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Concentrations of NO, and O3 were measured inside and outside a dense broad-leaved forest canopy
adjacent to a busy traffic route in the City of Gothenburg, Sweden, with duplicate passive diffusion
samplers during six one-week periods starting well before leaf senescence and ending when leaves were
largely senescent. Concentrations of NO, were lower inside the forest canopy during all periods (rep-
resenting a significant effect, p = 0.016), on average by 7% or 2.7 pg m~3. O3 showed a more variable
response with an average non-significant effect of 2% lower in the forest stand. There was no systematic
trend of the difference in concentrations inside and outside the forest stand of the pollutants with the
progression of autumn leaf senescence. Our study indicates that the effect of urban vegetation on air
pollution concentrations is small, although it seems to exist for NO; in a traffic polluted environment.
© 2014 The Authors. Published by Elsevier Ltd. Open access under CCBY-NCND license,

1. Introduction

Vegetation has a multitude of functions to improve the urban
environment, including biodiversity, improved microclimate,
reduced greenhouse gas emissions, storm-water runoff mitigation
and noise reduction (Pataki et al., 2011; Lindberg and Grimmon,
2011; Heyman et al., 2011). One further service that urban vege-
tation can provide is improved air quality. This will reduce air
pollution effects on human health and vegetation (Nowak et al.,
2006). Vegetation can alter the occurrence of air pollutants in the
urban landscape both by deposition and by affecting the physical
transport of polluted air masses, e.g. by reducing ventilation of
street canyons (e.g. Salmond et al., 2013) or enhancing ventilation
by increasing surface roughness and thus turbulence.

The extent to which urban vegetation can promote improved air
quality has mostly been explored using models. For example, the
modelling study by Nowak et al. (2006) concluded that there is a
large mass flux of air pollutants to urban vegetation from a large
geographical perspective (US). These fluxes did not result in very
substantial effects on local air pollution concentrations, although
even small concentration reductions affecting large populations
represent significant gains in human health. It has, however, been
suggested that the role of urban vegetation in reducing local air
pollution has been exaggerated (Pataki et al., 2011).
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Nitrogen dioxide (NO-) is a traffic related air pollutant having
strongly elevated levels in areas with abundant traffic (Pleijel et al.,
2004) for which air quality standards exist. It affects human health
(Samoli et al., 2006) and vegetation such as epiphytic lichens
(Hultengren et al., 2004). Ozone (0O3), on the other hand, is a sec-
ondary, regionally occurring pollutant, which is also known to
affect health (Vagaggini et al.,, 2002) in addition to effects on
vegetation (Mills et al., 2011).

Fewer direct empirical investigations of the effect of urban
vegetation on air quality have been undertaken compared to
modelling studies (Setdld et al., 2013). These authors recently
published a detailed study of the effects of urban vegetation on air
pollution in two cities in Finland. Their study indicated the effect of
urban vegetation on local air pollution to be small. In the case of
[NO;] there was a small non-significant negative effect by vegeta-
tion, which did not differ between seasons. Volatile organic com-
pounds effects were small and inconclusive, while particle
reductions by vegetation were somewhat larger (Setdld et al., 2013).

Harris and Manning (2010) investigated [NO;] and [Os] inside
and outside the canopies of individual Acer rubrum trees with
varying distances from traffic. They found [O3] to be lower but
[NO2] to be higher inside the tree canopies. These authors
explained the observations with NO,/O3 chemistry in combination
with emission/deposition conditions.

To improve the empirical understanding of the effects of urban
vegetation on local air pollution we compared [NO;] and [O3] near a
major traffic route outside and inside a dense deciduous forest
stand using passive diffusion samplers. The hypothesis was that the
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concentrations of the pollutants would be lower inside the forest
canopy.

2. Materials and methods

[NO3] and [O3] were monitored using duplicate (two parallel samplers inside
and two outside the forest stand, n = 2) passive diffusion samplers of the IVL type
(http://www.diffusivesampling.ivl.se/). Samplers were placed under opaque rain
shelters. The measurements were conducted during six one-week periods starting
10 September and ending 21 October 2010. The measurement site was situated at a
busy traffic route (113 000 vehicles per day in 2010) 2 km east of the city centre of
Gothenburg, south-west Sweden (57°42.97’N, 11°59.63E). The traffic route forms
part of a larger system of roads and the green space where the measurements were
undertaken is surrounded by roads with intensive traffic. An aerial picture of the
area where the measurements were conducted is shown in Fig. 1.

Measurements were undertaken outside and inside a dense canopy of 8—10 m
tall mixed broadleaved trees. The edge of the forest stand had a high density of
leaves all the way down to the ground (see Fig. 1) and should represent a strong case
in terms of dense vegetation in contrast to the nearby measurement point outside
the canopy, which was exposed directly to the traffic exhausts. The measurement
points were 8 m and 12 m from the closest lane of the traffic route. Measurement
height was 3.5 m. In addition, temperature was measured at the two sites (1.5 m
height) using TinyTag (TGP 4500) loggers. At the start of the measurements the
vegetation was lush green, but turned subsequently more senescent during the
measurement period. In order to represent the degree of senescence and light
exclusion of the canopy, solar radiation was measured inside and outside the canopy
each time the passive diffusion samplers were changed using a portable LI-COR
Integrated Quantum/Radiometer/Photometer (LI-188B). Measurements were
repeated ten times in each environment on each occasion. Wind speed and direction
were measured at a rooftop (30 m above street level) monitoring station 2 km W of
the investigation site (Gill ultrasonic anemometer).

3. Results and discussion

In Table 1 temperatures for the six periods are presented. At the
start of the investigation temperatures at the two sites were very
similar. At the end of the period the tree stand was slightly warmer
than the open space, which is likely explained by being sheltered by
the canopy and thus less affected by heat radiation loss, which
becomes more important as the autumn progresses and nights
become longer and cooler. When the measurements started, light

exclusion of the forest stand was estimated at around 95%, and was
reduced to less than 75% at the end. Winds directions were rather
variable during the six measurement periods, but for the extent of
the full period all wind directions were on average relatively
equally represented, southerly winds being most common and
westerlies least abundant.

Table 2 shows [NO;] for the six one-week periods. The duplicate
measurements agreed very well. The average coefficient of varia-
tion for the pairs of NO, observations was 1.5%, pointing towards
high precision. [NO,] was higher outside the canopy during all six
periods, although to a varying degree; the ratio between [NO;]
inside and outside the canopy was in the range 0.90—0.98. The
average ratio was 0.93, i.e. a concentration reduction by ~7% or
2.7 g m~3. This is similar in magnitude to the average effects of
urban trees in 11 US cities modelled by Nowak et al. (2006) which
were in the range of 1.1-2.8 ug m~3, although the values are not
fully comparable. Applying a binomial sign test (Bailey, 1995) to our
data suggest that the difference in concentration was statistically
significant (p = 0.016). Thus, our data indicate that there is an effect
of urban forest vegetation on local [NO;], but that it is rather
limited. There were relatively high ambient [NO,] and a strong
contrast in conditions between the dense canopy and the adjacent
open space. In such a situation, effects of vegetation on pollution
concentration should have a large possibility to become manifest
and be detected. The result is in line with the conclusions of Pataki
et al. (2011) and Setdld et al. (2013) that most studies show that
urban vegetation have small effects in terms of air pollution con-
centrations. The effect on [NO;] did not vary systematically with
time, i.e. with the progress of canopy senescence.

In the case of O3 (Table 3) the average reduction in concentration
by the canopy was 2% and not significant. In two periods [O3] was
indicated to be slightly higher inside the canopy. The average co-
efficient of variation for pairs of replicate O3 observations was 2.5%,
higher than for NO,, but still indicating good precision. Unlike NO,,
O3 is not a local pollutant but a regional. Near traffic routes with
high [NO], O3 can be chemically consumed (Fowler et al., 1998). On

Fig. 1. Aerial view of the measurement site in the City of Gothenburg, south-west Sweden as well as a photo of the measurement site showing the measurement point outside the
canopy and the forest edge inside which the measurement point inside the canopy was situated. The two measurement points were 4 m apart.
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Table 1

Temperatures at the measurement site inside and outside the tree canopy for the six one-week measurement periods as well as the fraction of solar radiation inside vs. outside
the tree stand to represent the degree of senescence. Solar radiation was expressed as Photosynthetically active photon flux density (umole m~2 s—1). In addition, average wind
speed and the frequency distribution of wind directions in the four main 90° wind sectors during the six measurement periods are presented.

Period Temperature °C Temperature °C Solar radiation Wind speed m s~! Wind direction
Inside canopy Outside canopy Fraction inside vs. N, % E % S, % W, %
outside canopy

10 Sep—16 Sep 145 14.7 0.05 43 2 4 57 37
16 Sep—23 Sep 123 123 0.04 4.7 1 11 44 44
23 Sep—30 Sep 10.8 10.8 0.05 4.2 72 11 16 1
30 Sep—7 Oct 11.6 11.6 0.11 49 2 80 17 1
7 Oct—14 Oct 84 8.2 0.28 23 45 36 9 10
14 Oct—21 Oct 5.0 4.6 0.26 33 47 12 35 6
Average 104 104 4.0 28 26 30 16

the other hand, vertical mixing of the air, which is promoted by
rough surfaces such as tree stands, enhances [O3] near the ground,
since O3 lost by deposition is more efficiently replenished by O3
from aloft.

The correlation between the ratio inside and outside the forest
canopy of [NO2] and [O3], respectively, and the fraction of time with
different wind directions during the six measurement periods was
tested (Table 4). For NO,, no statistically significant correlations
were obtained, but it was indicated that the north-south wind di-
rections were of larger importance than west-east wind directions,
southerly winds resulting in the largest reduction in [NO;] in the
forest canopy. For O3 a similar pattern was found, but in this case
the correlation with southerly and anticorrelation with northerly
wind directions of the ratio between the concentration inside and
outside the forest canopy were statistically significant (p < 0.05).
There is no obvious explanation for the NO, pattern, since the most
nearby traffic route was roughly situated to the west of the mea-
surement site (Fig. 1). However, the wind direction needs consid-
eration when assessing the effects of forest stands and other

Table 2

Concentrations (g m~>) of NO, inside and outside a dense tree canopy near a traffic
route during six one-week periods and the ratio between the concentration inside
and outside the tree stand. Concentrations are averages of two duplicate samplers.
SD represents the standard deviation of the duplicate measurements.

Period Inside tree canopy Outside canopy Ratio
Average SD Average SD
10 Sep—16 Sep 42.2 0.96 471 0.52 0.90
16 Sep—23 Sep 42.6 0.05 45.5 1.94 0.94
23 Sep—30 Sep 21.1 0.01 21.6 0.24 0.98
30 Sep—7 Oct 20.1 0.18 21.6 0.92 0.93
7 Oct—14 Oct 28.0 0.11 30.2 0.04 0.93
14 Oct—21 Oct 37.6 0.65 41.3 0.37 0.91
Average 319 0.33 34.6 0.67 0.93
Table 3

Concentrations (ug m~>) of O3 inside and outside a dense tree canopy near a traffic
route during six one-week periods and the ratio between the concentration inside
and outside the tree stand. Concentrations are averages of two duplicate samplers.
SD represents the standard deviation of the duplicates.

Period Inside canopy Outside canopy Ratio
Average SD Average SD
10 Sep—16 Sep 235 1.38 25.8 1.52 0.91
16 Sep—23 Sep 25.7 0.56 27.8 0.08 0.93
23 Sep—30 Sep 27.6 0.20 26.9 0.33 1.02
30 Sep—7 Oct 33.2 0.12 34.2 0.53 0.97
7 Oct—14 Oct 129 0.73 12.3 0.04 1.05
14 Oct—21 Oct 19.8 0.61 19.8 1.06 1.00

Average 23.8 0.60 245 0.59 0.98

vegetation on urban air pollution levels. In the case of O3, the
explanation could be that with northerly wind the air is moving
over the rougher forest surfaces (Fig. 1), enhancing vertical trans-
port as stated above. In fact, in the measurement periods with a
large fraction of northerly wind, the concentration of O3 was indi-
cated to be equal to or slightly higher inside the canopy than
outside (Tables 1 and 3).

In contrast to our study and Setdld et al. (2013), Harris and
Manning (2010) found higher [NO] inside canopies of individual
Acer rubrum tree canopies compared to outside. This effect had
varying magnitude, but was consistent over two years. Harris and
Manning (2010) discuss, following Fowler (2002), that oxidation
of O3 by NO emitted by the plant—soil system might result in for-
mation of NO, inside the canopy, this process being dominant over
deposition only at low to moderate [NO]. At high [NO;], according
to this line of argument, the canopy would act as a net sink for NO-.
It can be noted that [NO;] was higher in our study compared to
Harris and Manning (2010), which might explain the discrepancy
between the two studies. We believe that in our case the NO
emissions of the rather small forest stand would be limited
compared to the local pollution generated by intensive traffic.

Regional O3 will tend to react with exhaust NO leading to for-
mation of NO, (Fowler et al., 1998). If this reaction is more promi-
nent outside the canopy it would lead to an underestimation of the
canopy effect on [NO;] caused by deposition and an overestimation
of the canopy effect on [03] deposition. Since [O3] was not very
different between the open space and the canopy, this is not likely
to have been very important for our conclusion on the effect of the
forest canopy on [NO;], but it may have led to some underesti-
mation of this effect.

To conclude, although our study only represents one measure-
ment point, it shows that even in a situation with strongly con-
trasting conditions within and outside a dense tree canopy, and
with relatively high concentrations [NO;], was only reduced by the
vegetation cover to a limited, even though significant, extent. Thus,
it is not justified to expect large effects of urban vegetation on local
gaseous pollutants by deposition but small air quality changes can
impact human health. If influencing large populations, they will
translate into considerable health benefits (Nowak et al., 2006). For

Table 4

Correlation coefficient (R) and statistical significance (p) of the relationships be-
tween the ratio inside-to-outside the forest canopy of [NO,] or [O3] and the time
fraction of wind direction. N = 6.

N E S w
NO, R —0.56 —0.06 0.60 0.40
p 0.25 0.91 0.21 0.44
O3 R -0.83 -0.21 0.87 0.79
p 0.035 0.69 0.021 0.06
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the regional pollutant O3 no substantial effect was detected, which
may be the net result of counteracting processes (deposition vs.
down-mixing from air layers above the trees). Finally, to improve
our understanding of the effect of urban vegetation on local air
pollution further well-designed measurements are required. As
pointed out by Setdld et al. (2013) current opinions on these mat-
ters are presently dominated too much by modelling.
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