
International Journal of Mathematical Education in Science and Technology, 2014

http://dx.doi.org/10.1080/0020739X.2014.985271

CLASSROOM NOTE

Teaching transforms: a vector approach

Lars E. Bengtsson∗
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(Received 10 October 2013)

This article treats the problem of introducing transform theory (Fourier, Laplace, z)
to undergraduate students and we suggest a vector approach which means that signals
(functions of time) should be treated as vectors from the beginning and that transforms
are introduced as a scalar product; the transform should be presented as a tool to analyse
the signal exactly in the same way as the dot product is used to analyse an ‘arrow’ vector
in a Cartesian space. Hence, the transform becomes a tool to find the signal’s magnitude
in the directions of the basis vectors.
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1. Introduction

By ‘transforms’, we refer primarily to Laplace, Fourier and z-transforms, but the arguments

and conclusions apply also to wavelet transforms. Even though the arguments are true in

general, we will limit the discussion mostly to Fourier transforms of periodic signals and

comment on how the results can be applied also to the other, more general transforms, at

the end of this article.

The subject of transforms is given as a ‘mathematical’ subject at some universities and

as part of a physics/electrical/mechanical subject at other universities. It is an extremely

important analysis tool, most of all for electrical engineers, but also for physicists and

mechanical engineers. This is my first conclusion: a transform is an analysis tool. It is

used to extract information from a signal variation in time (typically); the transform will

reveal what (harmonic) frequencies the signal consists of. From conclusion number one,

follows immediately conclusion number two; since a transform is an analysis tool, university

undergraduate courses should focus on how to use the tool, i.e. applications.

My personal opinion is that textbooks on transforms (and hence also university courses)

focus too much on the mathematical details and not enough on applications and certainly

not enough on understanding transforms. It is typically considered to be a difficult subject

among undergraduates and part of the reason for that is that they do not understand the

transform concept nor do they understand how to use it to extract information from a signal.

It is also my opinion that Fourier transforms are not introduced in the best way in most

common university textbooks; it is typically introduced as a Fourier series and motivated

by a number of examples that illustrate the formulas.

This article suggests a different approach to the introduction of Fourier transforms: the

vector approach. This suggests that signals should be treated as vectors (they are vectors)

and as vectors they exist in a vector space. Students taking a course on Fourier transforms
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Figure 1. A ‘Cartesian’ vector with coordinates (4,2).

are well familiar with vectors and vector spaces from courses in linear algebra; therefore,

this is a natural language for them. Once signals are treated as vectors, the concept of a

transform is simply a scalar product that we use to find a signal’s (i.e. a vector’s) component

along any basis vector.

The rest of this article is organized as follows: In Section 2, we will introduce vectors,

vector spaces and basis vectors in general, using the common ‘arrows’ in a Cartesian

coordinate system and define the scalar product for these vectors. In Section 3, we will do

the same for signals, i.e. a function of time f(t), and demonstrate how naturally the Fourier

transform expression appears. Section 4 will illustrate the use of the Fourier transform by

some examples and Section 5 discusses the results and how to extend the results to other

kinds of signals and transforms. Section 6 concludes the results in this work.

2. Vectors

Vectors are typically introduced as ‘arrows’ in a Cartesian coordinate system as in Figure 1.

If we refer to this vector simply as (4,2), most students would have no problem accepting that

short vector notation. Students accept these kinds of vectors and the way we refer to them

by coordinates only. However, students find it much harder accepting that a function, such

as the time function in Figure 2, is also a vector and they are very reluctant to accept that this

vector can also be represented by a number of coordinates: (. . .,0,0.5j,0,−0.5j,0,0,0. . .).

(We will justify this allegation later at the end of Section 4.) In general, vectors like the one

in Figure 2 need more than just two coordinates, but then again, so do ‘arrow’ vectors in

Figure 1 in an n-dimensional space.

When teaching transforms, it cannot be emphasized enough how important it is to make

students accept and treat signals as vectors. We will come back to that later.
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f(t) = sin(t)

Figure 2. A function of time is also a vector.
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Figure 3. A set of orthogonal basis vectors for the 2D Cartesian vector space.

The (4,2) notation for the ‘arrow’ vector in Figure 1 is natural for most students but

make sure they understand exactly what it means; (4,2) means 4 × (basis vector ex ) + 2

× (basis vector ey). It is necessary to emphasize the existence and importance of the vector

space’s set of basis vectors; it is a set of vectors that ‘span’ the space. Future calculations

will be simplified if we can find a set of orthonormal basis vectors (i.e. orthogonal and

having length = 1). For the vector space in Figure 1, that is elementary, ex = (1,0) and ey

= (0,1) (see Figure 3).

The size (or length) of any vector v̄ in the direction of a basis vector is the scalar product

between the vector and the basis vector (the ‘dot’ product):

vi = v̄ · ēi (1)

For the vector in Figure 1, we get the following components in the x- and y-directions:

vx = (4, 2) · (1, 0) = 4 · 1 + 2 · 0 = 4 (2)

vy = (4, 2) · (0, 1) = 4 · 0 + 2 · 1 = 2 (3)

Hence, for any vector, we use the scalar product to find its size along any basis vector. This

should be the starting point for an introductory course on transforms.

3. Functions as vectors

There are a certain number of criteria that need to be fulfilled in order to have a vector

field.[1] For example, we must be able to define a zerovector, and finding a zero vector for

functions like the one in Figure 2 is trivial. A less trivial problem is to find a set of basis

vectors that span the ‘space’ of all time functions like the one in Figure 2. Let us consider

the ‘signal space’ and for now we limit the space to include only ‘all continuous signals

with period T’. Figures 4 and 5 illustrate two signals in this space.

Vector theory now suggest the following: since we claim that these signals are vectors,

we should be able to

(1) find a set of basis vectors that span the space, and

(2) define a scalar product

The fact that a set of basis vectors exists suggests that any vector in the space could be

expressed as a linear combination of the basis vectors:

v̄ = v1 · ē1 + v2 · ē2 + v3 · ē3 + · · · · =
∑

i

(vi ēi) =
∑

i

(v̄ · ēi) ēi (4)
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Figure 4. A square signal with period T.

The fact that we can define a scalar product gives us a tool to find the coefficients in

(4) (as in (2) and (3)). The natural choice of basis vectors would be a set of harmonics; our

first choice of basis vectors would be cos (ωkt + ϕk), where frequencies ωk are multiples

of ω0 = 2π/T :

ωk = k ·
2π

T
= k · ω0, k = 0, 1, 2, . . . (5)

This is appealing since it suggests that any signal in the signal space could be expressed

as

v (t) = a0 · 1 + a1 · cos (1 · ω0t + ϕ1) + a2 · cos (2 · ω0t + ϕ2) + · · · . (6)

This would work, but we have two small problems: each basis vector has two parameters

(k and ϕk) and the basis vectors are not orthonormal (let students prove that). However, we

can solve these problems by choosing our basis vectors slightly differently; we will instead

choose ejkω0t . Note that due to Euler’s formula for cosine this is only a minor change of

Figure 5. A triangular signal with period T.
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basis vectors:

cos α =
ejα + e−jα

2
(7)

As a matter of fact, if we extend the domain of k to include also negative values and disregard

the 1
2

factor, we have not changed anything. (In Appendix 1, we prove that
{

ejkω0t
}

is indeed

a set of basis vectors.) Hence, with our new set of basis vectors, we should be able to express

any signal in our space as

v (t) = ...c−1 · e−jω0t + c0 + c1 · ejω0t + c2 · ej2ω0t + · · · . (8)

or, simply

v (t) =

∞
∑

k=−∞

ck · ejkω0t (9)

This is a nice and compact expression. We need to find the coefficients ck of course, but

from vector theory we know that that is only a matter of taking the scalar product between

the vector and the basis vectors. We will do that but first let us try to figure out what they will

look like. If we compare expressions (9) and (6), we can see that the phase information is

no longer in the basis vector; the ck coefficients must contain information about amplitude

and phase for each cosine in (6). The only way to do that is if the ck coefficients are complex

numbers, the cosine’s amplitude is in the complex numbers’ magnitude and the cosine’s

phase angle is in the complex numbers’ argument. We will relate the ck coefficients to the

ak and ϕk parameters later.

In order to find the ck coefficients, we need to define the scalar product between two

signals. The scalar product between any two functions is in general defined as follows:[2]

∫

f (t) · g∗ (t)dt (10)

where g∗ represents the complex conjugate of g. For two signals with period T, this expres-

sion changes to

1

T

T∫

0

f (t) · g∗ (t) dt (11)

In order to find out the size of our signal v(t) in the direction of any basis vector ejkω0 , we

apply expression (11) and so the size is represented by the coefficient ck:

ck =
1

T

T∫

0

v (t) · e−jkω0tdt = V (ω) = V (kω0) = V (k) (12)

Expression (12) is the Fourier transform of the signal v(t) as it appears in most textbooks,

and it is typically denoted by V(ω) or V(k), but it is important (very important!) to understand

that it is just a scalar product that we use to find the signal’s size in the direction of each
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basis vector. In general, it has to be complex numbers since it must carry information about

both the amplitudes and phase angles of the cosines in expression (6).

The ck coefficients really carry all the information we need about the signal v(t),

however, for pedagogical reasons, I stress the importance of relating the ck coefficients to

the a and ϕ parameters in expression (6) in undergraduate courses. That really helps making

the Fourier transform’s output understandable. The relationship between the ck coefficients

and a and ϕ parameters is straightforward:

akcos (kω0t + ϕk) = ak

ej (kω0t+ϕk ) + e−j (kω0t+ϕk )

2

=
1

2
ak

(

ejkω0t · ejϕk + e−jkω0t · e−jϕk
)

=
1

2
ak · ejϕk

︸ ︷︷ ︸

ck

·ejkω0t +
1

2
ak · e−jϕk

︸ ︷︷ ︸

c∗
k

·e−jkω0t

= ck · ejkω0t + c∗
k · e−jkω0t

⇒ ck =
1

2
ak · ejϕk (13)

⇒ ak = 2 · |ck| (14)

ϕk = arg ck (15)

Expressions (14) and (15) relate the Fourier transform output to the linear combination

of cosines in expression (6). These expressions are valid for k 6= 0. The special case k = 0

should be treated separately. k = 0 corresponds to a frequency = 0, i.e. the signal’s DC

offset which equals a0 in expression (6). A signal’s DC offset is simply its average value

over one period:

a0 =
1

T

T∫

0

v (t) dt (16)

Inserting k = 0 into (12) gives us

c0 =
1

T

T∫

0

v (t) · e−j0 dt =
1

T

T∫

0

v (t) dt (17)

Since (17) and (16) are the same, we conclude that for k = 0,

c0 = a0 (18)
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Figure 6. Try to guess the first few Fourier coefficients of this square signal.

4. Examples

Consider the signal in Figure 6.

In a typical undergraduate course on Fourier transforms, this is one of the first signals

that a student is asked to transform. This is how we suggest that this problem should be

approached.

First, in order to encourage the understanding of Fourier transforms and Fourier coeffi-

cients, ask the students to guess the values of the first few Fourier coefficients (three or four:

c0, c1, c2, c3). Once you understand the relationship between the ck coefficients and a and

ϕ parameters, it is not that difficult. The following way of reasoning should be encouraged.

First of all, the signal’s DC offset is 0.5 (volts?) and hence I expect to get c0 = a0 = 0.5;

the first Fourier coefficient was simple enough. The Fourier coefficient c1 corresponds to a

cosine of frequency ω = 1·ω0 = 2π /T, and this cosine has been plotted in the same graph

as the signal v(t) in Figure 7.

Look at expression (6); we should add a number of cosines so that it becomes a square

wave. Intuitively, we can see that it will require a ‘lot’ of the basis vector with index k = 1;

Figure 7. We have added the basis vector corresponding to k = 1.
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Figure 8. We have added the basis vector corresponding to k = 1 and k = 0.

if we first add a phase shift of −90◦ and reduce the amplitude a little, we get Figure 8. (In

Figure 8, we have also added the DC offset a0 that we determined above.)

Look at Figure 8. We have only added the signals of our two first guesses and we already

have something that resembles the signal v(t), or at least, we can see that we are on the

right track. The amplitude of the cosine in Figure 8 is approximately 0.7 and the cosine has

been phase shifted −90◦. From expression (13), we ‘guess’ that the Fourier coefficient c1

will be approximately

c1 ≈
1

2
· 0.7 · e−jπ/2 = −0.35j (19)

Let us ‘guess’ some more. Look at Figure 8. The signal v(t) is odd (if we subtract the DC

offset), i.e. v(t) = −v(−t). A linear combination of signals that should represent v(t) must

then necessarily also be odd; all components in expression (6) must have a phase shift of

either + π /2 or −π /2. In other words, all Fourier coefficients will be imaginary (the real

part will always be zero) as in expression (19). For example, the component corresponding

to k = 2 is the signal cos (2 · ω0t ± π/2). In Figure 9, we have added a small part of this

signal to the cosine in Figure 8 (for a phase shift of −π /2).

Figure 9. We have added the basis vector corresponding to k = 2; does not seem to fit.
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Figure 10. We have added the basis vector corresponding to k = 3; seems to fit very well.

It is hard to argue that this made things better and we conclude that the signal’s size in

the direction of the basis vector with k = 2 is probably very small and hence we predict

that

c2 ≈ 0 (20)

In Figure 10, we have instead added a small fraction of the basis vector representing k = 3

(and phase shifted −π /2).

This does make the added signals look more like v(t), and since the amplitude of the

cosine we added was 0.25, we guess that

c3 ≈
1

2
· 0.25 · e−jπ/2 = −0.125j (21)

I personally think that the guesswork we have done above is the most important part

when learning Fourier transform theory since it very clearly relates the Fourier transform

output to the signal information that we are looking for.

When we are done guessing, we verify our guesses by finding the exact Fourier transform

coefficients by using expressions (12) and (17). Expression (17) will give us a0 = c0:

c0 =
1

T

T∫

0

v (t) dt =
1

T

T /2∫

0

1 dt =
1

T
[t]

T /2
0 =

1

T

{
T

2
− 0

}

=
1

2
= a0 (22)

which agrees exactly with our previous guess. Next, we try to find a general expression for

ck, k 6= 0. Expression (12) gives us

ck =
1

T

T∫

0

v (t) · e−jkω0t =
1

T

T/2∫

0

1 · e−jkω0tdt =
1

−jkω0T

[

e−jkω0t
]T/2

0

=
1

−jk2π

(

e−jkπ − 1
)

(23)
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where we have used the relationship ω0T = 2π . In expression (23), we first extract e−jkπ/2

from the parentheses, and then apply Euler’s formula for sine:

ck =
1

−jk2π

(

e−jkπ/2 − ejkπ/2
)

· e−jkπ/2 =
1

kπ
sin

(
kπ

2

)

· e−jkπ/2 (24)

From expression (24), we can see that ck = 0 whenever k is an even number (which agrees

very well with our guess that c2 ≈ 0). We can also see that all the phase angles will be

±π /2, which also agrees with our previous guess. For the odd k’s, we have

c1 =
1

π
sin

(π

2

)

· e−jπ/2 =
1

π
· 1 · (−j ) ≈ −0.318j (25)

(compare with (19))

c3 =
1

3π
sin

(
3π

2

)

· e−j3π/2 =
1

3π
· (−1) · j ≈ −0.106j (26)

(compare with (21))

c5 =
1

5π
sin

(
5π

2

)

· e−j5π/2 =
1

5π
· 1 · (−j ) ≈ −0.063j (27)

and so on. Next, we use expressions (14) and (15) to get the amplitudes and phase angles

of the corresponding cosines:

a1 = 2 · 0.318 = 0.636, a3 = 2 · 0.106 = 0.212, a5 = 2 · 0.063 = 0.126, etc.

ϕ1 = −
π

2
, ϕ3 = −

π

2
, ϕ5 = −

π

2
, etc.

In Figure 11, we have plotted expression (6) for k = 0–5.

Figure 11. We have approximated the square wave with the first five terms in expression (6).
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In Section 2, we suggested that the signal sin ω0t could be represented by the vector

coefficients (. . .,0,0,0,0.5j,0,−0.5j,0,0,0,. . ...). We will now justify that allegation. If we

insert v(t) = sin ω0t into expression (12), we get (remember that ω0 T = 2π ) the following:

ck =
1

T

T∫

0

sin ω0t × e−jkω0tdt =

{

Using Euler
′

s

formula for sine

}

=
1

2jT

T∫

0

(

ejω0t − e−jω0t
)

× e−jkω0tdt

=
1

2jT

T∫

0

(

ej (1−k)ω0t − e−j (1+k)ω0t
)

dt (28)

=
1

2jT

[
ej (1−k)ω0t

j (1 − k) ω0

−
e−j (1+k)ω0t

−j (1 + k) ω0

]T

0

=
1

2jT
×

1

jω0

(
ej (1−k)2π − 1

(1 − k)
+

e−j (1+k)2π − 1

j (1 + k)

)

(29)

Expression (29) will be equal to 0 for any k 6= ±1, since the numerators in the parentheses

will always be 0. Hence, ck = 0, if k 6= ±1. If we set k = + 1 in expression (28), we get

c1 =
1

2jT

T∫

0

(

1 − e−j2ω0t
)

dt =
1

2jT

[

t +
e−j2ω0t

j2ω0

]T

0

=
1

2jT

(

T +
e−j4π

j2ω0

− 0 −
1

j2ω0

)

=
1

2j
= −0.5j (30)

In the same way, we would get c−1 = 0.5j. Consequently, if we assume that the basis vectors

are known to be the complex exponentials in expression (8), we could specify our vector

sin ω0t using only the vector coefficients as follows:

sin ω0t =



...., 0, 0, 0,

k=−1
︷︸︸︷

0.5j , 0
︸︷︷︸

k=0

,

k=1
︷ ︸︸ ︷

−0.5j , 0, 0, 0, 0.....



 = (0.5j, 0, − 0.5j ) (31)

5. Discussion

At the beginning we pointed out that ‘arrow’ vectors in a Cartesian coordinate system can

be referred to by coordinates like (4,2) as in Figure 1. This notation works because it is well

understood that we use a set of orthonormal basis vectors {(1,0) and (0,1)}, and (4,2) simply

refers to the vector’s magnitude in the two directions of the basis vectors. It is a convenient

and compact way to represent vectors. Notice that the order in which the coordinates are

given is important; it is understood that the x-coordinate comes first and the y-coordinate

is the second ((4,2) 6= (2,4)).

It is less common to represent ‘signal’ vectors with the same compact notation, but this

work has pointed out that possibility as a means to teach transforms. We can refer to the
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‘arrow’ vector in Figure 1 by only specifying coefficients (4,2) and the reason is that the basis

vectors are ‘obvious’ and/or understood. We can do that with any vectors! The difference

is only that the set of basis vectors is less ‘obvious’/common and that the coefficients may

not necessarily be real numbers. If the basis vectors were widely understood, we could

absolutely refer to the signal in Figure 6 as only (. . . . , 0.63j, 0.126j, 0.318j, 0.5, −0.318j,

−0.126j, −0.063j. . ...). (Notice again that the order is important.)

This work was limited to signal vectors with period T, and we saw that it requires

infinitely many (but countable) basis vectors. For non-periodic signals, the range of ba-

sis vectors will be a continuum and referring to such a signal using only the transform

coefficients is meaningless; instead, we typically plot |V(ω)| and ϕ(ω) as a function of ω.

6. Conclusions

I cannot stress enough the importance of the guesswork we did above. A student who

can guess the approximate values of the Fourier coefficients really understand the Fourier

transform and the meaning of the Fourier transform output. When you have reached that

level of understanding, the Fourier transform becomes the useful tool it is supposed to be.

Honestly, a student who is able to find the exact values of Fourier transform coefficients

by applying expression (12) does not necessarily understand any transform theory at all;

all it proves it that he/she can integrate a complex function (and a talented high-school

student can do that). Yet, undergraduate courses are very focused on solving expression

(12) for more and more complex signals and in my opinion, this attitude needs to change,

both among textbook writers and university teachers; focus should primarily be on the

understanding of transforms rather than the calculus. Computers can help a student do the

math; it is the understanding of the transform output that is the hard part.

Our arguments above would apply to Laplace and z-transforms too, but we would have

other sets of basis vectors. For example, the Laplace transform requires that we also include

basis vectors with exponentially growing/decaying amplitudes.

I have used this approach in transform teaching for years and my experience is that

the vector approach gives student a whole new level of the understanding of transforms.

In my classes, I also strongly emphasize the ‘guesswork’ we did in Section 4. This tells

me whether or not a student has understood the transform concept. Once you understand

that, you can start calculating transform expressions like the one in (12), but I argue

that these calculations are not very helpful/useful unless you have first reached a level of

understanding where you can explain exactly what the complex numbers produced by the

transform expression represent.
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Appendix 1. Proving that {e j kω0 t}∞k=−∞ is a set of basis vectors

In order to prove that {ejkω0t }∞
k=−∞ is indeed a set of basis vectors, we must prove that

(1) all ejkω0t are linearly independent, and
(2) {ejkω0t }∞

k=−∞ span the space
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The set of basis vectors span the space if each vector in the space can be represented by one and
only one unique linear combination of the basis vectors.

We will simplify prove by only treating the case where k = 1, 2 and 3, i.e.

{ejkω0t }3
1 =

(

ejω0t , ej2ω0t , ej3ω0t
)

The proof is still general and can be applied to any dimension of {ejkω0t }. We will assume that ω0 6=
0 (because if ω0 = 0, the signal is a trivial DC signal).

Proof of linear independency

The set of basis vectors
(

ejω0t , ej2ω0t , ej3ω0t
)

is (by definition) linearly independent, if

λ1 × ejω0t + λ2 × ej2ω0t + λ3 × ej3ω0t = 0 (A.1)

has the only solution λ1 = λ2 = λ3 = 0. We can rewrite (A.1) as

ejω0 t

︸︷︷︸

6=0

×
(

λ1 + λ2 × ejω0 t + λ3 × ej2ω0 t
)

= 0 (A.2)

(assuming t ≥ ∞). In (A.2), the second factor must be 0; therefore,

λ1 + λ2 × ejω0t + λ3 × ej2ω0t = 0 (A.3)

Next, we take the derivative of both sides (with respect to t),

jω0λ2 × ejω0t + j2ω0λ3 × ej2ω0t = 0

jω0 × ejω0t

︸ ︷︷ ︸

6

= ×
(

λ2 + 2λ3 × ejω0t
)

= 0

(since ω0 6= 0 and if t ≥ ∞.) Again, the second factor must be 0; therefore,

λ2 + 2λ3 × ejω0t = 0 (A.4)

Differentiating one more time gives us

jω0 × 2λ3 × ejω0t = 0 (A.5)

Equation (A.5) is true only if λ3 = 0. This indicates that λ2 = 0 in (A.4), and then λ1 in (A.3) must
also be 0 and we have proven that expression (A.1) is true only if λ1 = λ2 = λ3 = 0, and hence the
vectors

(

ejω0t , ej2ω0t , ej3ω0t
)

are linearly independent.

Proof of uniqueness

We must also prove that each vector representation is unique. Assume, therefore, that the same vector
u(t) can be represented by two sets of coefficients, ck and dk:

u (t) = c1 × ejω0t + c2 × ej2ω0t + c3 × ej3ω0t = d1 × ejω0t + d2 × ej2ω0 t + d3 × ej3ω0t (A.6)
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� ��� �!
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Then, we must have that

(c1 − d1) × ejω0t + (c2 − d2) × ej2ω0t + (c3 − d3) × ej3ω0t = 0 (A.7)

However, since we know that the vectors are linearly independent, the only solution for (A.7) is that

c1 − d1 = 0
c2 − d2 = 0
c3 − d3 = 0






⇒

C1 = d1

C2 = d2

C3 = d3

(A.8)

which proves that there is only one unique representation of each vector in the space spanned by
(

ejω0 t , ej2ω0t , ej3ω0t
)

, and this proof is also valid for the general case
{

ejkω0t
}∞

k=−∞
.

Proof of orthonormality

In order to have a ‘good’ set of basis vectors, we also want them to be ‘orthonormal’, i.e. orthogonal
and having length equal to 1. Our choice of basis vectors is indeed orthonormal and we prove that by
taking the scalar product of two arbitrary basis vectors (remember that two vectors are orthogonal if
their scalar product = 0),

〈

ejnω0t , ejmω0t
〉

=
1

T

T∫

0

ejnω0t × ejmω0tdt =
1

T

T∫

0

ej (n−m)ω0tdt

=
1

T
×

1

j (n − m) ω0

×
[

ej (n−m)ω0t
]T

0
(A.9)

=
1

j2π (n − m)
×

(

ej (n−m)2π − 1
)

= 0 if n 6= m (A.10)

Equation (A.10) proves that our basis vectors are all orthogonal. The ‘length’ of a vector is the square
root of the scalar product between the vector and itself:

∥
∥ejnω0t

∥
∥ =

√
〈

ejnω0t , ejnω0t
〉

=

{

set n = m
in (A.9)

}

=

√
√
√
√
√

1

T

T∫

0

1dt =

√

1

T
× T = 1 (A.11)

Hence, our choice of basis vectors,
{

ejkω0t
}∞

k=−∞
, is linearly independent, and they span the space

and they are an orthonormal set of basis vectors, i.e. simply a very good choice of basis vectors.� ���� ��� ��� 	
�� �� 
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