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We investigate theoretically the dynamics of a spatially symmetric shuttle system subjected to an ac gate
voltage. We demonstrate that in such a system parametric excitation gives rise to mechanical vibrations when
the frequency of the ac signal is close to the eigenfrequency of the mechanical subsystem. These mechanical
oscillations result in a dc shuttle current in a certain direction due to spontaneous symmetry breaking. The
direction of the current is determined by the phase shift between the ac gate voltage and the parametrically
excited mechanical oscillations. The dependence of the shuttle current on the dc gate voltage is also analyzed.
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Some years ago, a novel form of electron transport—a
shuttle mechanism—based on the mechanical vibrations of
a metallic nanoparticle coupled to two electrodes via elastic
molecular links was proposed in Ref. 1. Since then, the shuttle
phenomenon has been a subject of intensive experimental and
theoretical research.>”’

The main feature of the orthodox shuttle phenomenon is
that a constant potential difference, applied between two fixed
electrodes, leads to a dynamical instability that causes the
metal nanoparticle to oscillate. As a consequence, a dc current
through the system, induced by the voltage drop between
the electrodes, becomes proportional to the frequency of the
mechanical oscillations'. The idea of shuttle phenomena was
also extended to the quantum realm®'!.

Nanoelectromechanical shuttle systems have been also
studied in the regime of ac excitation and several interesting
effects on the transport properties and the dynamics of the
shuttle system have been found'?>~!®. In particular, a shuttle
structure driven by a time-dependent bias voltage has been
considered in Refs. 17 and 18. It was shown that in case of
asymmetric configuration such a setup can act as a rectifier,
where the intensity of the dc current depends on the ratio
between the frequency of the external oscillating voltage
and the eigenfrequency of the mechanical subsystem. Current
rectification was also conjectured by Ahn et al.'® (and experi-
mentally verified by Kim et al.?®) for the case of a symmetric
double-shuttle structure. They attributed current-rectification
phenomena to spontaneous symmetry breaking in the system
caused by parametric instability. One of the conclusions of this
work is that dynamical symmetry breaking in single shuttle
systems does not lead to a dc current. Parametric excitation
of nanoelectromechanical systems (NEMS) has been also
considered in Refs. 21-23.

In the present work, we investigate the possibility to
generate a shuttle dc current, rather than rectifying current,
in a completely symmetric single-dot shuttle system. We
demonstrate that, in this scheme, despite the lack of a bias
voltage, a shuttle dc current can still be detected. This charge
transport is achieved by applying an ac voltage to a gate
electrode which controls the electronic population of a metallic
island and, in this form, also the stiffness of the resonator
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resulting in a parametric mechanical instability at the resonant
frequency. This constitutes a new archetype of electron shuttle
in which the symmetry breaking effect (direction of the shuttle
transportation) does not rely on the presence of any bias
voltage. In the phenomena under consideration, the shuttle
current is controlled by the phase shift between the mechanical
vibrations and gate voltage oscillations. We will show that in
this scenario, two different values of the phase shift, which
differ from each other by 7%, can correspond to a regime of
sustained oscillations. The occurrence of these values for the
phase shift depends, in particular, on the initial conditions and,
as a result, spontaneous symmetry breaking takes place.

To describe the new shuttling mechanism, we consider a
system schematically depicted in Fig. 1, where a single-level
quantum dot (D) is connected via elastic links to the left (L)
and right (R) electrodes. The characteristic distance between
the electrodes and the dot at equilibrium position is d. In this
setup the dot is acting as a nano-oscillator, and the deviation
of the dot from its equilibrium position is denoted x(¢). Both
electrodes are grounded, i.e., V, = Vx = 0, while a signal
Vi = V& + VE cos(wgt) is applied to the gate (G).

To analyze the electromechanical phenomena in such a
structure, in the simplest approximation, we describe the
dynamics of the central island by Newton’s equation,

X+ Qila) X 2, = 22
0X + wpx = —e“n(t)x. (1)
m

Here, m is the mass, wy is the eigenfrequency, and Q is
the quality factor of the oscillator. In Eq. (1), the parameter
a = [1/(2C%(0))]8*>C(x)/dx?|c—o, where C(x) is the effective
capacitance of the dot is used. We consider the symmetric
situation C(x) = C(—x) and one can estimate o ~ d 3. Note
that, in contrast to Refs. 17-20, there is no force acting on
the grain if it is in equilibrium position. The population of the
dot n(t) = 0,1 is controlled by the stochastic evolution of the
charge.

We focus on the case in which the mechanical vibration
frequency of the dot is very low in comparison to the
tunneling rates between the quantum dot and the electrodes
and the electric force is much lower than the mechanical
one, ae’/mw} =€ < 1. Under such conditions, the force
generated by the stochastic variable n(¢) can be taken into
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FIG. 1. (Color online) Schematic diagram of the three-terminals
shuttle device investigated in this work. A quantum dot D can oscillate
between two grounded metallic leads L,R. The dot is capacitevely
coupled to a gate electrode G, to which a voltage Vi is applied.
Electron tunneling takes place between the dot and the leads. I, and
I are the currents between the left and right leads L,R and the
dot D.

account only on average by substituting in Eq. (1) its
mean value (n(t)) = P(t). The variable P(¢) represents the
probability of finding one electron in the quantum dot at time ¢.
As a consequence, the electronic state of the central island can
be described in terms of this probability through the following
master equation:

P = [[L(x) + TrOO)I(f(x,1) = P). @

Here, the position-dependent tunneling rates between the
left or right electrodes and the dot are 'y z(x) = [pe™/*,
with A the tunneling length, and f(x,f) = f(Ep(x,t)) =
[1 4 eEp=w/ksT]=1 g the Fermi-Dirac thermal distribution,
where p is the chemical potential of the leads. The energy
of the electron inside the dot is Ep = g, + E¢, where g, is
the energy associated with space quantization and E¢(x,t) =
e?/2C(x) — eBVg(¢) is the electrostatic energy, with g &~ 1
being the transmission coefficient. Finally, considering u =
gy + €2 /2C(0) and small displacements of the dot, x < d, we
can rewrite Ep(x,t) — u = —(ot/2)ezn(t)x2 —eVg(1).

The variation in time of the number of electrons in the leads
depends on the applied oscillating voltage V;(¢) and on the
position of the vibrating dot x(¢). Therefore, the instantaneous
current through the system, averaged over fast fluctuations due
to the discrete nature of charge tunneling, is'!’

Iq
w_ [TL(x(®) — TR f (x(0),0) — P@)},  (3)

e

and the dc component of this instantaneous current can be
calculated as

T
& = — lim & dt sinh <&>[f(x(t),t) — P@)]
e T—o00 0 A
T .
—gim [ a2OPO 4)
T—oo T Jo cosh” (x(t)/)\)

Here, in writing Eq. (4) we use Eq. (2). From this expression
one can observe that the dc current between the leads is defined
by the correlations between the velocity and the population
of the dot. To find these correlations one should analyze the
dynamical system described by Eqgs. (1) and (2).
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We perform a perturbative analysis of these equations ex-
ploiting the small values of parameters wy/ g © wg/ Ty K 1
and ¢, Q’1 « 1. In doing so, we take

P@t) = f(x,1), &)

in the leading order of the parameter w¢/ I'g. Substituting this
relation in Eq. (1), we obtained a nonlinear and time-dependent
equation for x,

X+ Q_la)o)'c+a)§x =6wéf(x,t)x, (6)

where f(x,t)is a periodic function of time. From this equation,
one can find that the mechanical subsystem may experience a
parametric instability if |wg — wg| < @y, when considering
the second harmonic term in the Fourier expansion of
fx.n.?

Note that Eqs. (2) and (6) are invariant under the trans-
formation [x(z), P(t)] — [—x(¢), P(¢)], and it is clear that the
only static stationary solution x(¢) = 0 is invariant under this
transformation. If mechanical excitation takes place, it will
result in, at least, two different stable periodic (with period
T = 27 /wg) solutions: [x,(2), Py (t)] and [Zs:(0), Py ()] =
[—x4:(2), Py (¢)]. From Eq. (4), it immediately follows that
these two stationary regimes generate shuttle currents in
opposite directions. Which regime arises from the ac-voltage
switching will depend on spontaneous forces accompanying
transient processes.

To analyze the regime of parametric excitations one can use
the ansatz

x(t) = A(t) cos (wgt + x (1)), @)

where the amplitude A(¢) and x(¢) (the phase shift between
the mechanical and the gate voltage oscillations) are supposed
to be slowly varying functions of time: A/A, ) © ewg,wg/ Q.

To analyze the dynamics of the amplitude A(¢) and the
relative phase shift x(¢), it is convenient to introduce the
following dimensionless variables: T = wgt, £ = x/A, and
E = A?/2)%. Then, after substituting the ansatz given by
Eq. (7) into Eq. (6) and averaging over the fast oscillations,
one obtains the following coupled differential equations for
E(t)and x(7):

oE 9

= ="C _0'E, 8
P oy 0 (8a)
dx 0

Here, .77 is the generating Hamiltonian function,

T
HE=@n-VE+ 5 [ as
2y J_,
% ln{l + e[nEC052(0)+UsI+VacCOS(G_X)]} (8¢)

with @y = wo/wg, N = e’ /2kpT, vy = eV /kpT, Ve =
eVEe [ kpT . Different stationary oscillation regimes of the dot
(labeled with subscript i) are defined by the different stationary
solutions of Egs. (1), i.e., E; = const, x; = const.

In order to find the dc current corresponding to a given
stationary regime of oscillations, 214.(E;, x;) = Liewg, we
substitute Eq. (5) and Eq. (7) into the expression for the dc
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current given by Eq. (4). As a result, it reads

IA_/\/TE,- dt sinh[b; v; (§) sin(x;)]

J3E cosh?(&) ™ coshla;(€)] + cosh[b;u;(€) sin(x;)]
(%92)

with

ai(§) = n&> + vy + bi§ cos(x), bi = vac/V/2Ei.  (9b)

Here, v;(§) is the modulus of the dot velocity as a function of
its position given by v;(§) =2E; — £2. From Egs. (9), we can
conclude that the dc current solely exists at nonzero amplitude
of oscillation, while its sign (symmetry breaking signature) is
controlled by the phase difference y;, sgn(/;) o sin(y;).

To proceed further, we consider the case of exact resonance,
T

wG = w0{1 +(e/4n) | dOle ™™ + e“ﬂc“’swﬂ]l}. (10)

-
In Eq. (10), we have taken into account the renormalization
of the frequency due to Coulomb interactions, which is
proportional to €.

In this situation, the solution £ = 0 is a stationary point.
However, in the frame of a perturbative analysis for small E,
from Eqs. (1) one finds that this solution is unstable (parametric
mechanical instability) if the condition,

L _sin@x) [7

. 6
< 46 cos(26) tanh [ 2 Vac €OSO)
Qe 4 .

2
Y

is fulfilled. In the above instability criterion, x; is defined
through the relation JZ(E, x;)/0E|g— = 0.

From Eq. (11) one can find that there is a critical amplitude
for the ac voltage, v}, (vy), above which the system becomes
excited. Moreover, if the static voltage tends to 0, vy — 0, the
critical ac voltage becomes infinite, v, — oo.

This threshold ac voltage is shown in Fig. 2, where (red)
bars correspond to results obtained from numerical integration
of Egs. (1) and (2), while (blue) curves refer to Eq. (11).

Due to the periodicity of the generating Hamiltonian
function, S7(E, x) = J€(E,x + m), the stationary solutions
of Eq. (1) come in pairs: to any solution S; = {E;,x;}
corresponds a conjugated solution S; = {E;,x; + w}. This
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FIG. 2. (Color online) Threshold ac voltage v}, as a function of
static dc voltage vy. The (red) bars correspond to results obtained
from numerical integration of Eqs. (1) and (2), while the solid (blue)
lines refer to Eq. (11). The plot is calculated for a gold quantum dot
of radius » = 4 nm and mass m = 5 x 107! kg with wy = 10 GHz,
Q0 =1000,d ~ 2 nm, A = 0.1 nm, I'y) = 100 GHz, wg = 10 GHz,
and T = 10 K. Consequently, ¢ = 0.1, ¢« = 8.37, ® ~ 1.
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FIG. 3. (Color online) Stationary phase (a) and amplitude (b) of
the system as a function of the applied static dc voltages vy = 2
[(orange) squares] and vy = —2 [(blue) circles] for different ac
voltages v,.. The phase is almost O for the positive dc voltage, while
it is nonvanishing for the negative one. As a result, current transport
is more feasible at negative dc voltages [see Eqgs. (1)]. The plot is
calculated fore = 0.1, o = 8.37, @ ~ 1.

fact is a clear manifestation of the symmetry properties of
Egs. (2) and (6) discussed above. In the nonexcited regime,
i.e., Vo < Vi (vy), the system defined by Eqgs. (1) possesses
four formal stationary points: S; = {0,7/4}, S, = {0,37/4},
and their conjugates. For vy > 0, the stationary points [S;, S;]
and [S,,S,] are stable and unstable, respectively. In the opposite
case, vy < 0, these points exchange stability.

In the regime of oscillations, v, > v}.(vy), besides the
stationary points [S;,51,5,,5,], two more points, [S3 =
{E3,x3},83 = {E3, x3 + }], appear in the phase diagram. The
original stationary points S; and S, (and their conjugates)
become unstable, while the new solutions are stable.

InFig. 3, the phase shift and amplitude of the stable periodic
solution S3 = {E3, x3} are shown as a function of the applied
ac voltage (v,.) for two static dc voltages: vy = 2 [(blue)
circles] and vy, = —2 [(orange) squares]. From this graph, one
can observe that the phase shift and, as a consequence, the dc
current [see Egs. (1)] are almost O for the positive dc amplitude.
However, the plot indicates that the phase is nearly y ~ /2
and a nonzero dc current is flowing through the nanostructure
for the negative dc voltage.

We also investigated the behavior of the dc current as
a function of the applied voltages, I3 = I3(vg,V,), and the
results are displayed in Fig. 4. From the contour map,
the asymmetric behavior of the dc current with respect to
the static dc voltage v is evident. Therefore, in light of
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FIG. 4. (Color online) Contour plot of the dc current as a
function of the applied voltages, I3 = I3(vg,V,.). Current through
the nanostructure is significant for negative dc voltage values, v. In
the plote = 0.1, 0 =8.37, & = 1.
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the result previously discussed, the values of the applied
voltages should be chosen in order to maximize the charge
transport, i.e., look for a stationary phase x3 = m/2; this
condition is attainable for negative values of vy as shown in
Fig. 4.

To conclude, we have analyzed the dynamics of a com-
pletely symmetric single-dot shuttle structure under the influ-
ence of an alternating gate voltage. In this system, we have
found that parametric excitation gives rise to two regimes
of sustained mechanical oscillations characterized by the
same amplitudes but different phases (they differ by ),
when the frequency of the ac gate voltage is approximately
equal to the mechanical eigenfrequency of the nano-oscillator.
These mechanical vibrations result in shuttle transportation
of electrons through the nanostructure. We have shown that
the two distinct stationary regimes of oscillations generate
shuttle currents in opposite directions. Which regime arises
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from the ac-voltage switching will depend on spontaneous
forces accompanying transient processes.

In our considerations we have not taken into account
noise forces. Such forces will result in fluctuations of the
phase around the stationary values,?” and infrequent transitions
between them. When the amplitude of fluctuations is much
lower than 7, the switching probability is exponentially low,
and the results discussed above are still valid during time
intervals less than the characteristic switching time. However,
strong fluctuations will lead to transitions between stationary
points and, by this, restore the symmetry in the system. A
complete study of the noise properties of the considered system
is to be discussed elsewhere.
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fluctuations at the driving frequency w¢ is low due to the fact
'y > w¢ and its contribution is negligible.
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