hence, Ar/2 are closed operators. Now applying Itô’s isometry for the
case of a Lévy process, cf. [9, Corollary 8.17], yields

= E
∫ t

0

‖A r
2S(t− s)G1(Z1(s)− Z2(s))‖2L2(H;H) ds

≤ E
∫ t

0

‖A r
2S(t− s)G1‖2L(Ḣr;L2(H;H))

‖Z1(s)− Z2(s)‖2
Ḣr ds

≤ sup
s∈T̃

E‖Z1(s)− Z2(s)‖2
Ḣr

∫ T̃

0

‖A r
2S(τ)G1‖2L(Ḣr;L2(H;H))

dτ

≤ κ2‖Z1 − Z2‖2Z .
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Therefore, ‖Υ(Z1) − Υ(Z2)‖Z ≤ κ‖Z1 − Z2‖Z , and Υ is a contraction. By the
Banach fixed point theorem, there exists a unique fixed point X∗ of Υ in Z. Hence,

X = X∗ is the unique mild solution to (2.2) on T̃ and

‖X‖2Z = sup
t∈T̃

E‖X(t)‖2
Ḣr < +∞.

The claim of the theorem follows from iterating the same argument on the intervals[
(m− 1)T̃ , min{mT̃ , T}

]
, m ∈

{
1, 2, . . . ,

⌈
T/T̃

⌉}
. �

2.2. Auxiliary results. The aim of this part is to prove some auxiliary results
that will be needed later on to derive the main results for the second moment and
the covariance of the mild solution X in (2.3). We start with two general results
on Lévy processes: First, we introduce a series expansion of the Lévy process
in Lemma 2.4, similarly to the Karhunen–Loève expansion for a Wiener process,
cf. [3, Proposition 4.1]. Afterwards, we use this expansion to deduce an isometry
for the weak stochastic integral in Lemma 2.5, analogously to [7, Lemma 3.1]. This
isometry together with the equality stated in Lemma 2.7 will be essential for the
derivation of the deterministic equations, whereas Lemma 2.6 will play a crucial
role for proving their well-posedness.

Lemma 2.4. For all t ∈ T, L(t) admits the expansion

(2.4) L(t) =
∑
n∈N

√
γn Ln(t)en,

where (en)n∈N ⊂ U is an orthonormal eigenbasis of Q with corresponding eigen-
values (γn)n∈N and (Ln)n∈N is a series of mutually uncorrelated real-valued Lévy
processes,

(2.5) Ln(t) =

{
γ
− 1

2
n 〈L(t), en〉U , if γn > 0

0, otherwise.

The series in (2.4) converges in L2(Ω;L∞(T;U)).

Proof. The proof is adapted from the case of a Wiener process, cf. [3, Proposition 4.1
and Theorem 4.3].

The real-valued processes (Ln)n∈N defined in (2.5) are Lévy processes since they
satisfy the properties (i)–(iv) stated in the beginning of Section 2.1. To see that
they are mutually uncorrelated, let 0 ≤ s ≤ t ≤ T . Then the definition (2.1) of the
operator Q yields

E [Ln(t)Lm(s)] =
1

√
γnγm

E [〈L(t), en〉U 〈L(s), em〉U ]

=
s

√
γnγm

〈Qen, em〉U =
s

√
γnγm

γnδnm = s δnm,

where δnm denotes the Kronecker delta. In order to prove convergence of the series
in (2.4), let N,M ∈ N, M < N . Then, by Parseval’s identity,∥∥∥ N∑

n=M+1

√
γnLn(t)en

∥∥∥2

L2(Ω;L∞(T;U))
= E sup

t∈T

∥∥∥ N∑
n=M+1

√
γnLn(t)en

∥∥∥2

U

= E sup
t∈T

N∑
n=M+1

γnLn(t)2 ≤
N∑

n=M+1

γn E
[
sup
t∈T

Ln(t)2

]
.
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Since the processes (Ln)n∈N are right-continuous martingales, we may apply Doob’s
Lp-inequality for p = 2, cf. [10, Theorem II.(1.7)], and obtain∥∥∥ N∑

n=M+1

√
γnLn(t)en

∥∥∥2

L2(Ω;L∞(T;U))
≤

N∑
n=M+1

γn

(
2

2− 1

)2

sup
t∈T

E
[
Ln(t)2

]
= 4

N∑
n=M+1

γnT ≤ 4T tr(Q).

Hence, the sequence of the partial sums is a Cauchy sequence in L2(Ω;L∞(T;U)).
�

Before we formulate the next result, we have to introduce some notation: By
C0(T;H) we denote the space of continuous mappings from T = [0, T ] to the Hilbert
space H. Besides, we consider the space L2(Ω× T;L2(H;H)) of square-integrable
L2(H;H)-valued functions with respect to the measure space (Ω × T,PT,P ⊗ λ),
where PT denotes the σ-algebra of predictable subsets of Ω×T and λ the Lebesgue
measure on T.

In addition to these function spaces, we will need the notion of tensor product
spaces. For two separable Hilbert spaces H1 and H2 we define the tensor space
H1 ⊗ H2 as the completion of the algebraic tensor product between H1 and H2

with respect to the norm induced by the following inner product

〈ϑ⊗ ϕ, χ⊗ ψ〉H1⊗H2
:= 〈ϑ, χ〉H1

〈ϕ,ψ〉H2
, ϑ, χ ∈ H1, ϕ, ψ ∈ H2.

If H1 = H2 = H, we abbreviate H(2) := H ⊗H. Furthermore, for a U -valued Lévy
process L with covariance operator Q as considered above, we define the covariance
kernel q ∈ U (2) as the unique element in the tensor space U (2) satisfying

(2.6) 〈q, x⊗ y〉U(2) = 〈Qx, y〉U
for all x, y ∈ U . Note that for an orthonormal eigenbasis (en)n∈N ⊂ U of Q with
corresponding eigenvalues (γn)n∈N we may expand q as follows,

(2.7) q =
∑
n∈N

∑
m∈N
〈q, en ⊗ em〉U(2)(en ⊗ em) =

∑
n∈N

γn(en ⊗ en),

since (en⊗ em)n,m∈N is an orthonormal basis of U (2) and 〈q, en⊗ em〉U(2) = γnδnm.

Lemma 2.5. For v1, v2 ∈ C0(T;H), a predictable process Φ ∈ L2(Ω×T;L2(H;H))
and t ∈ T, the weak stochastic integral, cf. [9, p. 151], satisfies

E
[∫ t

0

〈v1(s),Φ(s) dL(s)〉H
∫ t

0

〈v2(r),Φ(r) dL(r)〉H
]

=

∫ t

0

〈v1(s)⊗ v2(s),E[Φ(s)⊗ Φ(s)]q〉H(2) ds,

where q ∈ U (2) has been defined in (2.6).

Proof. For t ∈ T and ` ∈ {1, 2}, the series expansion (2.4) and the properties of the
weak stochastic integral yield

(2.8)

∫ t

0

〈v`(s),Φ(s) dL(s)〉H =
∑
n∈N

√
γn

∫ t

0

〈v`(s),Φ(s)en〉H dLn(s),
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where this equality holds in L2(Ω;R). In addition, since the predictability of Φ
implies the predictability of the integrands, we may apply Itô’s isometry for real-
valued Lévy processes, cf. [2, Theorem 4.2.3], which, along with the polarisation
identity, yields

E
[∫ t

0

〈v1(s),Φ(s)en〉H dLn(s)

∫ t

0

〈v2(r),Φ(r)en〉H dLn(r)

]
= E

[∫ t

0

〈v1(s),Φ(s)en〉H〈v2(s),Φ(s)en〉H ds

]
.

We use this equality together with the series expansion (2.8) and the mutual un-
correlation of the processes (Ln)n∈N, which implies the mutual uncorrelation of the
corresponding stochastic integrals. This yields

E
[∫ t

0

〈v1(s),Φ(s) dL(s)〉H
∫ t

0

〈v2(r),Φ(r) dL(r)〉H
]

=
∑
n∈N

∑
m∈N

√
γnγm E

[∫ t

0

〈v1(s),Φ(s)en〉H dLn(s)

∫ t

0

〈v2(r),Φ(r)em〉H dLm(r)

]

=
∑
n∈N

γn E
[∫ t

0

〈v1(s),Φ(s)en〉H dLn(s)

∫ t

0

〈v2(r),Φ(r)en〉H dLn(r)

]

=
∑
n∈N

γn E
[∫ t

0

〈v1(s),Φ(s)en〉H〈v2(s),Φ(s)en〉H ds

]

=
∑
n∈N

γn E
[∫ t

0

〈v1(s)⊗ v2(s),Φ(s)en ⊗ Φ(s)en〉H(2) ds

]

= E

[∫ t

0

〈
v1(s)⊗ v2(s),

∑
n∈N

γn (Φ(s)en ⊗ Φ(s)en)
〉
H(2)

ds

]

=

∫ t

0

〈
v1(s)⊗ v2(s),E [Φ(s)⊗ Φ(s)]

[∑
n∈N

γn(en ⊗ en)
]〉

H(2)
ds

and because of (2.7) we obtain

=

∫ t

0

〈v1(s)⊗ v2(s),E[Φ(s)⊗ Φ(s)]q〉H(2) ds. �

The bilinear form and the right-hand side, which will appear in the variational
problem for the second moment, contain several terms depending on the operators
G1 and G2 as well as on the kernel q that is associated with the covariance operator
Q via (2.6). To verify that they are well-defined we will need the following lemma.

Lemma 2.6. Let Q ∈ L+
1 (U) and define q ∈ U (2) as in (2.6). Then for an affine

operator G satisfying condition (2) of Assumption 2.1 the following statements hold:

(i) The linear operator (G1 ⊗G1)(·)q : V (2) → H(2) is bounded and

‖(G1 ⊗G1)(·)q‖L(V (2);H(2)) ≤ ‖G1‖2L(V ;L4(H;H)).
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(ii) The linear operators (G1(·) ⊗ G2)q and (G2 ⊗ G1(·))q : V → H(2) are
bounded and

‖(G1(·)⊗G2)q‖L(V ;H(2)) = ‖(G2 ⊗G1(·))q‖L(V ;H(2))

≤ ‖G1‖L(V ;L4(H;H))‖G2‖L4(H;H).

(iii) (G2 ⊗G2)q ∈ H(2) and ‖(G2 ⊗G2)q‖H(2) = ‖G2‖2L4(H;H).

Proof. Let (en)n∈N ⊂ U be an orthonormal eigenbasis of the covariance operator
Q ∈ L+

1 (U) with corresponding eigenvalues (γn)n∈N and define

fn :=
√
γnen, n ∈ N,

I := {j ∈ N : γj 6= 0} .

We may expand q ∈ U (2) as in (2.7). Therefore,

q =
∑
n∈N

γn(en ⊗ en) =
∑
j∈I

(fj ⊗ fj).

Assume first that ψ ∈ V (2) with ψ = ψ1 ⊗ ψ2 for ψ1, ψ2 ∈ V . For this case we
calculate for (i)

‖(G1 ⊗G1)(ψ)q‖2H(2) =
∥∥∥(G1 ⊗G1)(ψ1 ⊗ ψ2)

∑
j∈I

(fj ⊗ fj)
∥∥∥2

H(2)

=
〈∑
j∈I

(G1 ⊗G1)(ψ1 ⊗ ψ2)(fj ⊗ fj),
∑
k∈I

(G1 ⊗G1)(ψ1 ⊗ ψ2)(fk ⊗ fk)
〉
H(2)

=
∑
j∈I

∑
k∈I

〈G1(ψ1)fj ⊗G1(ψ2)fj , G1(ψ1)fk ⊗G1(ψ2)fk〉H(2)

=
∑
j∈I

∑
k∈I

〈G1(ψ1)fj , G1(ψ1)fk〉H〈G1(ψ2)fj , G1(ψ2)fk〉H

=
∑
j∈I

∑
k∈I

〈G1(ψ1)∗G1(ψ1)fj , fk〉H〈G1(ψ2)∗G1(ψ2)fj , fk〉H,

where G1(ψ`)
∗ ∈ L2(H;H) denotes the adjoint operator of G1(ψ`) ∈ L2(H;H),

i.e., 〈G1(ψ`)
∗ϕ, h〉H = 〈ϕ,G1(ψ`)h〉H for all ϕ ∈ H, h ∈ H and ` ∈ {1, 2},

=
∑
j∈I
〈G1(ψ1)∗G1(ψ1)fj ,

∑
k∈I

〈G1(ψ2)∗G1(ψ2)fj , fk〉Hfk〉H

=
∑
j∈I
〈G1(ψ1)∗G1(ψ1)fj , G1(ψ2)∗G1(ψ2)fj〉H,

since (fk)k∈I is an orthonormal basis of H = Q1/2U . Now we use the Cauchy–
Schwarz inequality and obtain

≤
∑
j∈I
‖G1(ψ1)∗G1(ψ1)fj‖H‖G1(ψ2)∗G1(ψ2)fj‖H

≤ ‖G1(ψ1)∗G1(ψ1)‖L2(H;H)‖G1(ψ2)∗G1(ψ2)‖L2(H;H)

= ‖G1(ψ1)‖2L4(H;H)‖G1(ψ2)‖2L4(H;H)

≤ ‖G1‖4L(V ;L4(H;H))‖ψ1‖2V ‖ψ2‖2V .
In this calculation the equality within the last three lines can be justified as follows:
For ϑ ∈ V , we denote by (sn(G1(ϑ)))n∈N the singular values of the operator G1(ϑ),
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i.e., the eigenvalues of the operator (G1(ϑ)∗G1(ϑ))1/2. Then the singular values
(sn(G1(ϑ)∗G1(ϑ)))n∈N of the operator G1(ϑ)∗G1(ϑ) are given by

sn(G1(ϑ)∗G1(ϑ)) = sn(G1(ϑ))2, n ∈ N.
Hence, we obtain the following equality

‖G1(ϑ)∗G1(ϑ)‖2L2(H;H) =
∑
n∈N

sn(G1(ϑ)∗G1(ϑ))2

=
∑
n∈N

sn(G1(ϑ))4 = ‖G1(ϑ)‖4L4(H;H).

We have shown that

‖(G1 ⊗G1)(ψ1 ⊗ ψ2)q‖H(2) ≤ ‖G1‖2L(V ;L4(H;H))‖ψ1 ⊗ ψ2‖V (2)

for all ψ1, ψ2 ∈ V . Since the set span{ψ1 ⊗ ψ2 : ψ1, ψ2 ∈ V } is dense in V (2) the
first claim follows: (G1 ⊗G1)(·)q ∈ L

(
V (2);H(2)

)
with

‖(G1 ⊗G1)(·)q‖L(V (2);H(2)) ≤ ‖G1‖2L(V ;L4(H;H)).

The second and the third assertion can be proven similarly: For ψ ∈ V

‖(G1(ψ)⊗G2)q‖2H(2) =
∑
j∈I

∑
k∈I

〈G1(ψ)fj ⊗G2fj , G1(ψ)fk ⊗G2fk〉H(2)

=
∑
j∈I

∑
k∈I

〈G1(ψ)fj , G1(ψ)fk〉H〈G2fj , G2fk〉H =
∑
j∈I
〈G1(ψ)∗G1(ψ)fj , G

∗
2G2fj〉H

≤ ‖G1(ψ)∗G1(ψ)‖L2(H;H)‖G∗2G2‖L2(H;H) = ‖G1(ψ)‖2L4(H;H)‖G2‖2L4(H;H)

≤ ‖G1‖2L(V ;L4(H;H))‖G2‖2L4(H;H)‖ψ‖
2
V .

By symmetry of Q, it holds ‖(G2 ⊗ G1(ψ))q‖H(2) = ‖(G1(ψ) ⊗ G2)q‖H(2) for all
ψ ∈ V . This shows (ii) and for (iii) we obtain

‖(G2 ⊗G2)q‖2H(2) =
∑
j∈I

∑
k∈I

〈G2fj ⊗G2fj , G2fk ⊗G2fk〉H(2)

=
∑
j∈I

∑
k∈I

〈G2fj , G2fk〉2H =
∑
j∈I
‖G∗2G2fj‖2H = ‖G∗2G2‖2L2(H;H) = ‖G2‖4L4(H;H).�

Lemma 2.7 relates the concepts of weak and mild solutions of stochastic partial
differential equations, cf. [9, Section 9.3], and will provide the basis for establishing
the connection between the second moment of the mild solution and a space-time
variational problem. In order to state it, we have to define the differential operator
∂t first. For a vector-valued function u : T→ H taking values in a Hilbert space H
we define the distributional derivative ∂tu as the H-valued distribution satisfying

〈(∂tu)(w), ϕ〉H = −
∫ T

0

dw

dt
(t)〈u(t), ϕ〉H ∀ϕ ∈ H,

for all w ∈ C∞0 (T;R), cf. [4, Definition 3 in §XVIII.1].

Lemma 2.7. Let the conditions (1)–(2) of Assumption 2.1 be satisfied and let X
be the mild solution to (2.2). Then it holds P-almost surely that

〈X, (−∂t +A∗)v〉L2(T;H) = 〈X0, v(0)〉H +

∫ T

0

〈v(t), G(X(t)) dL(t)〉H

for all v ∈ C1
0,{T}(T;D(A∗)) := {w ∈ C1(T,D(A∗)) : w(T ) = 0}.
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Proof. This equality follows from the equivalence of mild and weak solutions, see [9,
Theorem 9.15 and (9.20)]. �

3. The second moment

After having introduced the stochastic partial differential equation of interest
and its mild solution in Section 2, the aim of this section is to derive a well-posed
deterministic variational problem which is satisfied by the second moment of the
mild solution.

The second moment of an H-valued random variable X ∈ L2(Ω;H) is denoted
by M(2)X := E[X ⊗ X] ∈ H(2). It follows immediately from the definition of the
mild solution that its second moment is an element of the tensor space L2(T;H)⊗
L2(T;H). Under the assumptions made above we can prove even more regularity.
We introduce the Bochner space X := L2(T;V ) and the tensor space X (2) := X⊗X .

Theorem 3.1. Let all conditions of Assumption 2.1 be satisfied. Then the second
moment M(2)X of the mild solution X defined in (2.3) satisfies M(2)X ∈ X (2).

Proof. First, we remark that

‖M(2)X‖X (2) = ‖E[X ⊗X]‖X (2) ≤ E‖X ⊗X‖X (2) = E
[
‖X‖2X

]
.

Hence, we may estimate as follows:

‖M(2)X‖X (2) ≤ E
∫ T

0

∥∥∥S(t)X0 +

∫ t

0

S(t− s)G(X(s)) dL(s)
∥∥∥2

V
dt

≤ 2E
∫ T

0

[
‖S(t)X0‖2V +

∥∥∥∫ t

0

S(t− s)G(X(s)) dL(s)
∥∥∥2

V

]
dt

= 2E

[∫ T

0

‖A 1
2S(t)X0‖2H dt

]
+ 2

∫ T

0

E
∥∥∥∫ t

0

A
1
2S(t− s)G(X(s)) dL(s)

∥∥∥2

H
dt.

Since the generator −A of the semigroup (S(t), t ≥ 0) is self-adjoint and negative
definite, we can bound the first integral from above by using the inequality

(3.1)

∫ T

0

‖A 1
2S(t)ϕ‖2H dt ≤ 1

2
‖ϕ‖2H , ϕ ∈ H,

and for the second term we use Itô’s isometry, cf. [9, Corollary 8.17], as well as the
affine structure of the operator G to obtain

‖M(2)X‖X (2) ≤ E‖X0‖2H + 2

∫ T

0

E
∫ t

0

‖A 1
2S(t− s)G(X(s))‖2L2(H;H) dsdt

≤ E‖X0‖2H + 4

∫ T

0

∫ t

0

‖A 1
2S(t− s)G2‖2L2(H;H) dsdt

+ 4

∫ T

0

E
∫ t

0

‖A 1
2S(t− s)G1(X(s))‖2L2(H;H) dsdt.

By Assumption 2.1 (1)–(3) as well as Theorem 2.3 there exists a regularity exponent

r ∈ [0, 1] such that the mild solution satisfies X ∈ L∞(T;L2(Ω; Ḣr)). In addition,

by part (4) of Assumption 2.1 it holds A1/2S(·)G1 ∈ L2(T;L(Ḣr;L2(H;H))). Then
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we estimate as follows,

‖M(2)X‖X (2) ≤ E‖X0‖2H + 4
∑
n∈N

∫ T

0

∫ t

0

‖A 1
2S(t− s)G2fn‖2H dsdt

+ 4

∫ T

0

∫ t

0

‖A 1
2S(t− s)G1‖2L(Ḣr;L2(H;H))

E‖X(s)‖2
Ḣr dsdt

for an orthonormal basis (fn)n∈N of H. Applying (3.1) again yields

‖M(2)X‖X (2) ≤ ‖X0‖2L2(Ω;H) + 2T‖G2‖2L2(H;H)

+ 4T‖X‖2
L∞(T;L2(Ω;Ḣr))

‖A 1
2S(·)G1‖2L2(T;L(Ḣr;L2(H;H)))

,

which is finite under our assumptions and completes the proof. �

We introduce the spaces H1
0,{T}(T;V ∗) :=

{
v ∈ H1(T;V ∗) : v(T ) = 0

}
as well

as Y := L2(T;V ) ∩ H1
0,{T}(T;V ∗). Y is a Hilbert space with respect to the inner

product

〈v1, v2〉Y := 〈v1, v2〉L2(T;V ) + 〈∂tv1, ∂tv2〉L2(T;V ∗), v1, v2 ∈ Y.

Moreover, we obtain the following continuous embedding.

Lemma 3.2. It holds that Y ↪→ C0(T;H) with embedding constant C ≤ 1, i.e.,
sup
s∈T
‖v(s)‖H ≤ ‖v‖Y for every v ∈ Y.

Proof. For every v ∈ Y = L2(T;V ) ∩H1
0,{T}(T;V ∗) we have the relation

‖v(r)‖2H − ‖v(s)‖2H =

∫ r

s

2 V ∗〈∂tv(t), v(t)〉V dt, r, s ∈ T, r > s,

cf. [4, §XVIII.1, Theorem 2]. Choosing r = T and observing that v(T ) = 0 leads to

‖v(s)‖2H ≤ 2 ‖∂tv‖L2(T;V ∗)‖v‖L2(T;V ) ≤ ‖∂tv‖2L2(T;V ∗) + ‖v‖2L2(T;V ) = ‖v‖2Y . �

The dual spaces of X and Y with respect to the pivot space L2(T;H) are denoted
by X ∗ and Y∗, respectively. For the tensor spaces X (2) and Y(2) := Y ⊗Y the dual
spaces X (2)∗ and Y(2)∗ are taken with respect to the pivot space L2(T;H)(2) :=
L2(T;H)⊗ L2(T;H).

In the deterministic equation satisfied by the second moment the diagonal trace
operator δ will play an important role. For w ∈ C0(T×T;R) we define the diagonal
trace operator δ : C0(T× T;R)→ C0(T;R) ⊂ L1(T;R) by

δ(w)(t) := w(t, t) ∀t ∈ T.

This operator admits a unique continuous linear extension to an operator acting
on L2(T;R)(2), δ : L2(T;R)(2) → L1(T;R). For a function

u ∈ U :=
{
u ∈ C0(T× T;R) | ∃u1, u2 ∈ C0(T;R) : u(s, t) := u1(s)u2(t) ∀s, t ∈ T

}
we calculate

‖δ(u)‖L1(T;R) =

∫ T

0

|u1(t)u2(t)|dt ≤ ‖u1‖L2(T;R)‖u2‖L2(T;R) = ‖u‖L2(T×T;R).
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The set of linear combinations span(U) is a dense subset of L2(T × T;R) and,
moreover, the spaces L2(T × T;R) and L2(T;R)(2) are isometrically isomorphic.
Hence,

δ ∈ L
(
L2(T;R)(2);L1(T;R)

)
, ‖δ‖L(L2(T;R)(2);L1(T;R)) ≤ 1.

We next extend the definition of the diagonal trace operator to vector-valued func-
tions. For a separable Hilbert space H we consider the tensor product between
the Banach space L1(T;R) and H(2) with respect to the projective norm, cf. [11,
Section 2.1]. We define δ : L2(T;R)(2) ⊗ H(2) → L1(T;R) ⊗ H(2) for generating
functions u = v ⊗ ϕ, v ∈ L2(T;R)(2), ϕ ∈ H(2), by

δ(u) := δ(v)⊗ ϕ ∈ L1(T;R)⊗H(2)

and extend continuously. In this way we obtain a bounded linear operator

(3.2) δ ∈ L
(
L2(T;H)(2);L1

(
T;H(2)

))
, ‖δ‖L(L2(T;H)(2);L1(T;H(2))) ≤ 1,

since L2(T;H)(2) ∼= L2(T;R)(2)⊗H(2) and L1
(
T;H(2)

) ∼= L1(T;R)⊗H(2) – for the
latter identification see [11, Section 2.3]. Note that the restriction δY of the diagonal
trace operator δ to the subspace Y(2) ⊂ L2(T;H)(2) is mapping to C0

(
T;H(2)

)
,

since for v1, v2 ∈ Y we obtain

‖δY(v1 ⊗ v2)‖C0(T;H(2)) = sup
t∈T
‖v1(t)⊗ v2(t)‖H(2) ≤ sup

s∈T
‖v1(s)‖H sup

t∈T
‖v2(t)‖H

≤ ‖v1‖Y‖v2‖Y = ‖v1 ⊗ v2‖Y(2)

by Lemma 3.2 above. Therefore,

(3.3) δY ∈ L
(
Y(2);C0

(
T;H(2)

))
, ‖δY‖L(Y(2);C0(T;H(2))) ≤ 1,

and we may define its adjoint operator δ∗Y ∈ L
(
C0
(
T;H(2)

)∗
;Y(2)∗). Then the vec-

tor δ∗Y(δ(u)) is a well-defined element in the dual space Y(2)∗ for all u ∈ L2(T;H)(2),

since L1
(
T;H(2)

)
⊂ C0

(
T;H(2)

)∗
.

The following proposition establishes the finiteness of all terms in the determin-
istic variational problem that we shall derive in Theorem 3.5 below.

Proposition 3.3. For the kernel q ∈ U (2) defined in (2.6) and an affine operator
G(·) = G1(·)+G2 satisfying condition (2) of Assumption 2.1 the following operators
are in the dual space of Y(2):

δ∗Y(δ((G1 ⊗G1)(u)q)) ∈ Y(2)∗ ∀u ∈ X (2),

δ∗Y((G1(u)⊗G2)q) ∈ Y(2)∗ ∀u ∈ X ,

δ∗Y((G2 ⊗G1(u))q) ∈ Y(2)∗ ∀u ∈ X ,

δ∗Y((G2 ⊗G2)q) ∈ Y(2)∗.

Moreover, the linear operator δ∗Y(δ((G1 ⊗G1)(·)q)) : X (2) → Y(2)∗ is bounded with

‖δ∗Y(δ((G1 ⊗G1)(·)q))‖L(X (2);Y(2)∗) ≤ ‖G1‖2L(V ;L4(H;H)).

Proof. As mentioned above, it is enough to show that (G1⊗G1)(u)q ∈ L2(T;H)(2)

for all u ∈ X (2) in order to prove the first claim. By Lemma 2.6 (i), we have that
(G1 ⊗G1)(·)q ∈ L

(
V (2);H(2)

)
, which justifies that

(G1 ⊗G1)(·)q ∈ L
(
X (2);L2(T;H)(2)

)
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with

(3.4) ‖(G1 ⊗G1)(·)q‖L(X (2);L2(T;H)(2)) = ‖(G1 ⊗G1)(·)q‖L(V (2);H(2)),

since X (2) ∼= L2(T;R)(2) ⊗ V (2). Furthermore, we obtain for u ∈ X (2)

‖δ∗Y(δ((G1 ⊗G1)(u)q))‖Y(2)∗

≤ ‖δ∗Y‖L(C0(T;H(2))∗;Y(2)∗)‖δ((G1 ⊗G1)(u)q)‖C0(T;H(2))∗

≤ ‖δ((G1 ⊗G1)(u)q)‖L1(T;H(2)),

since δ∗Y inherits the bound of the operator norm in (3.3) from δY and, in addition,

‖w‖C0(T;H(2))∗ ≤ ‖w‖L1(T;H(2)) for all w ∈ L1
(
T;H(2)

)
. By applying (3.2) and (3.4)

we obtain

‖δ∗Y(δ((G1 ⊗G1)(u)q))‖Y(2)∗ ≤ ‖δ‖L(L2(T;H)(2);L1(T;H(2)))‖(G1 ⊗G1)(u)q‖L2(T;H)(2)

≤ ‖(G1 ⊗G1)(·)q‖L(X (2);L2(T;H)(2))‖u‖X (2)

= ‖(G1 ⊗G1)(·)q‖L(V (2);H(2))‖u‖X (2) ≤ ‖G1‖2L(V ;L4(H;H))‖u‖X (2) .

Here, we used the bound on the operator norm in Lemma 2.6 (i) for the last
estimate.

To see that δ∗Y((G1(u)⊗G2)q) and δ∗Y((G2⊗G1(u))q) are in the dual space Y(2)∗

for every u ∈ X , we may proceed in the same way using part (ii) of Lemma 2.6
yielding

(G1(·)⊗G2)q ∈ L
(
X ;L2

(
T;H(2)

))
, (G2 ⊗G1(·))q ∈ L

(
X ;L2

(
T;H(2)

))
.

Hence, (G1(u)⊗G2)q, (G2⊗G1(u))q ∈ L2
(
T;H(2)

)
for every u ∈ X and the second

as well as the third claim follow since L2
(
T;H(2)

)
⊂ L1

(
T;H(2)

)
.

Finally, by Lemma 2.6 (iii), (G2 ⊗ G2)q ∈ H(2) and, therefore, it is a constant
function in L1

(
T;H(2)

)
and the last assertion follows. �

Remark 3.4. In the additive case one may relax the assumptions on the operators
A and Q made in [7, Lemma 4.1]. In fact, the condition tr(AQ) < +∞ is not
necessary for the term denoted by δ ⊗̃ q in [7] to be in the dual space Y(2)∗, since
for v1, v2 ∈ L2(T;H) ⊃ Y we may estimate as follows

|〈δ ⊗̃ q,v1 ⊗ v2〉L2(T;H)(2) | =
∣∣∣∫ T

0

〈q, v1(t)⊗ v2(t)〉H(2) dt
∣∣∣

≤ ‖q‖H(2)

∫ T

0

‖v1(t)‖H‖v2(t)‖H dt ≤ ‖q‖H(2)‖v1‖L2(T;H)‖v2‖L2(T;H).

The calculation above shows that δ ⊗̃ q is even an element of L2(T;H)(2)∗ ⊂ Y(2)∗

without the assumption tr(AQ) < +∞.

Finally, we define the bilinear forms B : X × Y → R,

(3.5) B(u, v) :=

∫ T

0
V 〈u(t), (−∂t +A∗)v(t)〉V ∗ dt = X 〈u, (−∂t +A∗)v〉X∗ ,

as well as B(2) : X (2) × Y(2) → R,

B(2)(u, v) :=

∫ T

0

∫ T

0
V (2)〈u(t1, t2), ((−∂t +A∗)⊗ (−∂t +A∗)) v(t1, t2)〉V (2)∗ dt1 dt2

: = X (2)〈u, (−∂t +A∗)(2)v〉X (2)∗ ,(3.6)
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and we introduce the mean function m of the mild solution X in (2.3), i.e.,

(3.7) m(t) := EX(t) = S(t)EX0, t ∈ T.

Note that due to the martingale property of the stochastic integral the mean func-
tion depends only on the initial value X0 and not on the operator G. Furthermore,
applying inequality (3.1) shows the regularity m ∈ X , and m can be interpreted as
the unique function satisfying

(3.8) m ∈ X : B(m, v) = 〈EX0, v(0)〉H ∀v ∈ Y.

Well-posedness of the problem (3.8) above follows from [13, Theorem 2.3].
With these definitions and preliminaries we are now able to show that the second

moment of the mild solution solves a deterministic variational problem.

Theorem 3.5. Let all conditions of Assumption 2.1 be satisfied and let X be the
mild solution to (2.2). Then the second moment M(2)X ∈ X (2) solves the following
variational problem

(3.9) u ∈ X (2) : B̃(2)(u, v) = f(v) ∀v ∈ Y(2),

where for u ∈ X (2) and v ∈ Y(2)

B̃(2)(u, v) := B(2)(u, v)− Y(2)∗〈δ∗Y(δ((G1 ⊗G1)(u)q)), v〉Y(2) ,(3.10)

f(v) := 〈M(2)X0, v(0, 0)〉H(2) + Y(2)∗〈δ∗Y((G1(m)⊗G2)q), v〉Y(2)

+ Y(2)∗〈δ∗Y((G2 ⊗G1(m) +G2 ⊗G2)q), v〉Y(2)

with the mean function m ∈ X defined in (3.7).

Proof. Let v1, v2 ∈ C1
0,{T}(T;D(A∗)) = {φ ∈ C1(T;D(A∗)) : φ(T ) = 0}. Then,

by (3.6), we obtain

B(2)
(
M(2)X, v1 ⊗ v2

)
= X (2)〈M(2)X, (−∂t +A∗)(2)(v1 ⊗ v2)〉X (2)∗

= EX (2)〈X ⊗X, (−∂t +A∗)(2)(v1 ⊗ v2)〉X (2)∗

= E
[
〈X, (−∂t +A∗)v1〉L2(T;H)〈X, (−∂t +A∗)v2〉L2(T;H)

]
.

Because of the regularity of v1 and v2 we may take the inner product on L2(T;H)
instead of the dual pairing between X and X ∗. Now, since X is the mild solution
of (2.2), Lemma 2.7 yields

B(2)
(
M(2)X, v1 ⊗ v2

)
= E

[(
〈X0, v1(0)〉H +

∫ T

0

〈v1(s), G(X(s)) dL(s)〉H
)

·
(
〈X0, v2(0)〉H +

∫ T

0

〈v2(t), G(X(t)) dL(t)〉H
)]

= E [〈X0, v1(0)〉H〈X0, v2(0)〉H ]

+ E
[
〈X0, v1(0)〉H

∫ T

0

〈v2(t), G(X(t)) dL(t)〉H
]

+ E
[
〈X0, v2(0)〉H

∫ T

0

〈v1(s), G(X(s)) dL(s)〉H
]

+ E
[∫ T

0

〈v2(t), G(X(t)) dL(t)〉H
∫ T

0

〈v1(s), G(X(s)) dL(s)〉H
]
.
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The F0-measurability of X0 ∈ L2(Ω;H), along with the martingale property of the
stochastic integral, imply that the second and the third term vanish: For ` ∈ {1, 2}
we define the L2(H;R)-valued stochastic process Ψ` by

Ψ`(t) : w 7→ 〈v`(t), G(X(t))w〉H ∀w ∈ H

for t ∈ T, P-almost surely. Then we obtain ‖Ψ`(t)‖2L2(H;R) = ‖G(X(t))∗v`(t)‖2H
P-almost surely with the adjoint G(X(t))∗ ∈ L2(H;H) of G(X(t)) and

E
[
〈X0, v`(0)〉H

∫ T

0

〈v`(t), G(X(t)) dL(t)〉H
]

= E
[
〈X0, v`(0)〉H

∫ T

0

Ψ`(t) dL(t)
]

= E
[
〈X0, v`(0)〉HE

[∫ T

0

Ψ`(t) dL(t)
∣∣∣F0

]]
= 0

by the definition of the weak stochastic integral, cf. [9, p. 151], and the martingale
property of the stochastic integral. For the first term we calculate

E [〈X0, v1(0)〉H〈X0, v2(0)〉H ] = E [〈X0 ⊗X0, v1(0)⊗ v2(0)〉H(2) ]

= 〈M(2)X0, (v1 ⊗ v2)(0, 0)〉H(2) .

Finally, the predictability of X together with the continuity assumptions on G
imply the predictability of G(X) and we may use Lemma 2.5 for the last term
yielding

E
[∫ T

0

〈v2(t), G(X(t)) dL(t)〉H
∫ T

0

〈v1(s), G(X(s)) dL(s)〉H
]

=

∫ T

0

〈v1(t)⊗ v2(t),E [G(X(t))⊗G(X(t))] q〉H(2) dt

=

∫ T

0

〈(v1 ⊗ v2)(t, t),E [(G1 ⊗G1)(X(t)⊗X(t))] q〉H(2) dt

+

∫ T

0

〈(v1 ⊗ v2)(t, t), (E [G1(X(t))]⊗G2)q〉H(2) dt

+

∫ T

0

〈(v1 ⊗ v2)(t, t), (G2 ⊗ E [G1(X(t))])q〉H(2) dt

+

∫ T

0

〈(v1 ⊗ v2)(t, t), (G2 ⊗G2)q〉H(2) dt,

= C0(T;H(2))∗〈δ((G1 ⊗G1)(M(2)X)q), δY(v1 ⊗ v2)〉C0(T;H(2))

+ C0(T;H(2))∗〈(G1(m)⊗G2)q, δY(v1 ⊗ v2)〉C0(T;H(2))

+ C0(T;H(2))∗〈(G2 ⊗G1(m))q, δY(v1 ⊗ v2)〉C0(T;H(2))

+ C0(T;H(2))∗〈(G2 ⊗G2)q, δY(v1 ⊗ v2)〉C0(T;H(2))

= Y(2)∗〈δ∗Y(δ((G1 ⊗G1)(M(2)X)q)), v1 ⊗ v2〉Y(2)

+ Y(2)∗〈δ∗Y((G1(m)⊗G2)q), v1 ⊗ v2〉Y(2)

+ Y(2)∗〈δ∗Y((G2 ⊗G1(m))q), v1 ⊗ v2〉Y(2) + Y(2)∗〈δ∗Y((G2 ⊗G2)q), v1 ⊗ v2〉Y(2) ,

where the last equality holds by Proposition 3.3. Since C1
0,{T}(T;D(A∗)) ⊂ Y is a

dense subset, the claim follows. �
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4. Existence and uniqueness

Before we extend the results of Section 3 for the second moment to the covariance
of the mild solution in Section 5, we investigate the well-posedness of the variational
problem (3.9) in this section.

For this purpose, we first recall the Nečas theorem, which we quote as it is
formulated in [5, Theorem 2.2, p. 422].

Theorem 4.1. Let H1 and H2 be two separable Hilbert spaces and B : H1×H2 → R
a continuous bilinear form. Then the variational problem

(4.1) u ∈ H1 : B(u, v) = H∗2
〈f, v〉H2

∀v ∈ H2,

admits a unique solution u ∈ H1 for all f ∈ H∗2 , which depends continuously on f ,
if and only if the bilinear form B satisfies one of the following equivalent inf-sup
conditions:

(1) There exists β > 0 such that

sup
v2∈H2\{0}

B(v1, v2)

‖v2‖H2

≥ β‖v1‖H1
∀v1 ∈ H1,

and for every 0 6= v2 ∈ H2 there exists v1 ∈ H1 such that B(v1, v2) 6= 0.
(2) It holds

inf
v1∈H1\{0}

sup
v2∈H2\{0}

B(v1, v2)

‖v1‖H1
‖v2‖H2

> 0, inf
v2∈H2\{0}

sup
v1∈H1\{0}

B(v1, v2)

‖v1‖H1
‖v2‖H2

> 0.

(3) There exists β > 0 such that

inf
v1∈H1\{0}

sup
v2∈H2\{0}

B(v1, v2)

‖v1‖H1
‖v2‖H2

= inf
v2∈H2\{0}

sup
v1∈H1\{0}

B(v1, v2)

‖v1‖H1
‖v2‖H2

= β.

In addition, the solution u of (4.1) satisfies the stability estimate

‖u‖H1
≤ β−1‖f‖H∗2 .

Therefore, by part (1) of the Nečas theorem above, the deterministic problem of
finding u ∈ X (2) satisfying (3.9) is well-posed if

inf
u∈X (2)\{0}

sup
v∈Y(2)\{0}

B̃(2)(u, v)

‖u‖X (2)‖v‖Y(2)

≥ β̃(2)(4.2)

for some constant β̃(2) > 0 and

∀v ∈ Y(2) \ {0} : sup
u∈X (2)

B̃(2)(u, v) > 0.(4.3)

First we address the inf-sup condition (4.2) in Section 4.1. The surjectivity (4.3)
is proven in Theorem 4.8 in Section 4.2 and well-posedness is deduced.



18 KRISTIN KIRCHNER, ANNIKA LANG, AND STIG LARSSON

4.1. The inf-sup condition. In order to investigate the inf-sup constant β̃(2), let
us additionally define the following inf-sup constants

β := inf
u∈X\{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y
,(4.4)

β∗ := inf
v∈Y\{0}

sup
u∈X\{0}

B(u, v)

‖u‖X ‖v‖Y
,(4.5)

β(2) := inf
u∈X (2)\{0}

sup
v∈Y(2)\{0}

B(2)(u, v)

‖u‖X (2)‖v‖Y(2)

,(4.6)

β(2)∗ := inf
v∈Y(2)\{0}

sup
u∈X (2)\{0}

B(2)(u, v)

‖u‖X (2)‖v‖Y(2)

(4.7)

for the bilinear forms B and B(2) defined in (3.5) and (3.6), respectively. We im-

mediately obtain the following relation between β̃(2) and β(2).

Lemma 4.2. For G1 ∈ L(V ;L2(H;H)) the inf-sup constant β̃(2) in (4.2) satisfies

β̃(2) ≥ β(2) − ‖G1‖2L(V ;L4(H;H)).

Proof. To derive the lower bound for β̃(2), let u ∈ X (2). Then

sup
v∈Y(2)\{0}

B̃(2)(u, v)

‖v‖Y(2)

= sup
v∈Y(2)\{0}

|B(2)(u, v)− Y(2)∗〈δ∗Y(δ((G1 ⊗G1)(u)q)), v〉Y(2) |
‖v‖Y(2)

≥ sup
v∈Y(2)\{0}

|B(2)(u, v)|
‖v‖Y(2)

− sup
w∈Y(2)\{0}

| Y(2)∗〈δ∗Y(δ((G1 ⊗G1)(u)q)), w〉Y(2) |
‖w‖Y(2)

≥ β(2)‖u‖X (2) − ‖δ∗Y(δ((G1 ⊗G1)(u)q))‖Y(2)∗

≥
(
β(2) − ‖G1‖2L(V ;L4(H;H))

)
‖u‖X (2) ,

where we used Proposition 3.3 in the last step. �

In order to derive an explicit lower bound for β̃(2) we investigate β(2) first.

Lemma 4.3. The constants β(2) and β(2)∗ in (4.6) and (4.7) satisfy β(2) ≥ β2 and
β(2)∗ ≥ (β∗)2 with β and β∗ defined in (4.4) and (4.5), respectively.

Proof. Applying [1, Lemma 4.4.11] with X1 = X2 = U1 = U2 = X and Y1 = Y2 =
V1 = V2 = Y as well as 〈u, v〉X1×Y1

= 〈u, v〉X2×Y2
= B(u, v) for u ∈ X , v ∈ Y shows

β(2) ≥ β2. Exchanging the roles of X and Y yields the second assertion, i.e., that
β(2)∗ ≥ (β∗)2. �

The constant β in (4.4) is known to be positive and, more precisely, we have the
following theorem.

Theorem 4.4. The bilinear form B in (3.5) satisfies the following conditions:

β = inf
u∈X\{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y
> 0,

∀v ∈ Y \ {0} : sup
u∈X
B(u, v) > 0.

Proof. This result is stated in the second part of [13, Theorem 2.2]. �
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Lemma 4.5. The inf-sup constant β in (4.4) satisfies β ≥ 1.

Proof. Combining the results of Theorem 4.4 with the equivalence of (1) and (3)
in Theorem 4.1 yields the equality

inf
u∈X\{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y
= inf
v∈Y\{0}

sup
u∈X\{0}

B(u, v)

‖u‖X ‖v‖Y
,

i.e., β = β∗. To derive a lower bound for β∗, we proceed as in [12, 14]. Fix
v ∈ Y \{0}, and define u := v− (A∗)−1∂tv, where (A∗)−1 is the right-inverse of the
surjection A∗. Then u ∈ X = L2(T;V ) since (A∗)−1 ∈ L(V ∗;V ) and we calculate
as follows:

‖u‖2X =

∫ T

0

‖u(t)‖2V dt =

∫ T

0
V 〈u(t), A∗u(t)〉V ∗ dt

=

∫ T

0
V 〈v(t)− (A∗)−1∂tv(t), A∗v(t)− ∂tv(t)〉V ∗ dt

=

∫ T

0
V 〈v(t), A∗v(t)〉V ∗ dt+

∫ T

0
V 〈(A∗)−1∂tv(t), ∂tv(t)〉V ∗ dt

−
∫ T

0
V 〈v(t), ∂tv(t)〉V ∗ dt−

∫ T

0
V 〈(A∗)−1∂tv(t), A∗v(t)〉V ∗ dt.

Now the symmetry of the inner product 〈·, ·〉V on V yields

V 〈(A∗)−1∂tv(t), A∗v(t)〉V ∗ = 〈(A∗)−1∂tv(t), v(t)〉V = 〈v(t), (A∗)−1∂tv(t)〉V
= V 〈v(t), ∂tv(t)〉V ∗ ,

and by inserting the identity A∗(A∗)−1, using d
dt‖v(t)‖2H = 2 V 〈v(t), ∂tv(t)〉V ∗ and

v(T ) = 0 we obtain

‖u‖2X = ‖v‖2X + ‖(A∗)−1∂tv‖2X −
∫ T

0

2 V 〈v(t), ∂tv(t)〉V ∗ dt

= ‖v‖2X + ‖(A∗)−1∂tv‖2X + ‖v(0)‖2H
≥ ‖v‖2X + ‖(A∗)−1∂tv‖2X = ‖v‖2X + ‖∂tv‖2L2(T;V ∗) = ‖v‖2Y .

In the last line we used that ‖w‖V ∗ = ‖(A∗)−1w‖V for every w ∈ V ∗ since

‖w‖V ∗ = sup
v∈V \{0}

V 〈v, w〉V ∗
‖v‖V

= sup
v∈V \{0}

V 〈v,A∗((A∗)−1w)〉V ∗
‖v‖V

= sup
v∈V \{0}

〈v, (A∗)−1w〉V
‖v‖V

= ‖(A∗)−1w‖V .

Hence, we obtain for any fixed v ∈ Y and u = v − (A∗)−1∂tv that ‖u‖X ≥ ‖v‖Y .
In addition, we estimate

B(u, v) = X 〈u, (−∂t +A∗)v〉X∗ = X 〈v − (A∗)−1∂tv,−∂tv +A∗v〉X∗

=

∫ T

0
V 〈v(t)− (A∗)−1∂tv(t), A∗(v(t)− (A∗)−1∂tv(t))〉V ∗ dt

=

∫ T

0

‖v(t)− (A∗)−1∂tv(t)‖2V = ‖v − (A∗)−1∂tv‖2X = ‖u‖2X ≥ ‖u‖X ‖v‖Y
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and, therefore,

sup
w∈X\{0}

B(w, v)

‖w‖X
≥ ‖v‖Y ∀v ∈ Y.

This shows the assertion

β = β∗ = inf
v∈Y\{0}

sup
w∈X\{0}

B(w, v)

‖w‖X ‖v‖Y
≥ 1. �

Summing up these preliminary observations on the inf-sup constants β, β(2) and

β̃(2) yields the following explicit bound for β̃(2) which depends only on the operator
norm of the linear operator G1.

Proposition 4.6. For G1 ∈ L(V ;L2(H;H)) the inf-sup constant β̃(2) of the bi-

linear form B̃(2) satisfies β̃(2) ≥ 1 − ‖G1‖2L(V ;L4(H;H)). In particular, the inf-sup

condition (4.2) is satisfied if

(4.8) ‖G1‖L(V ;L4(H;H)) < 1.

Proof. Combining the Lemmas 4.2, 4.3 and 4.5 yields the assertion,

β̃(2) ≥ β(2) − ‖G1‖2L(V ;L4(H;H)) ≥ β
2 − ‖G1‖2L(V ;L4(H;H)) ≥ 1− ‖G1‖2L(V ;L4(H;H)).

�

To see that Assumption (4.8) is not too restrictive, we calculate ‖G1‖L(V ;L4(H;H))

for an explicit example taken from [6].

Example 4.7. Let U = H, Q ∈ L+
1 (H) and H = Q1/2H. We define the operator

G1 : H → L2(H;H) by

G1(ϕ)ψ :=
∑
n∈N
〈ϕ, χn〉H〈ψ, χn〉H χn, ϕ, ψ ∈ H,

where (χn)n∈N ⊂ H is an orthonormal eigenbasis of A with corresponding eigen-
values (αn)n∈N (in increasing order). Omitting the calculations we obtain

(i) G1 ∈ L(H;L2(H;H)) with ‖G1‖L(H;L2(H;H)) ≤ tr(Q)1/2,

(ii) G1 ∈ L(V ;L2(H;V )) with ‖G1‖L(V ;L2(H;V )) ≤ tr(Q)1/2,
(iii) G1 ∈ L(V ;L4(H;H)) with

‖G1‖L(V ;L4(H;H)) ≤
(‖Q‖L2(H;H)

α1

)1/2

.

4.2. Well-posedness. Using the result of the previous section on the inf-sup con-

stant of the bilinear form B̃(2) we may apply the Nečas theorem, Theorem 4.1, in
order to prove existence and uniqueness of a solution to the deterministic varia-
tional problem that we have derived in Section 3 for the second moment of the mild
solution.

Theorem 4.8. Suppose that Assumption (4.8) on G1 ∈ L(V ;L2(H;H)) is satisfied.
Then the variational problem

(4.9) w ∈ X (2) : B̃(2)(w, v) = Y(2)∗〈f, v〉Y(2) ∀v ∈ Y(2)

admits a unique solution w ∈ X (2) for every f ∈ Y(2)∗. In particular, there exists
a unique solution u ∈ X (2) satisfying (3.9).
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Proof. As already mentioned, Theorem 4.1 guarantees existence and uniqueness of

a solution w ∈ X (2) to (4.9) if the bilinear form B̃(2) satisfies (4.2) and (4.3).

We know from Proposition 4.6 that β̃(2) ≥ 1 − ‖G1‖2L(V ;L4(H;H)) and, hence,

that β̃(2) > 0 under Assumption (4.8). It remains to show that also the second
condition (4.3) is satisfied. For this, fix v ∈ Y(2) \ {0}.

sup
u∈X (2)

B̃(2)(u, v) ≥ sup
u∈X (2)

‖u‖X(2)=1

B̃(2)(u, v) = sup
u∈X (2)\{0}

B̃(2)(u, v)

‖u‖X (2)

≥ sup
u∈X (2)\{0}

B(2)(u, v)

‖u‖X (2)

− sup
w∈X (2)\{0}

Y(2)∗〈δ∗Y(δ((G1 ⊗G1)(w)q)), v〉Y(2)

‖w‖X (2)

≥ β(2)∗‖v‖Y(2) − sup
w∈X (2)\{0}

‖δ∗Y(δ((G1 ⊗G1)(w)q))‖Y(2)∗‖v‖Y(2)

‖w‖X (2)

≥
(
β(2)∗ − ‖δ∗Y(δ((G1 ⊗G1)(·)q))‖L(X (2);Y(2)∗)

)
‖v‖Y(2) ,

where we used the reverse triangle inequality and the inf-sup constant β(2)∗ defined
in (4.7). Applying Proposition 3.3, Lemma 4.3 and using the fact that β = β∗

yields

sup
u∈X (2)

B̃(2)(u, v) ≥
(

(β∗)2 − ‖G1‖2L(V ;L4(H;H))

)
‖v‖Y(2)

=
(
β2 − ‖G1‖2L(V ;L4(H;H))

)
‖v‖Y(2) > 0 ∀v ∈ Y \ {0}

under Assumption (4.8) by Lemma 4.5. �

5. From the second moment to the covariance

In the previous sections we have derived a deterministic variational problem
satisfied by the second moment M(2)X of the solution process X to the stochastic
partial differential equation (2.2) as well as well-posedness of that problem. In this
section we will describe the covariance Cov(X) also in terms of a deterministic
problem. For this purpose, we remark first that

Cov(X) = E [(X − EX)⊗ (X − EX)]

= E [(X ⊗X)− (EX ⊗X)− (X ⊗ EX) + (EX ⊗ EX)]

= M(2)X − EX ⊗ EX

and Cov(X) ∈ X (2), since M(2)X ∈ X (2) and m = EX ∈ X . By using this relation
we are able to show the following result for the covariance Cov(X) of the mild
solution.

Theorem 5.1. Let all conditions of Assumption 2.1 be satisfied and let X be the
mild solution to (2.2). Then the covariance Cov(X) ∈ X (2) solves

(5.1) u ∈ X (2) : B̃(2)(u, v) = g(v) ∀v ∈ Y(2)

with B̃(2) as in (3.10),

g(v) := 〈Cov(X0), v(0, 0)〉H(2) + Y(2)∗〈δ∗Y(δ((G(m)⊗G(m))q)), v〉Y(2)

for v ∈ Y(2) and the mean function m ∈ X defined in (3.7).
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Proof. By the remark above, Cov(X) = M(2)X −EX ⊗EX. By using the result of
Theorem 3.5 for the second moment M(2)X as well as (3.8) for the mean function
m = EX we calculate for v1, v2 ∈ Y:

B̃(2)(Cov(X), v1 ⊗ v2) = B̃(2)(M(2)X, v1 ⊗ v2)− B̃(2)(EX ⊗ EX, v1 ⊗ v2)

= f(v1 ⊗ v2)− B(m, v1)B(m, v2) + Y(2)∗〈δ∗Y(δ((G1(m)⊗G1(m))q)), v1 ⊗ v2〉Y(2)

= 〈M(2)X0, (v1 ⊗ v2)(0, 0)〉H(2) + Y(2)∗〈δ∗Y((G2 ⊗G2)q), v1 ⊗ v2〉Y(2)

+ Y(2)∗〈δ∗Y((G1(m)⊗G2)q), v1 ⊗ v2〉Y(2)

+ Y(2)∗〈δ∗Y((G2 ⊗G1(m))q), v1 ⊗ v2〉Y(2)

− 〈EX0, v1(0)〉H〈EX0, v2(0)〉H + Y(2)∗〈δ∗Y(δ((G1(m)⊗G1(m))q)), v1 ⊗ v2〉Y(2)

= 〈Cov(X0), (v1 ⊗ v2)(0, 0)〉H(2) + Y(2)∗〈δ∗Y(δ((G(m)⊗G(m))q)), v1 ⊗ v2〉Y(2) .

Hence,

B̃(2)(Cov(X), v1 ⊗ v2) = g(v1 ⊗ v2) ∀v1, v2 ∈ Y
and the density of the subset span{v1 ⊗ v2 : v1, v2 ∈ Y} ⊂ Y(2) completes the
proof. �

Remark 5.2. Theorem 5.1 shows that if only the covariance of the mild solution
to (2.2) needs to be computed, one can do this by solving sequentially two coupled
deterministic variational problems: the untensorized problem (3.8) for the mean
function and afterwards the tensorized problem (5.1) for the covariance.

Note also that in the case of additive Gaussian noise with a Gaussian initial
value the mean and the covariance function already determine the distribution of
the solution process uniquely, since it is Gaussian distributed itself.
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