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Abstract. Trampolines can be found in many gardens and also in some playgrounds.
They offer an easily accessible vertical motion, including free fall. In this work, the
motion on a trampoline is modelled by assuming a linear relation between force and
deflection, giving harmonic oscillations for small amplitudes. An expression for the
cycle-time is obtained in terms of maximum normalised force from the trampoline
and the harmonic frequency. A simple expression is obtained for the ratio between
air-time and harmonic period, and the maximum g-factor. The results are compared
to experimental results, including accelerometer data showing 7g during bounces on a
small trampoline in an amusement park play area. Similar results are obtained in a
larger garden trampoline and even stronger forces have been measured for gymnastic
trampolines.

(This is an author-created, un-copyedited version of an article published in Physics
Education 50 64-70 (2015). IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from it. The Version
of Record is available online at doi:10.1088/0031-9120/50/1/64.)

1. Introduction

Where do you experience the largest forces in an amusement park? Amusement park

standards allow rides that make the rider feel up to 6 times heavier than normal,

i.e. 6g, although many modern roller coasters stay well below 5g. As the Liseberg

amusement park in Gothenburg [1] recently asked it’s Facebook followers to guess which

rides involves the largest forces, it was hardly surprising that the newer roller coasters

and a free fall ride were the favourites. However, larger forces - up to 7g - were in

fact encountered in the small trampoline found in the children’s playground area at

Liseberg (the ”Rabbit Land”). Similar data have also been obtained in a round domestic

trampoline, such as the one shown in figure 1, where a spiral toy is used to provide a

visual illustration of the forces on the user. (The same toy has been used e.g. to illustrate
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Figure 1. A spiral toy used as accelerometer during a trampoline jump. Note how
the spiral in the toy is contracted while the jumper is in the air, and expanded at the
bottom of the jump. Also note how far down the trampoline is displaced in the last
photo.

forces in a swing [2]). When the feet are not in contact with the trampoline, the user

experiences free fall (0g), and the spiral in the toy is contracted. At the bottom of a

the jump, when the trampoline bed experiences the largest displacement, a large force

is exerted on the user, as illustrated by the extension of the spiral in the toy. Below, we

first analyse the motion during bounces in a trampoline, and then compare the results

to data from the trampoline in Liseberg’s Rabbit land.

2. From harmonic oscillator to free fall

For a simplified analysis, we neglect energy losses, both in contact with the trampoline

and in the air. We consider a person with mass m jumping on a trampoline. As long

as the person is in contact with the trampoline, it exerts an upwards force, given by

F (z) = −kz, where k is the ”spring constant” of the trampoline, and z is the vertical

displacement from the rest position of the trampoline (positive is upwards). When

the person stands still, the force from the trampoline exactly counteracts gravity, i.e.

kz = −mg. For small oscillations around this equilibrium position, starting at the

lowest point at time t = 0 the motion can be described by z(t) = −mg/k − A cosωt,

where ω2 = k/m. We can thus write

z(t) = −g/ω2 − A cosωt

Velocity and acceleration are obtained by taking derivatives, giving

v(t) = Aω sinωt
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Figure 2. Theoretical values for the elevation, speed and normalised force during a
jump reaching 3g. The green line represents acceleration, the blue line velocity, and
the red line displacement. The data are presented using dimensionless quantities.

a(t) = Aω2 cosωt

The period for small oscillations is given by T0 = 2π/ω. As long as Ag/ω2 the user

remains in contact with the trampoline bed and the user’s motion is sinusoidal on

the z-axis. For larger amplitudes, the separation of the user from the trampoline bed

commences he force increases beyond 2g. As the force increases the user experiences

longer and longer periods of 0g (air-time).

Like children on a swing, the trampoline user is continually converting energy to

reach incrementally higher with each oscillation. While the feet are in contact with the

trampoline, the users can add energy to the system, by raising the centre of mass when

the forces are largest, e.g. by stretching the legs or swinging the arms. While the feet

are in contact with the trampoline, small changes in the body position allows the user

to lift the centre of mass and thus increase the maximum potential energy on successive

jumps. The details of the movements will not be considered here, but examples can be

found e.g. in movie recordings from the 2012 Olympic games [3]. The potential energy

is then converted to kinetic energy as the user falls and this kinetic energy in converted

into to spring energy as the feet make contact with the trampoline and the user stretches

the trampoline bed in a downward direction. As the user falls from greater and greater

heights the downward displacement of the trampoline bed becomes larger, causing larger

forces from the trampoline on the user. During the contact time, the force from the

trampoline makes the speed rapidly decrease to zero at the bottom dead centre, and

then increasing again until the user passes the equilibrium position.
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Figure 3. Theoretical values for the displacement, velocity and normalised force
during a jump reaching 3g, 5g and 7g. The green line represents acceleration, the blue
line velocity, and the red line displacement.

Since the whole body accelerates, every part of the body experiences strong forces

that are analogous to the forces of a stronger gravitational field. These forces are

commonly referred to as g-forces. The trampoline doesn’t just provide coordination

and exercise for the users heart, leg muscles, core strength, long-bones and drain the

poisons from the lymphatic system, the elevated gravitational force is applied to each

and every cell of the user’s body. Each cell is cycled from 0g to more than 5g each time

the trampoline user cycles from weightless to a gravitational field 5 times that of earth.

This cycling ‘exercises’ each and every cell of the user’s body.

If the trampoline user experiences Ng, the maximum upward force from the

trampoline can be written as Nmg. This corresponds to a maximum downward

deflection zN = −Nmg/k, and an amplitude A = (N − 1)mg/k = (N − 1)gω2.

Let us now consider in more detail a jump, starting at the lowest point. The motion

during the first part of the jump when the jumper is in contact with the trampoline can

still be written as,

z(t) = −g/ω2 − A cosωt = −g(1 + (N − 1) cosωt)

ω2

However, since the trampoline does not pull the jumper downwards, this expression

holds only as long as z(t) < 0, i. e. for ωt < arccos(−1/(N − 1)). After this time, the

displacement becomes positive and only gravity acts on the trampoline user, who will

be in free fall until touching the trampoline again. The user then leaves the trampoline
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Figure 4. Dependence of the bouncing period for different values of the maximum
force, given as a ratio to the harmonic oscillator period, T0, for amplitudes smaller
than mg/k (blue). The green line gives the time in contact with the trampoline. Also
shown (red) is the ratio between air-time and cycle-time.

with a speed

vt = Aω sin(arccos
−1

N − 1
) = (N − 1)

mg

k

√
k/m

√
1− 1

(N − 1)2

which can be rewritten as

vt = g
√
N2 − 2N/ω

This velocity also gives the maximum height during the jump: h = v2/2g. Lighter

jumpers have a higher ω =
√
k/m and will reach a lower velocity for the same

acceleration at the bottom of the jump. Similarly, a stiffer trampoline will give lesser

speed for the same maximum acceleration. Neglegting energy losses, the jumper will

land again after a time

tair = 2
√
N2 − 2N/ω = T0

√
N2 − 2N/π

Figure 2 shows the displacement, speed and forces during different parts of the

bounce for a maximum force of 3g. Figure 3 shows the elevation, speed and force during

the motion for a maximum force of 3mg, 5mg and 7mg. The time in contact with the

trampoline during a full cycle is given by

tc = 2 arccos(−1/(N − 1))/ω = T0 arccos(−1/(N − 1))/π

For high bounces (large N values), the contact time during a cycle approaches T0/2.
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Using the analysis above we find en expression for the total time for one period on

the trampoline:

T = tc + tair = T0
arccos(−1/(N − 1)) +

√
N2 − 2N

π
Figure 4 shows how the ratio T/T0 for the bounces depends on the maximum force. The

ratio of airtime to cycle-time q = tair/T grows with for high bounces and is also shown

in figure 4.

Figure 5. Accelerometer data for bounces on the 1.3m circular trampoline at Liseberg
(sampling frequency 25 Hz). In addition, data for a gymnastic trampoline (sampling
frequency 100 Hz) has been included, exceeding 9g, which clearly exhibit the damping
and how cycle-time increases with the g-factor. The longer period for around 7g in the
second graph also shows that the ratio k/m was smaller for that case.

3. Experimental results

As preparation for Liseberg’s question about the largest g-force, it was decided to

perform a measurement also on the small trampoline (1.3 m diameter) in the children’s

play area. The data were collected using the Wireless Dynamic Sensor from Vernier

[5] placed in a data vest. Using the accompanying program Logger Pro [6], the data

could also be synchronised with a movie recording of the jump, as shown in the video

abstract accompanying this paper. Figure 5 shows the force acting on a trampoline user

during bouncing, both in the small trampoline at Liseberg and in a larger gymnastics

trampoline.

It is worth noting that, in spite of the name, an accelerometer does not measure

acceleration, but instead the vector f = (a− g)/|g|. Thus, for free fall, when a = g,



Free fall and harmonic oscillations - analysing trampoline jumps 7

Figure 6. Details of the accelerometer data for the trampoline at Liseberg shown in
figure 5. The red curve shows the magnitude of the vector sum of the components,
whereas the blue and green curves show the z and x components. The negative x in
the beginning of the contact time indicates the user leaned somewhat forward, whereas
the negative z values after the contact time may have been obtained by pulling the
knees up. Data were collected at 0.04 s intervals (25 Hz).

it becomes zero. As expected, the accelerometer data are essentially zero g when the

jumper is in the air, (apart from user movement while air-bourne during the jump). The

strongest force acts at the lowest point, where the trampoline mat is most extended.

The surprising result was that the largest g-force in the amusement park are to be

found in the children’s area: around 7g. To compare the results with the theoretical

analysis above, the resonance frequency for small oscillations is needed. Thus, a few

small bounces were performed, where the feet remained in contact with the trampoline.

Figure 6 shows in more detail a few of the high bounces, as well as the final small

bounces. The ratio between these two periods should be directly related to the g-force,

as seen in figure 4.

4. Comparison between theory and experiment

From figure 6 we can extract the cycle-times for small oscillations and for the highest

bounces. We find that the ratio between these two cycle-times corresponds to a

maximum force of about 6.2mg. In figure 7 the theoretical graph is superimposed on the

experimental data. The accelerometer data, however, shows more than 7g, which can

possibly be accounted for by the bouncer giving an extra push at the bottom. Vernier
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does not specify the quality of the data from the WDSS sensor beyond 6g [5], but the

relatively smooth data shown in figure 7 does not indicate any obvious problem.

The relation between bounce period and force shown in figure 4 can be used to

analyse e.g. the elephant bouncing in [7], where the video-analysis gave a period

T ≈ 2.2 s, with a contact time less than 0.3 s. For large accelerations, the contact time

is close to T0/2, giving T0 ≈ 0.6 s (although the period seems close to 1 s for the few

elephant bounces shown in the movie before the elephant leaves the trampoline.) This

ratio would correspond to a maximum force of over 11mg. Rhett Alain [7] concluded

for other reasons that the movie was a fake.

The relation shown in figure 4 can also be applied e.g. to the investigations of

different trampoline spring systems by Eager et al [4]. In that work, it was found that

the average ratio of air-time to cycle-time varied between 0.58 and 0.61 for the three

trampolines tested. The largest ratio corresponded to approximately 5g, slightly larger

that expected from the graph.

The analysis leading to the graph in figure 4 is based on the assumption that the

deflection on the trampoline is proportional to the force. However, for deflections that

are large compared to the trampoline dimensions, the linear approximation is less valid

[8]. This may account for the small differences found in the ratio obtained from Eager

et al [4] and in the experimental data shown in figure 7, which were collected for jumps

on the 1.3 m diameter trampoline in the amusement park.

Figure 7. Comparison between theoretical results and accelerometer data. Sampling
rate 25 Hz.

.
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5. Discussion

Motion on a trampoline combines two common text-book examples: The harmonic

oscillator and free fall. Whereas the free fall is independent of mass, the harmonic

oscillator frequency is not. The analysis of the motion opens possibilities for a discussion

of what variables influences the motion, and what variables are best suited for presenting

the results. Different trampoline stiffnesses and user masses can be combined into a

single variable, ω =
√

(k/m) or T0 = 2π/ω. The time dependence of displacement,

speed and acceleration can then be expressed in terms of ω or T0, combined with the

factor N characterising the maximum force from the trampoline. The maximum g-force

on the user can be obtained from the ratio of airtime during the bounce. Trampolines

are commonly available and more use should be made of them in physics and science

teaching. Studying motion upon the small trampoline at Liseberg will be included as

one of the possible activities during future physics days. The trampoline motion is

suitable for modelling, as well as successive refinement of the model, using e.g. video

analysis and accelerometer data.
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