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Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of
tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-
to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO2)].
Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides
of 10 μm) was constructed. Green’s function was used for diffusion calculations and Michaelis-
Menten’s kinetics to manage oxygen consumption. The model was tuned to approximately repro-
duce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fit-
ted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution.
DOCs were simulated with three variables at three settings each (blood velocity, vessel proxim-
ity, and inflowing pO2), which resulted in 27 combinations of conditions. To create a model that
simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sam-
pled with trilinear interpolation in the dataset from the first simulation. Six correlations between
blood velocity, vessel proximity, and inflowing pO2 were hypothesized. Variable models with cor-
related parameters were compared to each other and to a nonvariable, DOC-based model to evalu-
ate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor
sizes.
Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to gener-
ate normal or log-normal oxygen distributions, with a cut-off at zero. The pO2 distributions simulated
with the six-variable DOC models were quite different from the distributions generated with the non-
variable DOC model; in the former case the variable models simulated oxygen distributions that were
more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions
became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen
distributions. The six different models with correlated parameters generated three classes of oxygen
distributions. The first was a hypothetical, negative covariance between vessel proximity and pO2

(VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and
pO2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity
and pO2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than
the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC
model, and the larger the tumor, the greater the similarity between the two models. For all simula-
tions, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The
absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed
by the UP and VPO-C scenarios.
Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and ra-
diation response for various biological parameter values. The analysis showed that the VPO-C sce-
nario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhib-
ited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach
might be valuable for qualitative analyses of factors that affect oxygen distribution as well as anal-
yses of specific experimental and clinical situations. © 2014 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1118/1.4892386]
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1. INTRODUCTION

It is well-established that tumor oxygenation influences the
outcome of radiation treatment, due to the oxygen enhance-
ment described by Crabtree and Cramer1 and Mottram2

around the 1930s. In clinical studies, it has been demonstrated
that a low hypoxic fraction in the tumor is associated with im-
proved overall survival after radiotherapy.3, 4 Furthermore, the
outcome of radiation treatment can be improved by enhancing
the oxygen content of the tumor with hyperbaric techniques
and with drugs such as nitroimidazoles, which mimic oxy-
gen enhancement effects after irradiation.5, 6 However, even
though meta-analyses of randomized clinical trials that com-
pare the additional effect of the above treatments to ordinary
radiation treatment demonstrate improved outcome, the im-
pact of these findings in daily practice has thus far been very
limited.7 The optimal timing and dosage of the respective
agents and modalities used in tumor hypoxia modification re-
main to be established. There is also considerable variability
in the hypoxic fraction among patients and in its correlation
to the therapeutic outcome.8, 9 With the recent development
of noninvasive hypoxia imaging techniques, such as positron
emission tomography (PET) and magnetic resonance imaging
(MRI), the ability to characterize the distribution of hypoxia
in tumors has now improved.10–12 However, the interpretation
of measurements of hypoxia, or more generally, oxygen ten-
sion must improve if this information is to be used in treat-
ment planning and for predictions of therapeutic response.

In a previous modeling study, it was shown that neither
an average oxygen value nor information about the hypoxic
fraction of a tumor was sufficient to estimate the required ab-
sorbed dose for a tumor cure. To accurately estimate the re-
quired absorbed dose, the entire oxygen distribution must be
taken into account.13 However, simulations of the oxygen dis-
tribution are too complex to be efficiently run on common
platforms; therefore, simulation models tend to be simpli-
fied in different ways. One simplification is to use a relevant
mean oxygen content in the blood vessel, often 40 mm Hg.
From that, oxygen diffusion into the tumor tissue can be sim-
ulated for different blood vessel arrangements.14 However, it
has been shown that, with increasing tumor mass, the mean
oxygen tension decreases15 and the necrotic fraction simul-
taneously increases.16 To explore variations in tumor oxy-
gen tension and necrotic fraction with a modeling approach,
continuous oxygen consumption along blood vessels must be
included.17 However, that modeling approach lengthened the
simulation time (using the CPU of a single up-to-date work-
station) beyond that feasible for an effective theoretical in-
vestigation in macroscopic tumors with complex interactions
between biological parameters. Examples of these parameters
are the inflowing oxygen tension, blood velocity, and vessel-
to-vessel proximity (vessel proximity). To overcome this lim-
itation, a Monte Carlo-based model was constructed to fa-
cilitate the effective theoretical analyses of how variations
in biological parameters impact the oxygen distribution and
radiosensitivity of different-sized tumors. This facilitation is
achieved through rapid sampling of previously generated dis-
tributions in order to create correlated parameter scenarios.

The use of these scenarios reduces the requirement of simu-
lating every combination individually.

The vascular supply that infiltrates tumors comes from
the existing surrounding blood vessels. However, because
all growing tumors eventually outgrow the original vas-
cular supply, vascular expansion occurs which leads to
chaotic structures, dysfunctional vessels, inadequate lym-
phatic drainage, increased interstitial pressure, decreased per-
fusion, hypoxia, and necrosis.18 Hypoxia is one of the triggers
of angiogenesis.19, 20 It is also known to decrease the apoptotic
potential of tumor cells21, 22 and can initiate vessel pruning.23

Due to the complex interactions among these dynamic param-
eters, the vascular tree associated with a large tumor becomes
heterogeneous in architecture and efficiency, and the oxygen
distribution becomes unpredictable. However, a known char-
acteristic of the chaotic angiogenesis that occurs in growing
tumors is that inflowing oxygen tension varies around the tu-
mor, and the vessel-to-vessel proximity and blood flow vary
within the tumor.16, 24, 25

In a previous study, it was observed that oxygen distri-
bution characteristics may provide useful information on the
properties of tumor vasculature.13 The present study aims to
expand on our earlier work by investigating the effects that
different parameters of vasculature and blood supply have on
the oxygen distribution, and in turn, how the oxygen distribu-
tion might influence the radiosensitivity of the tumor. In par-
ticular, a novel Monte Carlo model is used to estimate oxygen
distribution and to analyze different correlations between the
oxygen tension of inflowing blood, the vessel proximity, and
the blood velocity. Also, the effects of differently correlated
parameters on oxygen distribution are compared.

2. METHODS AND MATERIALS

In this study, the renal cell carcinoma (RCC) angiogram
[Fig. 1(a)] provides an example of a typical tumor often de-
picted in simplified models; it is spherical, has vessels leading
from the surface toward the center, and has a necrotic core.
The image demonstrates variable vessel-to-vessel- proxim-
ity (vessel proximity), but does not provide reliable informa-
tion regarding the efficiency of the vessels because the con-
trast agent was administered ex vivo, under high pressure.26

Briefly, the surgically removed kidney tumor specimen was
perfused with micronized barium sulfate suspensions and
fixed in formaldehyde. Then, 1 mm slices were cut, inserted
into an envelope of Kodak X-omatic film, and exposed in a
mammograph. The exposed film was developed with conven-
tional methods.

Two different models were constructed based on depth
oxygenation curves (DOC). The first was a simplified model
with no variation in the three biological parameters: blood ve-
locity, vessel proximity, and inflowing oxygen tension. The
RCC image, with its necrotic center, was used to qualita-
tively determine the parameter values; thus, constant values
were used which were not necessary valid for the RCC as
these cannot be known, but they produced a similar oxy-
gen penetration (judging from the necrotic fraction, which of
course in turn depends on the necrosis threshold used). The
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FIG. 1. Simplified tumor oxygenation model. (a) Renal cell carcinoma angiogram; bright, contrast-enhanced vessels demonstrate variability in vessel proximity.
(b) Depth oxygenation curve model shows oxygenation in a slice of tumor tissue, radius 30 mm; scale shows color-coded oxygenation levels; black: no oxygen
(0 mm Hg); white: 60 mm Hg oxygen. (c) Oxygen tension field that corresponds to the depth of oxygen model shown in (b). The simulation parameters used to
generate this data were: constant blood velocity: 2000 μm/s; vessel proximity: 50 μm; inflowing oxygen tension: 80 mm Hg. The pO2 pressure decreases as a
biexponential function (R2 = 0.95) of radial distance to the tumor center.

second model used similar parameter values, but with vari-
ability added by random selection of parameter values from a
normal distribution.

2.A. Creation of the DOC including tumor geometry

A voxel-based tissue model containing parallel capillaries
with square cross sections (sides of 10 μm) and oxygenated
blood entering the vessels was constructed. This achieved a
DOC that extended 30 mm into the tissue; i.e., the radius
of the RCC [Figs. 1(b) and 1(c)]. In this simulation geom-
etry, the capillaries were centered on the nodes of a two-
dimensional grid. For the oxygen to diffuse over the entire
distance, the grid size (i.e., the vessel proximity) was set to 50
μm—equivalent to a vascular fraction (VF) of 0.08, the blood
moved at a velocity of 2000 μm/s,27, 28 and the initial pO2 was
80 mm Hg. The oxygen tension of the blood was assumed to
be homogeneous across the vessel. Diffusion was modeled by
repeated convolution of the tissue oxygen tension field matrix
with a Gaussian diffusion kernel (Green’s function of the dif-
fusion equation)13 with a time interval of 0.1 s. The maximum
oxygen consumption was assumed to be 15 mm Hg/s,29, 30 and
the Michaelis-Menten consumption model13 was used to ad-
just the oxygen values between each convolution. Tabulated
hemoglobin data31 were used to model equilibrium between
the pO2 of the blood and the hemoglobin saturation.

Due to variations in the distance between individual tissue
voxels and nearby vessels, the oxygen tension field across the
plane perpendicular to the vessels varied slightly. These vari-

ations, however, were small compared to other intratumoral
variations, and they rapidly decreased with distance from tu-
mor surface. The values could therefore be averaged across
the plane at each depth when the DOC was generated.

2.B. Parameterization of the DOC curves

The oxygen depth curves were used to create a variable tu-
mor oxygenation model (variable DOC model), in which the
oxygen level decreased with distance from the tumor surface.
The parameter ranges were: intravascular pO2 (60, 80, 100,
mm Hg), blood velocity (1500, 2000, 2500 μm/s), and ves-
sel proximity (30, 40, 50 μm). Twenty-seven parameter com-
binations were simulated, fitted with biexponential functions
(R2-values were greater than 0.94, typically around 0.99), and
stored as separate DOCs. Figure 2 shows some of the data,
with tissue oxygen penetration depths shown at different oxy-
gen tension cut-off values.

2.C. The Monte Carlo method, geometry,
and sampling

In the variable DOC model, a Monte Carlo approach was
used to simulate the oxygen tension at specific points in a
spherical tumor inscribed in a cube. A random coordinate was
selected within the tumor and the shortest distance to the tu-
mor surface was calculated. An oxygen curve was selected
by sampling from three Gaussian distributions: one was the
pO2 centered at 80 with standard deviation (SD) 10 mm Hg,
the second was the blood velocity centered at 2000 (SD 250)
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FIG. 2. Depth of oxygen penetration into the tissue for pO2 cut-off: (a) 1 mm Hg, (b) 2 mm Hg, and (c) 5 mm Hg, versus vessel proximity and blood velocity.
The initial vessel pO2 was 80 mm Hg. The color bar indicates oxygen penetration depths from 0 mm (black) to 100 mm (white).

μm/s, and the third was the vessel proximity centered at 40
(SD 5) μm (corresponding to a VF of 0.125). All distribu-
tions were truncated at ±2 SD. The oxygen level of the tu-
mor coordinate was then determined by interpolation between
the oxygen curve functions for the distance between the tu-
mor surface and the coordinate. This procedure was repeated
10 000 times, and the pO2-values produced a pO2-distribution
representing the tumor.

2.D. The parameter coupling schemes used

The Monte Carlo model was used to compare the oxygen
distribution from the nonvariable DOC model (demonstrated
in Fig. 1) to six other distributions for tumors with radii of 5,
10, 20, and 30 mm. These distributions were generated with:
(1) uncorrelated parameters, (2) corr(pO2,blood velocity) = 1,
(3) corr(pO2, vessel proximity) = 1, (4) corr(blood velocity,
vessel proximity) = 1, (5) corr(pO2, vessel proximity, blood
velocity) = 1, and, finally, (6) corr(pO2, vessel proximity)
= −1. Here, corr represents the correlation coefficient, and
corr = 1 indicates that the parameters were selected from the
same position in their respective distributions (covariant) in
terms of the mean value and standard deviation. Corr = −1
means that the positions in one distribution were mirrored in
the other.

2.E. Response to irradiation

The oxygen distributions were converted to oxygen en-
hancement ratio (OER) distributions according to32

OER(pO2) = 1 + 0.81 · (pO2)0.616

1 + 0.324 · (pO2)0.616
. (1)

It was assumed that the cell density was 109 cells per cm3

of tumor tissue, and the radiation sensitivity parameters
(α = 0.02 and β = 0.002) were used to produce clinically-
relevant absorbed dose levels. The linear quadratic cell sur-
vival model was used to calculate the absorbed dose level at
a tumor control probability (TCP, the probability of killing
every cell in the tumor) of 0.99 (D99-value) for each distribu-
tion. This was done according to Eq. (2), where N is the total
number of cells in the tumor volume, D is the mean absorbed
dose, and OER is the oxygen enhancement ratio,32

TCP =
N∏

i=1

(1 − e−α·D·OERi−β·D2·OER2
i ). (2)

3. RESULTS

The simulations of the oxygen distributions began with the
nonvariable DOC model, and used constant values for the in-
flowing oxygen tension, blood velocity, and vessel proximity.
With this model, the induced necrotic fraction was simulated
by testing different parameter values and assuming an oxy-
gen tension level of 1 mm Hg for the induction of necrosis
(Fig. 1). This nonvariable DOC model generated an oxygen
tension that decreased strictly toward the tumor center [Figs.
1(b) and 1(c)]. With the simulations of tumors with radii of
5 and 30 mm, the oxygen tensions tended to have log-normal
distributions.

Adopting the MC approach with the variable DOC model,
variable values for inflowing oxygen tension, blood velocity,
and vessel proximity were included. With this model, most
of the oxygen tension distributions sampled [with the excep-
tion of corr(pO2, vessel proximity) = −1] displayed quite
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FIG. 3. Hypothetical biological model simulations, including the nonvariable DOC and six variable DOCs, with different correlations between the parameters
intravascular pO2, Vp, and Bv. (a) and (c) Relative volumetric pO2-distributions for a tumor with a radius of (a) 5 mm or (c) 30 mm; (b) and (d) cumulative pO2

distributions for a tumor with a radius of (b) 5 mm or (d) 30 mm.

different shapes from the distributions generated with the
nonvariable DOC model. The variable DOC model produced
distributions similar to the oxygen distributions measured in
vivo, with normal or log-normal profiles (Fig. 3).33–35 The
shapes of the six distribution-based curves and that of the non-
variation scenario varied and appeared to be more or less di-
vided into three groups:

(1) corr(pO2, blood velocity) = 1 and corr(vessel proxim-
ity, blood velocity) = 1;

(2) corr(pO2, vessel proximity) = 1 and corr(pO2, vessel
proximity, blood velocity) = 1; and

(3) corr(pO2, vessel proximity) = −1 and “No variation.”

These groupings are most clearly visible in the cumulative
pO2 distributions shown in Figs. 3(b) and 3(d).

The following three correlations were further studied and
will henceforth be referred to in terms of hypothetical bi-
ological models, to be described in Sec. 4. These are de-
fined as: the hypothetical uncorrelated parameter (UP) sce-
nario; the hypothetical vessel proximity oxygen positive
covariance (VPO+C) scenario, with the parameters corr(pO2,
vessel proximity) = 1; and the hypothetical vessel proximity
oxygen negative covariance (VPO-C) scenario, with the pa-
rameters corr(pO2, vessel proximity) = −1. The “No varia-
tion” (DOC) model was included for comparison.

Figure 4 shows the spatial distributions of oxygen pres-
sure from simulations with the nonvariable DOC model

Medical Physics, Vol. 41, No. 9, September 2014
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FIG. 4. Simulated spatial oxygen distributions in the central plane of a tumor
with radius 30 mm, displayed in a 128 × 128 matrix. Mean inflowing oxygen
tension was 80 mm Hg, vessel proximity was 40 μm, and blood velocity was
2000 μm/s. (a) The nonvariable DOC model; (b) the VPO-C model with a
surface pO2 SD = 10 mm Hg, a vessel proximity SD = 5 μm, and a blood
velocity SD = 250 μm/s; (c) the VPO+C model with the same SDs; (d)
profile lines showing the oxygen tension levels along the tumor diameter for
distributions (a)–(c).

[Fig. 4(a)] and two of the Monte Carlo scenarios: the VPO-
C [Fig. 4(b)] and the VPO+C [Fig. 4(c)]. In addition, the re-
spective profile lines [Fig. 4(d)] showed that the VPO-C sce-
nario produced smaller variations in oxygen tension than the
VPO+C scenario.

Figure 5 shows that the mean oxygen tension for all scenar-
ios steadily decreased with increasing tumor size. The lowest

FIG. 5. Mean pO2 for the nonvariable DOC model and three variable DOC
models, with different correlation scenarios. The mean tumor pO2 for each
scenario is shown for tumors with radii of 5, 10, 20, and 30 mm and interpo-
lated for intermediate sizes.

mean oxygen tension was observed with the VPO-C scenario,
and the highest was observed with the VPO+C scenario.

Figure 6 shows tumor hypoxic fractions for all scenarios.
The VPO+C scenario showed the largest hypoxic fractions,
and the VPO-C showed the smallest fractions. The results in-
dicated that the degree of hypoxic fraction was strongly de-
pendent on the oxygen tension threshold.

Figure 7 shows the tumor radiation sensitivity, in terms of
D99-values, for each simulated oxygen distribution as a func-
tion of tumor radius. The highest D99 values were observed
for the VPO+C scenario and the lowest values were observed
for the VPO-C scenario.

FIG. 6. Fractions of tumor hypoxia. The hypoxic fractions are shown for different oxygen tension thresholds, defined as (a) 1 mm Hg, (b) 2 mm Hg, and (c) 5
mm Hg. Hypoxic fractions are shown for different sized tumors with radii of 5–30 mm, simulated with models that represent different correlation scenarios.
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FIG. 7. D99 for tumors of different sizes. Different correlation scenarios
were used to simulate absorbed dose requirements.

4. DISCUSSION

A new Monte Carlo model for analyzing the impact of
relevant biological parameters on tumor oxygen distributions
was constructed. Our results demonstrated that the model was
robust and, within a reasonable time (about a minute on a
2.5 GHz Intel Core i5-2520M computer running 64-bit Mat-
lab), generated results for tumors of different sizes. The per-
formance of a numerical model such as this is dependent on
the number of calculations required, which is determined by
the time resolution in the simulations. A higher resolution
would lengthen the calculation time, and it would also require
higher spatial resolution due to the limited rate of diffusion;
thus, a smaller tumor size would be needed to complete the
simulation in the same time frame. Moreover, the use of short
time steps would require more knowledge about the dynam-
ics of the modeled processes. In essence, there is a model-
ing accuracy-performance trade-off that one must take into
account, but there is also a limit to how much accuracy is
required. This study focused on qualitative analyses. The as-
sumed distributions of the model variables were hypothetical
estimates that are likely to differ in clinical and preclinical sit-
uations. The assumed normal distribution of vessel proximity
could have been exchanged with a normally distributed vascu-
lar fraction, which would have given a slightly different result
because those properties are not linearly related.

The simulation was started assuming constant input pa-
rameters. This generated a DOC that strictly decreased to the
tumor center with spherical symmetry. This type of oxygen
distribution might be generated in tumors with perfectly bal-
anced angiogenesis; i.e., it would lack variation in all parame-
ter values. However, this perfectly symmetrical oxygen distri-
bution is seldom observed in preclinical and clinical studies;
instead a broader, somewhat skewed, bell shaped distribution
is commonly observed, such as those simulated with dynamic
parameter values.33–35 The grouping of the results from the
correlation study implied that it was not particularly impor-

tant whether the blood velocity was correlated to the other
parameters. In contrast, the models produced different results
when pO2 and vessel proximity were correlated, compared to
the results when they were not correlated. When vessel prox-
imity and pO2 had a positive covariance (VPO+C scenario),
they tended to work together, thereby increasing the variation
and broadening the distribution. When these parameters had a
negative covariance (VPO-C, scenario), they tended to oppose
each other, resulting in a more homogeneous distribution.

The latter combination, VPO-C, may have superior biolog-
ical relevance compared to the other scenarios. Two biological
phenomena might be represented by VPO-C, hypoxia-driven
angiogenesis,19 and self-regulation of vessel proximity.20

Hypoxia-driven angiogenesis begins with reduced oxygen
pressure, which suppresses the expression of cellular oxy-
gen sensors, prolyl-hydroxylase domain proteins (PDH 1-3).
The reduction in PDHs prevents the ubiquitination and degra-
dation of hypoxia inducible factors (HIFs). Thus, active HIFs
promote the transcription of hypoxia-related genes [such as
vascular epithelial growth factor, VEGF (Ref. 19] which
promote angiogenesis. These proangiogenic factors (such as
VEGF) stimulate angiogenesis, which results in an increase in
vessel proximity. Alternatively, the self-regulation of the ves-
sel proximity phenomenon is based on the fact that each ves-
sel is surrounded by a viable tissue volume that depends on
the penetration depth of oxygen and the metabolic activity of
the cells. A decrease in pO2 in the blood will lead to decreased
tissue oxygenation, followed by the induction of apoptosis in
the distant cells. The induction of apoptosis will reduce the
number of cells between blood vessels, and therefore, the ves-
sel proximity increases in oxygen-deficient areas.20

All of these variable scenarios had noticeable log-normal
distributions, similar to what was previously encountered.13, 33

However, judging from the tumor hypoxic fraction or necro-
sis, the nonvariable scenario appeared to be the most unlikely
to represent biology, because large tumors often harbor large
volumes of poorly oxygenated tissue.

In this hypothetical model with positive correlation be-
tween pO2 and vessel proximity (VPO+C), the hypothesis
was fairly speculative due to the limited data that are avail-
able to support this complex scenario. However, it is known
that hypoxia decreases the apoptotic potential, and thus, tu-
mor cells distant from the vessels will not undergo apoptosis,
as in the VPO-C scenario.35–37 When the oxygen tension is
sufficiently high in nearby vessels, the tumor cells can pro-
liferate, which would decrease the vessel proximity. In ad-
dition, this could also increase the mechanical pressure on
the vessels, which might cause acute hypoxia.23 Further de-
creases in oxygen tension would force the vascular endothe-
lial cells to undergo apoptosis, and this would result in a
further reduction in vessel proximity. Interestingly, the oxy-
gen distributions showed the greatest difference between the
VPO-C and the VPO+C models; this information might be
useful for future characterizations of tumors with PET and
MRI methods that enable visualization of tumor oxygen dis-
tributions. For example, tumors that represent the VPO+C
scenario would be expected to have higher vessel proximity
variation within the tumor tissue, as well as a more flattened
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oxygen distribution, compared to tumors that represent the
VPO-C scenario. The more peak-shaped VPO-C oxygen dis-
tribution might therefore be distinguishable by PET or MRI
methods, given the potential for PET- or MRI-characterization
of tumors as (VPO-C) radiosensitive. This might be useful
data for radiotreatment planning. However, flattened distribu-
tions, as produced by the VPO+C scenario (radioresistant)
and UP scenario (radiosensitive), will be more challenging to
distinguish by PET and MRI methods, due to the limited res-
olution of the camera systems. Also, flattened oxygen distri-
butions described previously34, 35 might be considered a com-
bination of the biological phenomena discussed above. The
possibility that PET and MRI methods can distinguish the dif-
ferent scenarios is of high interest for further studies.

In our simulations, the oxygen tension had a simple lin-
ear correlation to vessel proximity. However, in reality, this
correlation would probably not be linear. In this study, our
purpose was to qualitatively compare two extreme opposite
views of dynamic vessel arrangements during tumor growth.
Our results showed a clear difference between the scenarios,
which highlighted the need for applying more detailed, non-
linear correlation models to the investigation of these phe-
nomena. Recently, Secomb et al.23 performed a theoretical
dynamics study on the complexities of building vessel struc-
tures during angiogenic conditions. Their approach provided
important information about the angiogenic process at a local
level of resolution. Combining local tissue modeling with our
more global approach is highly important for extending the
modeling of oxygen tension to different sized tumors and for
analyzing in detail the different biological theories of vessel
formation.

Oxygen levels within tumors were shown to be an
important factor in the therapeutic outcome of radiation
treatments.4, 5, 38 Therefore, the impact of radiation on the dif-
ferent correlation scenarios described above was tested. The
analysis was performed by applying a single radiation expo-
sure and estimating the absorbed dose required for a tumor
control probability of 0.99. The rationale for applying a sin-
gle exposure model was to focus on the radiation effect by ex-
cluding additional parameters in the modeling approach. For
example, growth and cell kill dynamics would be required for
an accurate estimation of fractionated radiation treatment pro-
tocols, but that would introduce new uncertainties in the esti-
mates. Nevertheless, that type of modeling approach will be
of interest in future modeling studies of reoxygenation in frac-
tionated treatment protocols. The oxygen enhancement ratio
used in this single exposure model was based on adapting the
values from Kirkpatrick et al.32 to the linear quadratic model.
This modeling approach has shown good agreement with ex-
perimental studies.39 The results from the present D99 study
clearly showed that, in general, a smaller tumor requires a
lower absorbed dose. That was expected, because smaller tu-
mors have fewer cells to kill. Improving tumor oxygenation
should decrease the number of hypoxic cells, and therefore,
lower the D99. In general this is true, but in some situations,
an increase in oxygen may generate an increased number of
poorly oxygenated cells in previously anoxic areas; this would
lead to the opposite net effect on the required absorbed dose.

The consequences of this effect depend on where the “necro-
sis level” of oxygen tension is set, because this determines the
necrotic (no need to kill) and hypoxic (hard to kill) fractions.
The present study was not designed to address which oxygen
tension setting would be appropriate. Only completely anoxic
cells were excluded from the absorbed dose calculations, i.e.,
a necrotic threshold of 0 mm Hg was used which suppressed
this effect.

This study demonstrated that the hypoxic and necrotic
fractions increased with tumor size, similar to previous exper-
imental observations.16, 40 These results indicated that the hy-
poxic and necrotic fractions were smaller when the pO2 coun-
teracted vessel proximity; this finding suggested that it would
be beneficial for tumors to be able to regulate the amount
of angiogenesis that occurred in oxygen-depleted situations.
With a low necrotic fraction, more cells would be able to pro-
liferate. Consequently, one may conjecture that a tumor with a
well-tuned sensitivity for inducing angiogenesis at a rate pro-
portional to the inverse oxygen tension would have a higher
proliferation rate, at least if it has a clinically observable size,
with radius from 5 to 25 mm. Ultimately, the consequence of
fine-tuned angiogenesis would be a minimization of parame-
ter variations. Our study showed that the fastest tumor growth
rate could be achieved in a scenario with no variation in the
parameter values.

5. CONCLUSION

A novel Monte Carlo algorithm that simulated tumor oxy-
gen distributions and radiation response was presented. This
model was based on various hypothetical biologically relevant
parameter values. The analysis showed that a self-regulated,
hypoxia-driven angiogenesis (VPO-C) scenario generated a
clearly different oxygen distribution from other hypotheti-
cal scenarios. The VPO-C scenario maintained a low tumor
necrotic fraction, closest to that observed in the nonvariable
scenario. In future studies, this modeling approach might be
valuable for general analyses of factors that affect the oxy-
gen distribution, and for analyses of specific experimental and
clinical situations.
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