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ABSTRACT

The process of moving from an ensemble of global climate model temperature projections to local sea level

projections requires several steps. Sea level was estimated in Olympia, Washington (a city that is very con-

cerned with sea level rise because parts of downtown are barely above mean highest high tide), by relating

global mean temperature to global sea level; relating global sea level to sea levels at Seattle, Washington; and

finally relating Seattle to Olympia. There has long been a realization that accurate assessment of the precision

of projections is needed for science-based policy decisions. When a string of statistical and/or deterministic

models is connected, the uncertainty of each individualmodel needs to be accounted for. Here the uncertainty

is quantified for each model in the described system and the total uncertainty is assessed in a cascading effect

throughout the system. The projected sea level rise over time and its total estimated uncertainty are visualized

simultaneously for the years 2000–2100, the increased uncertainty due to each of the component models at

a particular projection year is identified, and estimates of the time at which a certain sea level rise will first be

reached are made.

1. Introduction

The city of Olympia, which is the capital of Wash-

ington and is located at the southern end of Puget Sound

about 100 km south of Seattle, is facing an increasing

threat of sea level rise. There is disagreement about how

quickly it will happen and how drastic it will be. Planning

for a 15-cm rise is very different fromplanning for an 80-cm

rise. It may take years to get approval for any adaptation

effort, such as building a sea wall, and thus planning

must start early (Craig 1993). We aim to provide tools to

aid planning efforts by recognizing that point estimates

of future sea level rise do not capture the full range of

possible outcomes. As we will discuss, under different

climate scenarios there are ranges of both timing and

estimated sea level that will occur in Olympia with given

confidence. Although the data used in our analysis are

focused to a particular region of the United States, the

same underlying strategy to identify confidence ranges

around expected time frames and their associated sea

level remains transferable as a sound tool for decision

making. The financial impact of different scenarios of

sea level rise can be assessed using the methods of

Hallegatte et al. (2013), who estimate the vulnerability

of a city by comparing its annual average loss from

flooding with its annual gross domestic product. Using

our approach, one can translate the distribution of

projected sea level increase into a distribution of annual

financial loss and hence of vulnerability, rather than

focusing on averages. This approach can, in turn, be used

to assess the likely effect of and need for investments in

adaptation measures.
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Systematic quantification of uncertainty gives policy-

makers a better idea of what to prepare for in the future

(Reilly et al. 2001; Katz 2002; Stephenson et al. 2012).

Instead of point estimates (often without uncertainty

measures; e.g., Mote et al. 2008) for each scenario, we

calculate simultaneous confidence sets of sea level pro-

jections. These are realistic benchmarks for when pre-

ventive measures need to be taken against the threat of

sea level rise and how long one can afford to wait before

taking action. For example, in an Olympia city report

(Simpson 2011), various types of sea walls were pro-

posed in response to different rises in mean sea level. To

plan adequately for building these walls, our projections

give policymakers a range of years for when they can

expect certain levels of sea level rise. Building the sea

walls in the earlier years of this range would be advis-

able, since the projections are intended to help the city

avoid excessive flooding. Such flooding typically occurs at

spring tide. In 1978 the city encountered a high tide of over

5.5m (the mean sea level is 2.5m), and the range of tides

(from lowest low to highest high) can reach 6.8m (see

online at http://tidesandcurrents.noaa.gov/benchmarks/

9446969.html). Thus, even a small increase in mean sea

level is likely to change the characteristics of flooding,

such as the design-life level (Rootzén and Katz 2013) of
a sea wall.

2. Data

In our analysis we use 18 climate models from phase 5

of the CoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) that project global mean tempera-

tures for each of the four representative concentration

pathways (RCPs; Moss et al. 2010) used in the Fifth

Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC; Stocker et al. 2013) (at the time

of writing, information on the climate models used could

be found online at http://courses.washington.edu/statclim/

GCMs_used.html). The projected global mean temper-

atures for each model in this ensemble are then used to

project global sea level using a relationship [Eq. (1),

below], fitted to historical data: the Goddard Institute

for Space Studies global annual mean temperature se-

ries (Hansen et al. 2001) and global sea level data from

the Commonwealth Scientific and Industrial Research

Organisation (Church and White 2011). The former is

computed from archives of land and sea air temperature

measurements, and the latter is based on tide gauge

readings using a spatial structure determined by satellite

data. Using a long time series of annual tide gauge data

for Seattle from the National Oceanic and Atmospheric

Administration (Zervas 2009), we relate the global sea

level to Seattle sea level, and, because Olympia does not

have a long record of reliable sea level data, we use tide

gauge calibration data (http://tidesandcurrents.noaa.gov/

inventory.html?id59446807) for Budd Inlet (the so-

uthern part of Puget Sound where Olympia is located)

to relate Olympia to Seattle. [All data used are

available (as links in the R software code file) at http://

www.statmos.washington.edu/datacode.html.]

3. Methods

a. Predicting global mean sea level from global mean
temperature

Rahmstorf (2007) proposed to relate global sea level

change dHt/dt to temperature Tt using the equation

dHt/dt5 a(Tt 2T0)1 «t , (1)

where a and T0 are parameters and «t is a noise series.

We assume that the noise series is a moving-average

process of order 2 (Box and Jenkins 1970), as determined

by theR function ‘‘auto.arima’’ in the ‘‘forecast’’ package

(Hyndman et al. 2013). Different from Rahmstorf’s

statistical approaches (Rahmstorf 2007; Vermeer and

Rahmstorf 2009), we do not smooth the series (because

smoothing just adds complexity to the time series struc-

ture), do not add a term corresponding to dTt/dt (because

it is not statistically significant), and do not make a res-

ervoir correction. The details of these choices are given in

Guttorp et al. (2014). Figure 1a shows the sea level data

(Church and White 2011) and the fitted model, with the

corresponding residual plot given in Fig. 1b. The esti-

mated values are â5 0.18 cm (yr 8C)21 (standard error of

0.05) and T̂0 5 21.128C (standard error of 0.26). All

computations are made using the freely available statis-

tical software package R (R Core Team 2012; the code

used is available at http://www.statmos.washington.edu/

datacode.html).

b. Predicting Seattle sea level from global sea level

Figure 1c and the residuals in Fig. 1d indicate the

adequacy of a linear model, fitting Seattle sea level data

Yt to global sea level data Ht, namely,

Yt 5a1bHt 1 zt , (2)

where zt is an error term with temporal structure

a moving average of order 1, again determined using the

R ‘‘forecast’’ package (Hyndman et al. 2013). The esti-

mated parameters are â 5 20.96 cm (standard error of

0.51) and b̂ 5 1.23 (standard error of 0.07), and so Se-

attle sea level somewhat attenuates global sea level. Ac-

cording to the National Research Council (NRC 2012),

processes that raise relative sea level in the northeastern
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FIG. 1. (a) Observed and fitted global sea level anomalies and (b) the corresponding residual plot. (c) Seattle sea

level anomalies plotted against global sea level anomalies for 1899–2009 with fitted line and (d) its residual plot.

(e) Budd Inlet sea level plotted against Seattle sea level for calibration data in 1996 with fitted line and (f) the residual

plot. Note that the time scale for (f) is days rather than years.
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Pacific Ocean include warm phases of climate oscilla-

tions and land subsidence due to glacial isostatic ad-

justment, sediment compaction, and the withdrawal of

groundwater, whereas relative sea level is lowered by

cool phases of climate oscillations, gravitational and

deformational effects of modern melting of glaciated

landmasses, and land uplift due to tectonics or fluid

recharge. A detailed analysis of these effects is made

in NRC (2012) but has not been attempted here,

since their uncertainties appear to be of smaller order

of magnitude than those involved in our time series

regressions.

c. Predicting Olympia sea level from Seattle sea level

Figure 1e shows 9 months of daily calibration data

relating daily mean sea level Zt at Budd Inlet

(Olympia) to the Seattle sea level data, and Fig. 1f

depicts the residuals from the model given in Eq. (3).

According to the U.S. Geological Survey calibration

sheets, the difference in mean sea level between Se-

attle and Budd Inlet is 51.3 cm. A shift model relating

the two series is

Zt 5Yt 1 g1ht , (3)

where ht is an autoregressive moving-average (ARMA)

(2, 2) error term, again determined using the ‘‘forecast’’

package in R. The estimated parameter is ĝ 5 51.1 cm

(standard error of 0.19), in good agreement with the

benchmark value. Once we correct for the average sea

level from 1970 to 1999, the shift disappears and the un-

certainty due to the shift is just the very small standard

error of ĝ. The relationship between sea levels at

Olympia and Seattle is very simple, since they are part of

the same sound with no ocean inlets between them.

d. Propagation of variability

To project future sea levels in southern Puget Sound,

we employ an ensemble of climate models from CMIP5

(Taylor et al. 2012). The climate model projections are

used to get an idea of the variability due to model un-

certainty. We then apply the fitted regression Eq. (1) to

the temperature projections. Last, we use the joint dis-

tribution of the two downscaling estimates (to Seattle

and to Olympia) and apply the downscaling Eqs. (2) and

(3) to the estimated global sea level projections. When

estimating confidence range, it is important to take all of

the known uncertainties into account. Each prediction

step above increases the uncertainty andwidens the range.

The final step is to use the work of Bolin and Lindgren

(2014) towiden the pointwise intervals so as tomake them

simultaneous. This step enables us to produce valid pro-

jection intervals for the timing of a particular amount of

sea level rise as well as estimating the probability of not

exceeding a particular level before a given year. We use

90% confidence level to conform to the usage in the

latest IPCC report (Stocker et al. 2013).

e. Simultaneous confidence regions

The joint distribution of the Olympia sea level Z 5
fZ2000, . . . ,Z2100g in the period 2000–2100, conditionally
on the climatemodel outputs, the past sea levels, and the

estimated model parameters, is a mixture of K 5 18

Gaussian distributions (Bolin 2012), corresponding to

each of the climate models used:

p(Z)5 �
K

k51

1

K

jQj1/2
(2p)101/2

exp

�
2
1

2
(Z2mk)

TQ(Z2mk)

�
.

(4)

Here, mk is determined by climate model k and

the common precision matrix Q is determined by

the stochastic moving-average models, the uncer-

tainty in the model in Eq. (3), and the uncertainty in

the lower integration bound in the integrated version

of Eq. (1). A pointwise confidence band is constructed

by finding the interval [q0.05(t), q0.95(t)], for each time

t, where qa(t) denotes the a quantile of the marginal

distribution p(Zt).

A simultaneous confidence region, such that, with

probability 12 a, the process stays inside the band at all

times t 2 [2000, 2100], can be constructed by considering

the joint distribution for Z. We construct this simulta-

neous band by finding the value of r such that

P[qr(t),Zt ,q12r(t), 2000, t, 2100]5 12a . (5)

Finding r requires that we can calculate probabilities

P(a,Z, b) efficiently. This is done using the sequential

integration method by Bolin and Lindgren (2014), im-

plemented in the R package ‘‘excursions.’’ Finding the

probability of staying below a given level u until a par-

ticular year T requires calculating probabilities P(Zt , u,

2000 , t , T), which also is done using the excursions

package. More details about the procedure can be found

in Guttorp et al. (2014).

4. Results

Figure 2 shows a simultaneous 90% confidence region

for the sea level projections and the projections based

on each of the 18 climate models. There is considerable

uncertainty (due to local and global statistical model

fitting) beyond the ensemble variability. The pointwise

confidence intervals (dashed purple lines) are only cor-

rect when looking at sea level at a given individual year,

whereas the simultaneous confidence intervals (black
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lines) are valid for all years at the same time, giving

policymakers the tools to make informed decisions on

phenomena that may span multiple years without having

to perform any additional calculations.

Looking across the confidence set vertically at

a given year (here 2075), we can visualize the additional

contribution of each part of the chain of models to the

overall uncertainty (Fig. 3). There is very little addi-

tional uncertainty added in going from Seattle to

Olympia, and therefore the blue and purple lines are

almost on top of each other.

Looking across the bands in the horizontal direction

we obtain a 90% confidence interval for the time when

Olympia may see a given level of sea level rise over the

FIG. 2. Olympia sea level projection simultaneous 90% confidence set (thick black lines) for the years 2000–2100 for four climate

scenarios. The sea level data are shown in blue and end in 2009, and the average projections are the thick dark blue lines. The thin red lines

are the projections without uncertainty that are based on each of the climate models. The dashed purple lines connect pointwise confi-

dence intervals for each year.
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1970–99 average sea level. As an example, Table 1 shows

high and low estimates together with the mean first-

occurrence year for each of the RCPs and two different

levels. For example, a 50-cm rise is reached earlier under

RCP 8.5 than for the other scenarios.

Figure 4 shows the probability of staying below a given

level until a particular year. The probability of not ex-

ceeding 25 cm is hardly affected by theRCP used, whereas

there are substantial differences betweenRCPs for staying

below 50-cm sea level rise. The city planners in Olympia

have agreed to plan for the high end (Mulkern 2013),

which in our analysis would correspond to RCP 8.5. The

price of building a sea wall needs to be weighed against

the potential price of the cleanups due to the flooding

that a 50-cm mean sea level rise (in conjunction with a

storm surge, spring tide, and low pressure) could cause.

Similar computations can easily be done for any sea

level rise of interest.

5. Discussion

The estimation of variability in the model projections

using an ensemble may not be all that accurate, since

climate models, particularly from the same modeling

FIG. 3. 2075Olympia sea level projections with uncertainty due to different sources for four climate scenarios. The black

line is themedian projection (with no uncertainty), and the histogram corresponds to the spread of the climatemodels. The

red curve adds the uncertainty due to the relation between global temperature and global sea level, the blue line adds the

additional uncertainty due todownscaling global sea level to Seattle, and thepurple line adds the additional uncertainty due

to the projection of Budd Inlet (Olympia) sea level. The purple lines are on top of the blue lines almost everywhere.
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group, tend to be statistically dependent (Jun et al. 2008;

Knutti et al. 2010). Furthermore, the selection of models

submitted to CMIP5 is perhaps not representative of all

modeling efforts. Both of these effects may lead to a bi-

ased estimate of the variability. Because there is no

obvious approach that enablesmore accurate estimation

of the model variability, we will just argue conditionally

upon the projections.

In this work we use frequentist methods, but similar

calculations can be done using Bayesian analyses. In

either case, the approach uses a hierarchical model,

which is the predominant statistical approach to analyze

complicated systems (Katz et al. 2013). One could ex-

tend the uncertainty analysis by including historical cli-

mate simulations in the modeling of global sea level

from global mean temperature as done in Bhat et al.

(2011). To apply the method to other cities, one just

needs to develop a model that relates global sea level to

the particular local sea level (Tebaldi et al. 2012). This is

easiest when tide data are available at the particular lo-

cation but may need a spatiotemporal prediction model

at locations at which no such data have been collected.

In this paper, we have used CMIP5 temperature pro-

jections together with a semiempirical model relating his-

torical global mean sea level to global mean temperature.

Our method can be applied to any projection of global

mean sea level, such as a combination of steric sea level

rise from climate models and glacial models driven by

climate model temperature projections as used in Stocker

et al. (2013); see also Moore et al. (2013) and Orli�c and

Pasari�c (2013) for comparisons between semiempirical

and process-based projections and Church et al. (2013) for

an evaluation of process-based projections. The un-

certainty analysis in the process-based case would require,

at a minimum, a sensitivity analysis of the glacial models.

The resolution of global models is insufficient to project

local sea level rise, and we are not aware of any dynamic

downscaling approaches for local sea levels. Hence, re-

gardless of how global sea level is projected, a statistical

approach to downscaling appears to be necessary.
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