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Abstract

Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced
misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate
inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-
biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-
induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific
essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton,
the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with
Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon
heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective
Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched
structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we
found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the
routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-
interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes
involved in ER-to-Golgi trafficking/ER homeostasis.
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Introduction

Cell division in budding yeast, Saccharomyces cerevisiae, and

specific adult stem/progenitor cells includes asymmetrical inher-

itance of oxidized proteins, ensuring low levels of cytosolic damage

in a specific cell lineage [1–3]. In both yeast and adult precursor

cells, the lineage inheriting less damage display a longer life

expectancy [1–3]. Thus, these singular division events provide a

tractable model for how age physiognomies are reset in the

progeny, which might provide clues towards therapeutically

halting, or even reversing, senescence and tissue decline

In budding yeast, the control of aggregate inheritance

encompasses an Hsp104-dependent retention of damaged/aggre-

gated proteins in the mother cell [4,5], a spatial protein quality

control (SQC) that relies also on the deposition of aggregates into

specific protein inclusions called Insoluble Protein Deposit (IPOD)

and JUxta Nuclear Quality control compartment (JUNQ) [6–8].

Besides the protein remodeling factor Hsp104, the yeast

gerontogene Sir2 [9–11] is required for asymmetrical segregation

of oxidized and aggregated proteins [1,4,12,13]. The role of both

Hsp104 and Sir2 in establishing damage asymmetry has been

linked to actin cable-dependent processes and the polarisome

[5,14]; a complex at the tip of the daughter cell required for actin

cable nucleation [15,16]. Actin cables are suggested to play a role

in aggregate retention due to their (and prions’) physical

association with the actin cytoskeleton preventing their free

diffusion into the daughter [5,14,17–19]. Sir2 deficiency reduces

actin cable abundance, cytoskeletal functions, and the velocity of

retrograde actin flow from the polarisome region [4,14,20]. This

link between Sir2 and actin cable functions are consistent with

data demonstrating that Sir2 affects the rate of actin folding by

modulating the activity of the chaperonin CCT [14]. Actin-cables
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and the small heat shock protein Hsp42 are also required for the

formation of peripheral aggregates [21]. Based on such results, it

has been suggested that asymmetrical segregation of damaged

proteins is a factor-dependent, genetically determined process,

which results in the association of aggregates with structures/

organelles limiting their inheritance into the daughter cell [1,4–

6,14,19].

This view is contrasting that of Li and colleagues [21], which,

based on aggregate tracking experiments and modeling, argues

that asymmetric inheritance is a predictable, and purely passive,

outcome of aggregates’ slow, random diffusion and the geometry

of yeast cells. In this view, aggregate inheritance is dictated solely

by the diameter of the bud neck and for how long this neck is open

(generation time) for diffusion of aggregates. However, there is a

large and unexplained amount of diversity in the supposedly

random movement of aggregates in the aggregate population

recorded by Zhou et al., [22] such that many aggregates appears

stationary in the mother cell while others move in a ballistic

fashion. Thus, the usefulness of employing an average diffusion

coefficient for this diverse population of aggregate movements in

attempting to draw conclusions about inheritance being factor

dependent or purely passive has been questioned [6]. In addition,

it was shown that the large aggregates in the Zhou et al., [22] study

is IPOD and JUNQ inclusions that cannot diffuse freely, or

randomly, since they are tethered to the vacuole and nucleus,

respectively [6].

In the present work, we tested whether the passive diffusion

model or the factor-dependent tethering model appear most

relevant for our understanding of asymmetrical inheritance of

aggregates and the asymmetry defects observed in cells lacking

Sir2. To do so, we analyzed the inheritance of two reporters; the

spontaneously misfolding and aggregating Huntingtin Htt103Q

protein and heat-induced, Hsp104-associated aggregates and

quantified the traits of sir2 mutant cells predicted to affect the

inheritance of such aggregates in a passive manner. In addition, we

identified hitherto unknown factors required for asymmetrical

inheritance among essential genes displaying synthetic genetic

interactions with SIR2, in order to determine if inheritance defects

is linked to specific biological processes/components or governed

by passive traits. The data obtained suggest that slow and passive

diffusion is not sufficient for establishing the mother-biased

segregation displayed by wild type yeast cells. Instead, we found

that the essential actin-associated myosin V motor protein Myo2

and the actin organization protein calmodulin, Cmd1, are

required for asymmetrical inheritance and that both Htt103Q

foci and heat-induced Hsp104-associated stress foci/peripheral

aggregates co-localize with Myo2/Cmd1-enriched structures.

Super-resolution 3-D structured illumination microscopy further

showed that both Htt103Q and Hsp104 foci co-localize with actin

cables. In addition, the data suggest that a fully functional ER-

Golgi trafficking/ER homeostasis activity is required for restricting

aggregate inheritance during yeast cytokinesis.

Results

Aggregate inheritance defects in sir2D cells cannot be
explained by alterations in mother-daughter geometry,
aggregate abundance, or generation times

For obtaining empirical, quantitative, datasets on aggregate

inheritance, we used both heat-induced aggregate formation

detected by Hsp104-GFP and the aggregation-prone Huntington’s

disease protein Htt103Q-GFP (detailed information of this

construct can be found in Wang et al. 2007 [22]), which, in

contrast to heat-induced aggregates, forms small and stable

aggregates rather than large IPOD/JUNQ inclusions (Figure 1A;

[23–25]). Reduced inheritance (e.g. by aggregate retention in

mother cells) and aggregate removal (e.g. by disaggregation or

retrograde aggregate movement in daughter cells) [14,19] are the

two processes required for establishing asymmetric aggregate

distribution. Figure 1B shows a schematic illustration of how these

two processes can be distinguished experimentally. Upon

HTT103Q induction (leading to Htt103Q aggregation) by the

addition of galactose, cells are stained with a fluorescent conA

(concanavalinA) conjugate, which binds to glycoproteins in the cell

wall. During the subsequent addition of glucose, which represses

further HTT103Q expression, conA is washed away. This

protocol enables discrimination between daughter cells present

during induction of HTT103Q expression and aggregate forma-

tion (stained with conA), and cells generated after turning off

synthesis of the aggregating protein (not stained with conA) that

can only display aggregates if they (or possibly small aggregation

nucleation particles) have been inherited from the mother cell

(Figure 1B). Analyzing the inheritance of all visible Htt103Q foci

demonstrated that wild type yeast mother cells retained Htt103Q

aggregates in a quantitatively similar way as heat-induced

aggregates [14,21] during cytokinesis (Figure 1C&D) and that

the absence of Sir2 reduced this retention capacity about 2-fold

(Figure 1C; p = 0.02). During the time frame of the experiment, we

found little or no clearance of the Htt103Q protein in conA-

stained daughter cells (Figure 1E). Thus, establishment of

asymmetrical aggregate distribution of both small aggregation-

prone disease proteins and indigenous heat-induced Hsp104-

associated inclusion bodies [6,14] are dependent on Sir2 and

involves aggregate retention in mother cells.

Simulations suggest [21] that to allow for the 2-fold increased

inheritance the bud neck between the mother and daughter has to

be enlarged by a factor of 2.2–3.0 provided the aggregates move

by random walk [21] and that the generation time and aggregate

Author Summary

Asymmetric cell division is key to cellular rejuvenation and
budding yeast exploits this mode of cytokinesis to
generate a young daughter cell from a mother cell that
with each division grows progressively older. Thus, age
physiognomies are reset in the progeny during division, a
phenomenon that requires a mother-biased segregation of
cytoplasmic ‘aging factors’, including damaged/aggregat-
ed proteins. There are two models for how aggregated
proteins are segregating in a mother cell-biased fashion;
one holds that asymmetric inheritance is a purely passive
outcome of the aggregates’ random but slow diffusion
whereas the other model reasons that specific factors/
organelles prevent free diffusion of aggregates into the
daughter cell. In the present work, we tested whether the
passive diffusion model or the factor-dependent model
appear most relevant in explaining asymmetrical inheri-
tance by quantifying traits predicted to affect inheritance
by passive diffusion and identifying factors required for
asymmetrical inheritance amongst essential genes inter-
acting with SIR2; a gene shown previously to be required
for mother-biased segregation. We show that passive
diffusion of aggregates is not sufficient to establish
mother-biased segregation and that ER to Golgi trafficking,
in addition to the actin cytoskeleton, calmodulin, and the
Myo2 motor protein, are key components restricting the
inheritance of both heat stressed-induced aggregates and
aggregates formed of the Huntington disease protein
Htt103Q.

Asymmetrical Inheritance of Aggregates
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number is similar in the wild type and mutant cells. Using the

septin ring component Shs1-Gfp as a reporter for the bud neck, we

found no evidence that the mean and median bud neck diameter

in wild type and sir2D mutant cells was different (Figure 2A&B). In

addition, the generation time of Sir2-deficient cells was not

significantly longer than that of wild type cells (Figure 2C).

Moreover, the average length of a sir2D mutant mother cell is

longer than a wild type mother cell (Figure 2D), which would

mean that the average aggregate in a sir2D mother have to

embark on a longer journey to reach the daughter, which would

yield a more pronounced asymmetry in Sir2-deficient cells

provided aggregate distribution was solely dependent on random

walk. Finally, the distribution and average number of the Htt103Q

aggregates observed was similar in wild type and Sir2-deficient

cells (Figure 2E) as was the number of heat-induced, Hsp104-

associated aggregates (Figure S1). Thus, changes in geometrical

parameters, generation time, or aggregate abundance did not

explain increased inheritance of aggregates in sir2D daughter cells.

The passive aggregate diffusion model predicts that cells

displaying a reduced growth rate will suffer from a generally

increased daughter-cell inheritance of aggregates since the

aggregates are allowed a longer time to randomly find their way

into, and equilibrate with, the daughter cell. Therefore, we

investigated to what extent Htt103Q aggregate inheritance could

be enhanced in wild type cells when the generation time was

slowed-down after aggregate formation by different concentrations

of the protein synthesis inhibitor cyclohexamide. It has been

shown that exponential cultures treated with low concentration of

cycloheximide do not display arrest in any specific cell cycle stage

but instead grow at a slowed exponential fashion with a prolonged

cell cycle [26]. Since septum formation occurs only after the

completion of mitotic events [27] the bud neck should remain

open for a prolonged time upon exposure to low concentrations of

cycloheximide. The Htt103Q-GFP reporter is a useful model

protein for this experiment (see Figure 2F for the experimental

rationale) because Htt103Q aggregates are stable (not cleared)

during long periods of time (Figure 1E) and aggregate formation

does not involve changes in temperatures, which would affect

diffusion rates. The segregation analysis demonstrated that

prolonging the generation time more than two-fold did not result

in an increased inheritance of Htt103Q aggregates (Figure 2G),

suggesting that the establishment of aggregate asymmetry cannot

rely on slow and random diffusion alone.

The genetic interaction network of SIR2 includes discrete
essential genes with a role in actin/tubulin-dependent
functions, ER-Golgi trafficking, and chromatid
segregation

To approach the passive diffusion model and factor-dependent

models further, we next identified which Sir2-dependent functions

are involved in restricting aggregate transfer to daughter cells.

Therefore, we supplemented the previously identified genetic

interaction network of SIR2 [14] with essential alleles included in

the ordered, temperature-sensitive (ts), mutant library reported by

Li et al. [28]. The rational for this approach is based on data

suggesting that a failure to segregate protein damage can result in

a reduced fitness [14,29,30] and it has previously been shown [14]

that machineries involved in the partitioning of protein damage

could be identified among the genes interacting (as synthetic sick

or lethal) with a sir2 deletion using synthetic genetic arrays (SGA)

analysis [31–33]. The protocol for allowing a sir2D mutant to

mate and produce spores in an SGA screen has been reported

previously and includes deletion of the HMR and HML silent

mating type loci in the SIR2 query strain [14]. The sir2D 6 ts-

allele crosses were tested for growth at varying temperatures

because different ts-mutants in the library display fitness defects

under different semi-permissive conditions.

We found that 6% of the 787 alleles included in the ts-library

displayed statistically significant negative genetic interaction with

SIR2. As seen in Table S2 and figures 3A&B, SIR2 displayed

negative genetic interactions with genes involved in actin polarity,

actin folding, and actin nucleation consistent with previous results

[1,4,14,20]. Analysis of functional relationships and known

physical interactions identified 4 additional, previously unknown,

Figure 1. Sir2 is required for efficient mother-biased segregation of the Huntington disease model protein HttQ103. A. Representive
images of wild type cells, stained with concanavalin A (left panel), showing HttQ103-GFP aggregates (right panel) after turning off HttQ103-GFP
expression. Scale bar = 5 mm. B. Schematic outline of the experimental design for segregation of HttQ103-GFP. HttQ103-GFP aggregation was
triggered by inducing the PGAL-HTT103Q gene by galactose. Expression was subsequently turned off by switching the carbon source to glucose and
the segregation of aggregates was scored during the next budding event. Mother cells were stained briefly with concanavalin A (red circle in the
picture) allowing easy detection of new buds (not stained). C. Pictures of wild-type (left panel) and sir2D (right panel) cells displaying new budding
events after turning off HttQ103-GFP aggregate production. Pictures from upper to lower panel are merged images, HttQ103-GFP and ConA-Alexa
Fluor 647. Scale bars = 2 mm. M = mother cells. D. Quantification of aggregate inheritance in wild type and sir2D cells. All new budding events in
which the mother cell displayed aggregates were quantified. E. Stability of Htt103Q aggregates analyzed by flow cytometry. Stability is measured as
mean signal intensity from Htt103Q-GFP aggregates as a function of time after inhibition of protein synthesis. Data are represented as mean + s.d. An
unpaired two-tailed t-test confirms a statistically significant difference between the two strains (*P,0.05).
doi:10.1371/journal.pgen.1004539.g001
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functional groups of the SIR2 interaction network: 1. ‘SPB,

microtubule nucleation’, 2. ‘ER-Golgi trafficking/function’, 3.

‘chromosome/sister chromatid segregation’, and 4. ‘proteasome

regulatory particle’ (Figure 3A&B).

A sir2D mutant contains a higher ratio of unfolded/folded actin

monomers than wild type cells and the chaperonin CCT isolated

from sir2D cells displays a reduced rate of actin folding [14].

Consistently, the cct1-2 allele, similar to the cct6-18 allele [14],

was found here to cause severe synthetic sickness in combination

with sir2D (Figure 3C). The CCT chaperonin is also providing the

microtubule cytoskeletal system with folded tubulin, which could

explain why tub mutants are also synthetic sick in combination

with sir2D and why genes of the ‘SPB, microtubule nucleation’

and ‘chromosome/sister chromatid segregation’ functional groups

interacts negatively with sir2D. The SIR2 interactors of these

groups are functionally related and interconnected also by physical

interactions between Cdc5, Mps3 and Smc2 (Figure 3B). Mps3

and Cdc5 are required for SPB duplication and separation,

respectively, and Mps3 interacts physically with Smc2 of the

Smc2/4 condensin complex. Both smc2 and smc4 mutants

displayed synthetic sickness in combination with sir2D (Table

S2; Figure 3A&B), which is interesting as the cohesin subunit

Smc3 displays elevated levels of acetylation in a sir2D mutant

following a-factor treatment [34].

Like CCT, CMD1, encoding calmodulin, is required for proper

function of both the actin and microtubule cytoskeletons [35].

Consistently, cmd1-1 mutant cells were severely impaired for

growth when combined with sir2D (Figure 3D).

Essential genetic SIR2 interactors also included a relative large

number of SEC genes involved in ER/Golgi functionality and

Figure 2. Increased inheritance of aggregates in sir2 daughter cells cannot be explained by changes in geometrical parameters and
generation time. A. Representative pictures of bud neck visualization using Shs1-Gfp as a reporter in the wild type and sir2D mutant (yellow
arrows). Scale bars = 5 mm. B. Distribution of bud neck diameters in a population of wild type (orange) and sir2D mutant (red) cells. C. Growth of sir2D
(red) compared to wild type (orange) cell cultures in liquid YPD media. The generation times are depicted in the figure. (Data are represented as
mean of triplicates.). D. Distribution of average mother cell length in a population of sir2D (red) and wild type (orange) cells. E. Distribution in the
number of protein aggregates (Htt103Q-GFP) per cell in wild type (orange) and sir2D (red) populations. P-value is calculated from around 500 cells.
The statistical significance of observed differences was determined with the two-tailed U-test (P = 0.66) demonstrating that the difference between
wild type and sir2 mutant cells is not significant. F. Schematic outline of the experimental design for the aggregate retention assay in which wild type
cells are treated with low concentrations of cycloheximide (CHX) to prolong generation times. G. Inheritance of aggregates after prolonging the
generation time more than two-fold using CHX at concentrations indicated. Aggregate inheritance data are represented as mean + s.d. of triplicate
samples. Statistically significant differences from wild types are determined by unpaired two-tailed t-test. Asterisks denote significant differences
between samples: *P,0.05.
doi:10.1371/journal.pgen.1004539.g002
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trafficking (Figure 3A&B); specifically, sec18/20/22 involved in

retrograde transport between the ER and Golgi, sec7, required for

intra-Golgi and ER-to-Golgi transport, sec53 required for folding

and glycosylation of proteins in the ER lumen, and sec11 needed

for targeting proteins to the ER. In line with Sir2 buffering against

defects in ER functions, the cdc48-3 allele encoding a temperature

sensitive AAA+ chaperone, which facilitates extraction of ubiqui-

tylated misfolded proteins from the ER, also displayed negative

genetic interaction with sir2D (Table S2; Figure 3A&B). The ‘ER-

Golgi trafficking/quality control’ group of genes is more distantly

connected functionally to the CCT/CMD1 groups with respect to

genetic interactions [33,36] suggesting that this group of genes

display genetic interaction with SIR2 for other reasons than

defects in CCT and actin/microtubule functionality.

Asymmetrical inheritance of heat-induced aggregates
requires actin-Myo2-calmodulin and ER-Golgi trafficking/
functions

By crossing the HSP104-GFP fusion into the essential ts-

mutant library using synthetic genetic array technology, we next

tested whether any of the functional groups of the essential SIR2

genetic interaction network displayed aberrant aggregate inheri-

tance of heat-induced Hsp104-associate aggregates and then

followed up by testing if asymmetrical Htt103Q inheritance

required the same factors. Among all the essential alleles

interacting with SIR2, about 40% caused a defect in establishing

Hsp104-aggregate asymmetry. One of the most severely affected

mutants, cmd1-1, encoding calmodulin, belong to the group of

genes involved in actin cable organization and function

(Figure 4A). In addition, defects in the organization of both

tubulin (tub4-Y445D) and the SPB (spc110-220) affected

asymmetry (Figure 4A), suggesting that the machineries required

for nuclei segregation are also required for establishing aggregate

asymmetry. This is consistent with data demonstrating that

aberrant nuclei segregation can lead to daughter-cell inheritance

of protein inclusions, especially JUNQ [6]. With the exception of

cdc48-3, mutants of the ‘proteasome regulatory particle’ and

‘chromosome/sister chromatid segregation’ groups did not display

aberrant aggregate asymmetry, whereas all alleles in the ‘ER/

Golgi trafficking/function’ group did (Figure 4A).

Calmodulin regulates many processes apart from actin

cable organization, including vacuole inheritance, endocytosis,

Figure 3. Genetic interactions of SIR2 with essential genes. A. Heat map showing confirmed growth rate changes of SIR2/ts essential allele
double mutants at 30, 34 and 38uC. The colored lines connecting alleles indicate that the genes belong to the same gene ontology functional group:
PT; Protein transport/trafficking, SPB/MN; Spindle pole body and microtubule nucleation, CS; Chromosome segregation, PRP; Proteasome regulatory
particle. Green color levels correspond to significant growth rate changes; see Supplemental table S2 for detailed values. Gray indicates no data, black
indicates no interaction observed. Data are represented as mean of triplicates. Individual comparisons are made by two-tailed t-test. B. Network
analysis of the SIR2 essential interactors. Functional groups are shown as shaded areas. Pink lines indicate published physical interactions and red
nodes indicate mutants with aggregate retention defects. C&D. Drop tests showing genetic, epistatic, interactions between SIR2 - CCT1 and SIR2 -
CMD1.
doi:10.1371/journal.pgen.1004539.g003
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microautophagy, and organization and formation of the SBP.

Therefore, we next tested if any or all of these processes/

components are either required for preventing the inheritance of

aggregates (retention in mother cells), clearance of aggregates (in

daughter cells), or both using the ConA protocol (see Figure 1).

Mutations in CMD1 have been reported to cause actin cytoskeletal

defects by reducing the levels of the signaling molecule

phosphatidylinositol (4, 5)-bisphosphate [37]. We found that the

sir2D interactor mss4-102, a mutant allele of the phosphatidyli-

nositol (4, 5)-bisphosphate kinase, increased aggregate inheritance

and decreased aggregate removal in daughter cells (Figure 4B). In

addition, Cmd1 is required for polarized growth and inheritance

of the vacuole by daughter cells through its interaction with the

type V myosin motor protein Myo2 [38,39], and cells harboring

the myo2-14 or myo2-16 alleles, like cmd1-1 cells, displayed severe

defects in both aggregate inheritance and removal (Figure 4B).

Likewise, Spc110, which requires Cmd1 for its proper localization

to the SPB [35,40], and tubulin (tub4-Y445D) were required for

both asymmetrical inheritance and removal of aggregates

(Figure 4B). In contrast, deficiencies in Cmd1-dependent micro-

autophagy, which is mediated by Vtc2 and Vtc3 [41], were not

affecting aggregate asymmetry (Figure 4B).

Among the calmodulin-independent genes of the SIR2 inter-

action network, all involved in ER/Golgi trafficking/functionality

and the UPR/ERAD, displayed deficiencies in establishing

aggregate asymmetry (Figure 4A) and by testing some selected

alleles in this group including sec53-6, sec20-1, sec22-1, sec18-1,

kar2-ts, and cdc48-3 using the conA protocol we found that all

these genes were required for preventing aggregate inheritance in

daughter cells (Figure 4B).

The mutations identified causing an increased daughter-cell

inheritance of protein aggregates could be doing so by affecting

aggregate numbers if aggregate partitioning is predominantly due

to random diffusion. Therefore, we quantified aggregates in the

mutants of the functional groups found to be required for

asymmetrical inheritance. This analysis demonstrated that the

absence of most genes identified here as being required for

aggregate asymmetry, did not significantly increase aggregate

numbers (Figure 4C&D, Figure S2). However, there are some

intriguing exceptions; reduced activity of Cmd1 and the ER

chaperone Kar2 caused a marked increase in the average number

of aggregates per cell indicating that these proteins are required for

inclusion body formation (Figure 4C&D, Figure S2). Nevertheless,

alterations in aggregate inheritance in the majority of the mutants

identified are uncoupled from changes in aggregate numbers.

Defects in aggregate partitioning could also be due to diminished

levels of Hsp104 [4,5]. However, for the mutants tested herein, the

defects in inheritance was not accompanied by reduced Hsp104

levels (Figure 4E), or elevated total levels of insoluble proteins,

which were separated from soluble proteins by ultracentrifugation

(Figure 4F).

To test to what extent alterations in generation times might

contribute to changes in aggregate inheritance, we recorded

daughter cell inheritance for the ts-mutants analyzed as a function

of the generation time obtained during the aggregate segregation

analysis. The mutants and temperatures analyzed generated

generation times within a 1.5 fold difference from the wild type

cells. The data was subjected to linear regression analysis together

with confidence and prediction interval determinations to quantify

the contribution of generation times on inheritance. A number of

important observations can be made from this analysis. First,

within the confidence interval (i.e. the interval displaying little

difference in generation times) vastly different degrees of

inheritance were recorded (Figure 4G), demonstrating that the

effects on inheritance must be governed by other means than

alterations in the generation time within this group of mutants.

Second, in contrast to the predictions of the passive diffusion

model, the best linear fit shows a weak trend towards a decreased

inheritance with increased generation times but the adjusted R-

squared value and p-value of 20.04346 and 0.7752, respectively,

demonstrate that this trend is not statistically significant.

To test if the segregation defect seen in sec mutants could be

linked to aberrancies in actin cytoskeleton organization, we

analyzed actin polarity as described in [42], and found that

sec53-5, like cmd1 and myo2 mutants, displayed a markedly

aberrant actin polarity (increase number of cells with more than 6

actin patches) whereas the sec18-1 mutant showed a decreased

number of patches (Figure 4H&I). Thus, it is possible that some

SEC and ER-associated mutants fail to segregate aggregates

asymmetrically due to polarity defects.

Htt103Q forms Cmd1/Myo2/actin-associated foci
requiring Cmd1, Myo2, and SEC genes for their mother
cell-biased segregation

We next tested selected alleles that markedly reduced mother

cell-biased segregation of heat-induced Hsp104-associated aggre-

gates for their effect on asymmetrical segregation of Htt103Q. We

found that both Cmd1 and Myo2, as well as the SEC genes

Figure 4. Actin/calmodulin/tubulin, phosphatidylinositol (4,5)-bisphosphate, and ER-Golgi trafficking, are required for
asymmetrical inheritance of protein aggregates. A. Temperature sensitive alleles of SIR2 essential interactors that display a reduced ability
to establish aggregate asymmetry during cytokinesis. Negative values indicate a reduction in the percentage of daughter cells generated without
aggregates compared to wild type. B. Alterations in aggregate inheritance and removal in the mutants displaying defects in establishing aggregate
asymmetry. Data are plotted as the mutants’ deviation from the wild type in aggregate inheritance (open bars; 100% increase means a two-fold
increase in the aggregate inheritance values compared to wild type strains) and removal (black bars; 100% decrease means a two-fold decrease in the
inheritance values compared to wild type strains). C&D. Distribution of aggregate numbers in populations of wild type and mutant cells displaying
defects in aggregate inheritance. E. Hsp104 levels detected by Western blot in mutants displaying defects in aggregate inheritance. The western blot
probed with anti-Hsp104 antibody is shown in the upper panel and the loading control probed with anti-pGK antibody is shown in the lower panel.
F. Relative levels of aggregated/total proteins after the heat shock in different ts-allele strains. G. Analysis of Hsp104-GFP aggregate inheritance as a
function of the generation time obtained during the aggregate segregation tests of the ts-mutants. Vastly different degrees of inheritance were
recorded within the confidence interval, and the best linear fit shows that no statistically significant correlation trend can be observed (R2 = 20.04346
and P = 0.7752). The data (blue dots), the fit line (purple), the confidence interval lines (green), and the predicted interval lines (red) for a linear
regression analysis are displayed. H. Polarity defects in ts-mutants displaying aberrant aggregate segregation. Three of four tested ts-mutants, cmd1-
1, myo2-14 and sec53-6, displayed polarity defects as seen by an increase number of mother cells with more than 6 actin patches. Fold changes are
calculated from 200–300 cells. The statistical significance of observed differences was determined with the two-tailed U-test. I. Pictures of ts-mutants
tested for polarity defect. Upper panel shows bright field images and lower panel shows polarity phenotypes visualized by phalloidin staining. Scale
bar = 5 mm. Asymmetry, aggregate inheritance and removal and change in aggregate per cell data are presented as mean + s.d. of triplicate samples.
Statistically significant differences from wild types are determined by unpaired two-tailed t-test. Asterisks denote significant differences between
samples: *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pgen.1004539.g004
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(SEC18 and SEC53) were required for asymmetrical segregation

of Htt103Q (Figure 5A). As for heat induced Hsp104-associated

aggregates, this defect was not due to elevated levels of unfolded

and insoluble Htt103Q in these cells (Figure 5B). The requisite of

the same factors for asymmetrical segregation of both heat-

induced Hsp104-associated aggregates and Htt103Q is somewhat

unexpected as the former is sequestered into distinct, inclusion

bodies (IBs), IPOD and JUNQ, upon heat stress [7], whereas

Htt103Q forms multiple small aggregates throughout the

cytoplasm [23,24,43]. However, before the formation of IPOD/

JUNQ, misfolded, Hsp104-associated, proteins assemble into

small stress foci ([6]; also called Q-bodies [30] or peripheral

aggregates [44]), reminiscent of the smaller Htt103Q aggregates.

We therefore tested if Hsp104-GFP co-localized with Htt103Q

immediately after heat stress and found this to be the case; co-

localization can be observed in about 97.1% cells displaying both

Htt103 and Hsp104 aggregates (Figure 5C), indicating that

Htt103Q may be sequestered at terminally stable stress foci-like

structures. It has been suggested that amyloids and heat-denatured

proteins are sequestered to spatially different quality control sites

[7]. Therefore, we tested whether Htt103Q formed amyloids using

Thioflavin-T staining but found no evidence for this whereas the

positive control, Rnq1-mRFP aggregates readily stained with

Thioflavin-T (Figure 5D).

Next, we analyzed if Htt103Q foci co-localized with Cmd1

and/or Myo2, which could explain, in a direct physical manner,

why retention in the mother cell relies on these factors. In cells

where Cmd1 or Myo2 were enriched in visible structures, 94.4%

Figure 5. Htt103Q foci associate with Cmd1/Myo2/actin and require Cmd1, Myo2, and SEC genes for their mother cell-biased
segregation. A. SIR2 essential interactors cmd1-1, myo2-14, sec53-6 and sec18-1 display a reduced ability to establish mother-biased segregation of
Htt-103Q aggregates. Negative values indicate a reduction in the percentage of daughter cells without aggregates compared to the wild type.
Asymmetry data are presented as mean + s.d. of duplicate samples. Statistically significant differences from wild types are determined by unpaired
two-tailed t-test. Asterisks denote significant differences between samples: *P,0.05. B. Relative amount of aggregated/insoluble Htt103Q proteins in
the different ts-allele strains compared to that of wild type cells after induction of Htt103Q with 2% galactose. Statistically significant differences from
wild types were determined by unpaired two-tailed t-test. C. Representative images showing co-localization (yellow arrows) of Hsp104-GFP (green)
and Htt103Q-mRFP (red). Cells were heat-shocked at 42uC and allowed to recover for 30 minutes at 30uC. The co-localization of these two aggregates
can be observed in about 97.1% cells displaying both type of aggregates D. Amyloid staining of cells carrying Htt103Q aggregates (right column)
using Thioflavin–T. Images of cells expressing Rnq1-mRFP were used as a positive control for amyloidogenic protein aggregates and are shown in the
left column. E. Co-localization of Htt103Q-mRFP aggregates with specific proteins found to be required for mother-biased segregation as indicated.
The two upper panels show that Cmd1-GFP and Myo2-GFP structures overlap and co-localize with Htt103Q-mRFP aggregates in cells showing both
mRFP tagged aggregates and GFP tagged structures (94.4% and 92.2% cells showed Htt103Q-mRFP co-localization with Cmd1 and Myo2 structures,
respectively). The bottom two panels indicate that less cells showed co-localization between Htt103Q-mRFP and Sec18-GFP (48%) and no co-
localization between Sec53-GFP and Htt103Q-mRFP aggregates. F. Heat-denatured proteins associated with Hsp104Y662A-GFP (green) but not the
Huntington protein Htt103Q-mRFP (red) required Hsp42 for foci formation. Upper panels: wild type cells, lower panels: hsp42D mutants. G.
Quantification of Hsp104Y662A and Htt103Q aggregate morphology changes in WT and hsp42D cells. More than 100 cells from Z-stack images
showing aggregates were quantified. Cells were divided into 3 classes (Class 1, cells with 1 aggregate; Cclass2, cells with 2 aggregates; Class 3, cells
with 3 or more aggregates). Scale bar = 5 mm.
doi:10.1371/journal.pgen.1004539.g005
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and 92.2% showed co-localization between Htt103Q and such

Cmd1 or Myo2 structures, respectively (Figure 5E). In addition,

the ATPase-deficient Hsp104, Hsp104Y662A, which has previously

been shown to be ‘locked’ in a stress foci stage [6], similarly co-

localized with Cmd1 (in 74.4% of cells) and Myo2 (in 56.6% of

cells) enriched structures (Figure S3). We found less co-localization

between Htt103Q foci and Sec18 (about 48% of cell showing both

Sec18 structures and Htt103Q foci) whereas no clear co-

localization could be observed between Htt103Q foci and Sec53

(displaying a diffuse signal) (Figure 5E). In contrast, in cells with

heat induced Hsp104Y662A foci a clear co-localization can be

observed between Hsp104Y662A and Sec53 (82.7%; Figure S3).

Figure 6. Super-resolution three-dimensional structured illumination microscopy (3D-SIM) revealing association of Htt103Q and
Hsp104-linked stress foci with the actin cytoskeleton. A&B. 3D-SIM images show that Htt103Q-GFP (green channel) aggregates are associated
with the actin cytoskeleton (red channel: Alexa fluor 568 phalloidin). Blue arrows indicate regions where aggregates are in close proximity to the actin
cytoskeleton. C. 3D-SIM analysis of Hsp104Y662A-GFP stress foci after a heat shock. Blue arrows indicate that Hsp104Y662A-GFP-associated foci (green
channel) are lining up along actin cables (red channel: Alexa fluor 568 phalloidin) and are at some places wrapping around the cable (yellow arrows).
D. Z-stack series of Hsp104Y662A-GFP, Alexa fluor 568 phalloidin and Merged channels. Z stacks were collected using a 100 nm optical section
thickness. Yellow arrows indicate locations in which aggregates (green) are in close proximity to, and/or wrapping around, actin cables (red). E&F. 3D-
SIM microscopy shows that protein aggregates (Hsp104Y662A-mCherry, red) are associated with the Abp140-3GFP (green) actin cable-binding protein.
Scale bars in whole cell images = 0.5 mm, scale bars in zoomed images = 0.2 mm.
doi:10.1371/journal.pgen.1004539.g006
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Some of the Htt103Q and Hsp104Y662A foci appeared to reside in

the vicinity of the ER, as detected by Rtn1-GFP co-staining

(Figure S4). Previous studies have shown that the small heat shock

protein Hsp42 affects sequestration of misfolded proteins; specif-

ically, in the absence of Hsp42 misfolded proteins are predom-

inantly directed to the juxtanuclear JUNQ deposition site instead

of peripheral, nucleus-distant, aggregation sites [8,44]. Important-

ly, we found that the absence of Hsp42 redirected Hsp104Y662A to

inclusions (cells with 1 or 2 aggregates; i.e. class 1 and 2 cells)

rather than peripheral aggregates/stress foci (3 or more aggre-

gates; class 3 cells) whereas formation of Htt103Q foci was

unaltered (Figure 5F,G). Co-staining with DAPI demonstrated

that the number of cells with a single juxtanuclear-localized

aggregate were increased in the hsp42D mutant (Figure S5). These

data indicate that while Hsp104Y662A and Htt103Q are directed to

overlapping, Cmd1/Myo2-associated, foci, the routes/factors

employed for sequestering heat-induced stress foci and Htt103Q

to such sites may be different.

Cmd1 and Myo2 are intimately associated with the actin

cytoskeleton and protein aggregates and prions have been found

previously to reside in areas rich in actin-enriched structures using

proximity ligation assays and co-localization fluorescence micros-

copy [14,18,19,43,45]. However, one major drawback with

conventional fluorescence microscopy is that the x–y axial

resolution is limited to about 250 nm and the z axial resolution

to about 500 nm [46,47]. Therefore, to more precisely analyze the

spatial relationship between protein aggregates/stress foci and the

actin cytoskeleton, we performed super-resolution three-dimen-

sional structured illumination microscopy (3D-SIM) [48] to

analyze possible aggregate and actin cytoskeleton interactions in
vivo. With this technique an approximately 8-fold smaller volume

can be resolved in comparison to conventional microscopy

equating about 100 nm in x-y and 200 nm in the z axial

[46,49]. The 3D-SIM analyses revealed that both Htt103Q and

Hsp104Y662A foci line up along actin cables and are in some

instances wrapping around the cables (Figure 6A–D, Figure S6

and Movie S1). At this resolution, using multiple Z-stacks, it is

clear that the co-localization is not due to actin oligomers residing

in the aggregates themselves (Figure 6B&D). Moreover, we found

that Hsp104Y662A-mCherry stress foci displayed a considerable co-

localization with the actin cable-associated protein Abp140-3GFP

further supporting an association between stress foci and actin

cables (Figure 6E&F).

Discussion

The development of an in situ protocol for detecting oxidatively

damaged (carbonylated) proteins in single cells of S. cerevisiae led

to the discovery that damaged proteins display a mother cell-

biased segregation during cytokinesis [1] and it was later shown

that such oxidatively damaged proteins coalesce into aggregates

upon aging that rely on both Hsp104 [4,5] and Sir2 [1,14,50] for

their asymmetrical inheritance. Data accompanying the original

discovery showed also that elevating damage in the mother cell by

a transient exposure to oxidants rendered asymmetrical inheri-

tance even more pronounced indicating that asymmetry was not

entirely due to a passive effect of slow diffusion [1]. The data

presented in this work is consistent with this notion: If aggregates

would find their way into a daughter cell purely by passive and

random movement, increasing the time for completing cytokinesis

would enhance aggregate inheritance - we show here that this is

not the case. Further, mutants with increased daughter-cell

inheritance should, if aggregates diffuse randomly, either display

a larger bud-neck diameter, a longer generation time, or increased

number of aggregates; none of these traits could be established for

sir2D cells or the other mutants displaying elevated inheritance.

Prevention of inheritance of both the misfolded polyQ protein

Htt103Q and heat-induced aggregates relies instead on specific

cellular processes/components, including the actin-associated

proteins Cmd1 and Myo2 and Sec proteins involved in ER to

Golgi trafficking and ER homeostasis.

It is possible that a reduction in actin cable abundance affects

aggregate diffusion, as an intact actin cytoskeleton in dictyostelium
appears to slow down the diffusion rates of soluble GFP proteins

[51]. However, since both Htt103Q and heat-induced foci co-

localized with Cmd1- and Myo2-enriched structures, the retention

of aggregates might be linked to a more direct physical interaction

between these components and aggregates. Cmd1 and Myo2 are

intimately associated with actin cables and super-resolution 3-D

SIM microscopy demonstrating that stable foci of both Htt103Q

and Hsp104Y662A are associated with the actin cytoskeleton (and

the actin-binding protein Abp140) in the nm-scale. These data is

further supporting a role of actin cable assembly [1,4,44], actin

folding [14], and actin polarity [19] in aggregate inheritance

control.

Interestingly, the Htt103Q foci co-localized with the Hsp104

stress foci formed early upon a heat shock. Thus, misfolded

Htt103Q and heat-denatured proteins appears to be sequestered

into the same spatial sites. In further support of this notion, the

disaggregase-defective Hsp104Y662A-GFP, which upon heat stress

forms stable stress foci [6], like Htt103Q, co-localized with Cmd1

and Myo2. However, we found that only Hsp104Y662A-associated

misfolded proteins, and not Htt103Q, required Hsp42 for foci

formation. The absence of Hsp42 has been shown previously to

redirect heat-denatured misfolded proteins to the nucleus-proxi-

mal JUNQ deposition site at the expense of peripheral aggregation

sites at least in the presence of a proteasome inhibitor [8,44] but

we found that Htt103Q foci formation was unaffected by Hsp42

deficiency. Inversely, we found that Cmd1- and Kar2-deficiency

reduced the cells’ ability to form Hsp104-associated inclusions

upon a heat shock; that is, heat-induced aggregates appear ‘locked’

in the stress foci stage in these mutants.

The participation of the Myo2 motor protein and calmodulin in

asymmetrical inheritance of aggregates suggests that the role of

actin cables and polarity in this process may be linked also to

vesicle/organelle trafficking. In support of this notion, the IPOD

inclusions are associated with the vacuole [6,7] and it is

conceivable that misfolded proteins reach such deposit sites in

an actin cytoskeleton- and vesicle trafficking-dependent way.

Indeed, Specht et al., [44] have demonstrated that misfolded

proteins fail to form peripheral aggregates when actin cables are

depolarized with Latranculin and Kaganovitch et al., [7], using

benomyl treatment, demonstrated the requirement also of

microtubule in the formation of inclusion bodies. However, it

was later shown that the effect of benomyl in inclusion body

formation might be microtubule-independent [44]. The effect of

abrogated ER/Golgi function on aggregate segregation could also

be linked to effects on actin/calmodulin/Myo2-dependent vesicle/

vacuole trafficking since the ER/Golgi is involved in lipid

modifications of specific proteins, e.g palmitoylation and myr-

istoylation, required for anchoring Myo2 to targets at vesicle

membranes [52]. In this scenario, Myo2 might act as a tethering

factor required for misfolded/aggregated proteins to become

linked to actin cables and/or deposition sites on the surface of the

vacuole since misfolded proteins have been demonstrated to

associate with membrane vesicles [17,43]. In addition, a recent

report shows that misfolded Ubc9ts proteins form puncta called Q-

bodies that are associated with ER [30]. However, it should be
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noted that Ubc9ts-Q-bodies move in an actin-cable-independent

(but energy-dependent) manner suggesting that these structures

are not themselves associated with actin. The apparent difference

with respect to actin-association of Ubc9ts Q-bodies and Htt103Q

foci is interesting and may suggest that different misfolded proteins

are sequestered to different spatial locations. Another possible

reason for the different results is the use of different protocols;

whereas Htt103Q readily aggregate upon its production Ubc9ts

aggregation is triggered by elevating the temperature, a protocol

that disrupts actin cables. Also, while Ubc9ts Q-bodies move in an

actin cable-independent manner [30], it is not clear if their

subsequent progression to IPOD/JUNQ inclusion sites require

functional actin cables or not since the dynamics, morphology and

inheritance of cortical ER (which the Ubc9ts Q-bodies associate

with) have been linked to actin cytoskeleton components [53–55].

Elucidating the exact cytological, biochemical, and genetic nature

of stress foci, Q-bodies, peripheral aggregates, and IPOD/JUNQ

inclusions and their relevance for different aggregate reporters

appears an important task for future research.

It has recently been shown that aggregate accumulation during

replicative aging of mother cells follow a delineated path; virgin

and young cells display no protein aggregates, middle-aged mother

cells harbor one to two protein inclusions, first JUNQ then also

IPODs, while old cells display, in addition to JUNQ and IPODs,

multiple peripheral aggregates resembling stress foci [56]. It will be

interesting to learn to what extent these foci are connected to

Cmd1/Myo2 and the actin cytoskeleton and if such associations

are actually a cause of aging. We envision that the tethering of

multiple aggregates will disturb actin cable-dependent trafficking

processes and eventually cause a complete collapse in the physical

integrity of the actin cytoskeleton. In addition, the new and

previously unknown genetic interactions between SIR2 and

essential genes recorded herein points to additional Sir2-related

functions of potential relevance for life span control. Specifically,

since Sir2 buffers against deficiencies in microtubule/spindle pole

body and chromosome/sister chromatid segregation functions, it is

tempting to speculate that the diminishing level/activity of Sir2

observed in aging cells [57] leads to problems also in performing

proper chromosome/nuclei segregation. Further studies appear

warranted to elucidate how this sirtuin is mechanistically buffering

against defects in these essential functions and how they might

relate to sirtuins acting as gerontogenes.

Materials and Methods

Yeast strains and growth conditions
Yeast strains used in this study are listed in Supplemental Table

S1. The Yeast conditional temperature-sensitive (ts) collection of

essential genes for the SGA analysis was a gift from Prof. Charles

Boone. Yeast cells were grown in YPD or synthetic drop-out

media with antibiotics added as indicated.

SIR2 Synthetic Genetic Array (SGA) analysis using the
conditional temperature-sensitive (ts) collection of
essential genes

The SIR2 (ts) SGA analysis was performed in duplicates as

described [28]. The screen was run in the 1536-spot format using

a SINGER ROTOR HDA Robot (Singer Instrument Co. Ltd.).

Hits with the highest statistical probability to be true interactions

were confirmed by microcultivation experiments in triplicate at 30,

34, and 38uC using the Bioscreen C system (Labsystems Oy,

Helsinki, Finland). The optical density was measured every 30

minutes for 72 hours. The LSC (Logarithmic Strain Coefficient)

values of growth rates were calculated and scored as described

[28]. The heat map was made using TreeView [58] and Ospery

1.2.0 [59] was used for SIR2 essential gene network analysis. The

physical interactions between SGA hits were obtained based on

the BioGRID interaction database [60].

Fluorescence microscopy
A Zeiss Axiovert 200 M fluorescence microscope was used to

obtain images using GFP, Cy3 and DAPI channels. The ImageJ

plugin ‘‘Iterative deconvolve 3-D’’ was used for all deconvolution

images.

HttQ103-GFP expression and aggregation retention
efficiency assay

Cells containing the pYES2-HttQ103-GFP plasmid were grown

at 30uC to exponential phase (OD600 about 0.5) in YNB-URA 2%

raffinose. Htt103Q-GFP expression was induced by adding

galactose to a final concentration of 2%. After 4 hours at 30uC
cells were washed and resuspended in 1.5 ml Buffer P (10 mM

NaH2PO4, 150 mM NaCl, 2% galactose; pH 7.2). All cells present

during the expression of Htt103Q-GFP were marked by staining

the cell wall components a-mannopyranosyl and a-glucopyranosyl

with 0.2 mg/ml concanavalin A Alexa Fluor 647 (Invitrogen) for

30 minutes at room temperature. The cells were then washed in

Buffer P, resuspended in YNB-URA with 2% glucose, which will

switch off the Htt103Q-GFP expression, and grown at 30uC for

one budding event. This makes it possible to distinguish between

concanavalin A stained daughter cells present during Htt103Q-

GFP expression and daughter cells produced subsequent to

Htt103Q-GFP expression. Cells were fixed in 3.7% formaldehyde

and segregation of aggregates was analyzed using fluorescence

microscopy. The segregation assay of ts-alleles were performed in

the same way but without concanvalin A staining. Cells were

grown at 22uC to exponential phase, followed by induction and

budding at different temperatures (26uC for sec18-1 and sec53-6,

28uC for cmd1-1 and 32uC for myo2-14).

Removal and retention assay of heat induced aggregate
using concanavalin A staining

The retention efficiency assay was performed as described [14]

with concanavalin A staining (as described above) before the heat

shock treatment. Aggregate retention and removal was distuin-

guished upon image analysis. Retention is determined as the

percentage of aggregate-containing buds of the total number of

buds generated from an aggregate-containing mother cell after the

heat shock treatment (buds free of conA); Removal efficiency is

determined as the perecentage of aggregate-free buds of the total

number of buds already existing before heatshock; i.e. stained with

conA. More than 300 budding events were quantified for each

strains.

Statistical analysis of aggregate segregation as a function
of the generation time

All statistical calculations were done in R-3.0.0 (www.r-project.

org). Regression analysis was performed and showed that there is

no statistically significant difference at p,0.05 to test that whether

there is a correlation between ‘relative generation time’ and

‘deviation in asymmetry’.

mHtt103Q stability measurement
The in vivo expression of mHtt103Q-GFP protein was induced

by galactose addition to yeast cells in mid-exponential phase

(OD600 = 0.5) grown in media with 2% raffinose. 10 mg/ml of

cycloheximide (CHX) was added into the culture after 3 hours of
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induction to stop translation. Cells were continued to be cultured

at 30uC with shaking. Aliquots were then taken and fixed at 0, 1, 2,

3, 4 and 12 hours after the addition of CHX. GFP signal intensity

for each sample was quantified by flow cytometry (FACS Aria, BD

equipment). 10000 events were counted for each sample. A cut-off

value was picked based on an un-induced control. Stability is

measured as mean signal intensity from Htt103Q-GFP aggregates

as a function of time after inhibition of protein synthesis by adding

CHX.

Aggregate inheritance after increasing generation times
by cycloheximide

Cells containing the pYES2-HttQ103-GFP plasmid were grown

at 30uC until OD600 reached approximately 0.5 in SC-URA +2%

raffinose. The expression of Htt103Q-GFP was induced by adding

2% galactose for 4 hours at 30uC. Cells were then stained with

ConA as described above. The cell density was adjusted to

OD600 = 0.5. The cells were divided into 3 groups and recovered

at 30uC for different times until the cells grow to the same optical

density value as the untreated control with different concentrations

of cycloheximide. Further expression of HttQ103-GFP was

inhibited by adding 2% glucose to the medium during bud

formation. The cycloheximide treatment was performed as

follows: In the untreated group, no cycloheximide was added

during the budding period and the cells were recovered for

4 hours at 30uC to let the cells generate new buds and grow to a

OD600 reaching 0.8. In the two cycloheximide treatment groups,

0.05 or 0.1 mg/ml cycloheximide were added to the cell cultures

and grown at 30uC until OD600 reaches the same value (0.8) as in

the untreated control group. Then cells were fixed in 3.7%

formaldehyde and budding events with newly generated buds were

analysed for aggregate inheritance using a Zeiss fluorescence

microscope.

Western blot
20 mL OD600 = 0.7 Yeast cells were collected after heat shock

and recovery then resuspended in 800 ml 0.1 M NaOH for 5

minutes (room temperature) and then pellet. The cells were boiled

for 3 minutes in 125 ml lysis buffer (50 mM Tris, pH 7.4, 5 mM

EDTA, 5 Mm NEM, 1% SDS) with protease inhibitor (Roche,

11697498001). The supernatant was mixed with equal amount

laemmli buffer and heated at 95uC for 3 minutes. Denatured

proteins were loaded onto NuPAGE Novex 10% Bis-Tris Gels

(Invitrogen, NP0315BOX) and transferred to PVDF membranes

to perform western blotting. Antibody to GFP (Roche,

11814460001) and pGK (Invitrogen, 459250, as loading control)

were used in this study. After western blotting, the membranes

were scanned by Odyssey Infrared Imaging System and quantified

by Odyssey 2.1 software. Fold ratios were calculated based on

three biological repeat experiments.

Solubility assay
Solubility assays were carried out as described in [61]. Same

volume of protein solution of each sample was loaded on precasted

SDS-PAGE gels (Life Technologies). For testing heat-induced

aggregates, the gel was then stained by Coomassie Brilliant Blue

and scanned with a GS-800 Calibrated Densitometer (BioRad).

For Htt-103Q-GFP expressing cells, the Htt-103Q-GFP protein

was detected by Western blotting with mouse anti-GFP monoclo-

nal antibody (Roche). The scanned gels and Western membranes

were then quantified by ImageJ software. Relative ratio of soluble

and aggregated protein for each tested strain were then calculated

and plotted.

Thioflavin T staining
Thioflavin T staining of amyloid was performed according to a

protocol from [62] with minor changes. Cells were fixed in 50 mM

KPO4 (pH 6.5), 1 mM MgCl2, 4% formaldehyde for 10 minutes

and then washed three times with PM buffer [0.1 M KPO4

(pH 7.5), 1 mM MgCl2] and resuspended in PMST [0.1 M KPO4

(pH 7.5), 1 mM MgCl2, 1 M Sorbitol, 0.1% Tween 20]. Cells

were treated with 0.125 mg/ml Zymolase at room temperature for

15 minutes in the presence of 0.6% beta-mercaptoethanol.

Spheroplasted cells were washed once and then resuspended in

PMST and stained with 0.001% Thioflavin T for 20 minutes at

room temperature. After five times of washing with PMST, the

cells were observed under a Zeiss Observer Z1 microscope at CFP

channel for the staining.

Hsp104-Y662A-mCherry aggregate induction
Mid-log phase cells (OD = 0.5) were incubated at 42uC for 10

minutes and then 30uC for 30 minutes. These cells were then fixed

with 3.7% formaldehyde and washed twice with PBS (pH 7.4) and

stored for microscopy.

Quantification of co-localization and aggregate
morphology

At least 100 cells with both visible structures (formed by GFP-

tagged proteins) and red aggregates (formed by Hsp104-Y662A-

mCherry or Htt103Q-mRFP) were analyzed. Among them, cells

with any overlapping green and red signals were considered as

cells with co-localization, the percentage of which were then

calculated. Z-stack images were used for aggregate morphology

quantification and more than 100 cells showing aggregates were

quantified. Cells were divided into 3 classes based on the number

of aggregates in the cell (Class 1, cells with 1 aggregate; Class2,

cells with 2 aggregates; Class 3, cells with 3 or more aggregates).

Aggregates were counted throughout all Z-stacks.

Actin depolarization analysis
Actin depolarization was quantified according to Ho et al. [42].

All budding events that have a small or medium bud were counted

for number of actin patches in the mother cells. Mother cells

bearing more than 6 actin patches were counted and the

percentage of them over all mother cells were calculated and

plotted.

Super-resolution three-dimensional structured
illumination microscopy (3D-SIM)

Cells carrying Hsp104Y662A-mCherry were incubated at 42uC
for 10 minutes and then 30uC for 10–20 minutes. And cells with

Htt103Q-GFP was induced by adding 2% galactose for 4 hours at

30uC. Then cells were fixed with 3.7% formaldehyde and washed

twice with PBS (pH 7.4). Actin cytoskeleton was stained using

Alexa Fluor 568 Phalloidin (Ivitrogen, A12380) as described in the

manual. Cells expressing both Abp140-3GFP and Hsp104Y662A-

mCherry were heat treated as above. For super-resolution three-

dimensional structured illumination microscopy, the ELYRA PS.1

LSM780 setup from Zeiss (Carl Zeiss, Jena Germany) was used.

3D-SIM images of the protein aggregates (Hsp104Y662A-GFP) and

actin cytoskeleton (Alexa fluor 568 phalloidinor Abp140-3GFP)

were taken with 1006/1.46 Plan-Apochromat oil-immersion

objective with excitation light wavelengths of 488 nm and

561 nm. Z-stacks with an interval of 100 nm were used to scan

the whole yeast in 3D-SIM. For acquisition and super-resolution

processing and calculation as well as for 3D reconstruction, the

Zen2011 software (Carl Zeiss, Jena Germany) was used. The
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ELYRA System was corrected for chromatic aberration in x-, y-,

and z-directions using multicolor beads, and all obtained images

were examined and aligned accordingly.

Supporting Information

Figure S1 Distribution in the number of protein aggregates

(Hsp104-GFP) per cell in wild type (orange) and sir2D (red)

populations. The average number of aggregates per cell was 11.88

and 11.4 in the wild type and sir2D mutant, respectively. Average

values are calculated from 300–400 cells. The statistical signifi-

cance of observed differences was determined with the two-tailed

U-test. P-values are indicated in the figure. (Related to Figure 2E).

(TIF)

Figure S2 Representative images showing Hsp104-GFP aggre-

gates (bottom panel) in the wild type (his3D) and ts mutant cells

tested. A&B. Mutants were tested in 2 separate sets of

experiments. Bright field images are showed in the upper panel.

Scale bar = 5 mm. (Related to Figure 4).

(TIF)

Figure S3 Hsp104Y662A-mCherry aggregates co-localize with

some proteins encoded by essential genes required for asymmet-

rical aggregate segregation. As shown, some Cmd1-GFP (74.4%,

tope panel) or Myo2-GFP (56.6%, second panel from top)

structures co-localize with Hsp104Y662A-mCherry aggregates.

The co-localization of Sec18-GFP and Hsp104Y662A-mCherry

aggregates can be observed in only about 16.8% of cells (third

panel). Sec53-GFP structures overlaps with some Hsp104Y662A-

mCherry aggregates (82.7%). Scale bar = 5 mm. (Related to

Figure 5).

(TIF)

Figure S4 Cortical and cytoplasmic Rtn1-GFP signals show

partial overlap with Hsp104Y662A-mCherry and Htt103Q-

mRFP aggregates. Scale bar = 5 mm. (Related to Figure 5).

(TIF)

Figure S5 The hsp42D mutant displays increased number of

cells with a single Juxtanuclear-localized aggregate. The nucleus

was visualized by DAPI staining. Values are calculated from 100–

200 cells. (Related to Figure 5).

(TIF)

Figure S6 3D-SIM images of Hsp104Y662A-GFP-harboring

cells stained with Alexa fluor 568 Phalloidin. Blue arrows indicate

where Hsp104-associated aggregates (green: Hsp104Y662A-GFP)

are lining up along actin cables (red: Alexa fluor 568 phalloidin)

and the zoomed region shows that in some instances aggregates

are wrapping around the cable (yellow arrows). Scale bars in the

whole cell image = 0.5 mm, scale bars in zoomed images

= 0.2 mm. (Related to Figure 6 C, D).

(TIF)

Table S1 Genotypes and sources of yeast strains used in this

study (related to Materials and Methods).

(DOCX)

Table S2 Genetic interactions identified in the SIR2 ts SGA

screen (related to Figure 3).

(DOCX)

Movie S1 3D-SIM Z-stack movie of protein aggregates and the

actin cytoskeleton (related to Figure 6 C,D).

(AVI)
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