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Abstract

In this paper we review, and elaborate on, the literature on a regression artifact related to Lord’s paradox in a continuous
setting. Specifically, the question is whether a continuous property of individuals predicts improvement from training
between a pretest and a posttest. If the pretest score is included as a covariate, regression to the mean will lead to biased
results if two critical conditions are satisfied: (1) the property is correlated with pretest scores and (2) pretest scores include
random errors. We discuss how these conditions apply to the analysis in a published experimental study, the authors of
which concluded that linearity of children’s estimations of numerical magnitudes predicts arithmetic learning from a
training program. However, the two critical conditions were clearly met in that study. In a reanalysis we find that the bias in
the method can fully account for the effect found in the original study. In other words, data are consistent with the null
hypothesis that numerical magnitude estimations are unrelated to arithmetic learning.
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Introduction

Suppose that a researcher wants to study individual differences

in how children respond to a training program. The predictor is a

continuous measure of some individual property P. The dependent

variable is improvement in ability, measured by a pre-training test

and a post-training test. However, test scores are not perfect

measures of ability. The same improvement in test scores from

different pretest scores may therefore reflect different changes in

ability. To control for this possibility the researcher may include

the pretest score as a covariate in a regression analysis, thereby

investigating whether property P predicts test score improvement

among children with equal pretest scores. The topic of our paper is how

this statistical adjustment may lead to incorrect conclusions

because of regression artifacts arising from biased regression to

the mean.

In 1999, Campbell and Kenny [1] devoted an entire book to

warning about the dangers of statistical adjustments in compar-

isons of treatment effects between non-randomized groups. The

basic problem was pointed out already thirty years earlier in a

classic paper by Campbell and Erlebacher [2]. The problem has

continued to attract attention, see [3] for a review of the literature

and a novel analysis. One reason to write yet another paper on this

topic is that the literature has focused on comparisons between

groups. Although the logic is the same for analysis of a continuous

individual property, this case deserves an explicit discussion. The

direct motivation comes from a rather recent empirical study in

numerical cognition [4], which analyzed the influence of a

continuous property on learning. That study is particularly

interesting because, in addition to a pre-training test and an

end-of-training test, it included a follow-up test two weeks after the

end of training with no training between end-of-training and

follow-up. This feature will prove useful in assessing the size of the

regression artifact.

Formalizing the Problem
Let us formalize the abovementioned setup: A researcher wants

to study individual differences in how children respond to a

training program. The predictor is a continuous measure of some

individual property P. The dependent variable is improvement in

ability, (imperfectly) measured by a pre-training test score T
pre
i and

a post-training test score T
post
i . The researcher includes the pretest

score as a covariate in a regression analysis. Denoting the property

P level of child i by Pi, this means estimating the following

regression model:

T
post
i {T

pre
i ~DzKPizLT

pre
i zfi: ð1Þ

Here, K is the coefficient of interest, measuring the influence of

property P on test score change. D is the intercept, L is a coefficient

measuring the influence of pretest score on test score change, and

the residual.

As discussed by other authors [3] it is irrelevant whether the

dependent variable is test score change or simply the posttest

score, because addition of the pretest score to both sides yields an

equivalent model predicting posttest score instead of change:

T
post
i ~DzKPiz Lz1ð ÞTpre

i zfi: ð10Þ
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Although inclusion of the pretest score as a covariate may seem

both innocuous and sensible, it will lead to biased results when two

critical conditions hold. The first condition is that P is correlated

with pretest ability. The second condition is that test scores are not

fully reliable measures of ability but subject to random within-

individual variation, commonly represented by a ‘‘true score’’

model in which the test score is the sum of the child’s latent ability

(true score) and a random error term of positive variance:

T
pre
i ~U

pre
i ze

pre
i ð2Þ

T
post
i ~U

post
i ze

post
i ð3Þ

Improvement of test results will then reflect not only actual

arithmetic learning (U
post
i {U

pre
i ) but also two random errors

(e
post
i {e

pre
i ).

Why Regression Artifacts Arise
The only novelty of our setup is that property P is continuous. A

classic setup is retrieved in the special case of P taking only values 0

or 1, indicating membership in one of two groups. Our first critical

condition then reduces to the presence of a group differences in

pretest scores. The risk of a regression artifact in that case was

pointed out more than forty years ago by Campbell and

Erlebacher [1]. The logic of their argument carries over directly

to the continuous setting and goes as follows:

Children who are higher on property P will tend to have higher

pretest scores than children who are lower on property P. By

selecting to compare children with equal pretest scores, the

researcher will inadvertently make a biased selection of the

random errors. Specifically, consider a higher-P child and a lower-

P child who happened to have the same pretest score. Equal test

scores will arise by chance when a child with higher ability has less

luck on the test than a child with lower ability. Because of

regression to the mean, the child with worse luck on the first test–

i.e., the one with higher ability–will tend to do better than the

other child on the second test. Because children with higher P tend

to have higher ability, equality in test scores will most often reflect

a situation where the higher-P child has had worse luck and will

therefore tend to be luckier on the next test. The observation that

regression to the mean has this consequence of divergence

between members of different groups is sometimes referred to as

Kelley’s paradox [5]. The consequence is that, without any

improvement in latent ability, the higher-P child is likely to score

better on the next test than the lower-P child with the same pretest

score. Any genuine changes in ability will be confounded by this

bias in random errors.

Note how the bias was caused by the combination of initial

differences and regression to the mean. The confounding effect on

the results of the regression analysis is called a regression artifact.

Outline of Paper
The paper consists of three studies. The first study is a

mathematical analysis of the emergence of the regression artifact.

We derive an unbiased estimator of the regression artifact under

certain simplifying assumptions. The second study is a computer

simulation to illustrate the regression artifact, leading up to a

discussion of Lord’s paradox in a continuous setting. The third

study applies our theoretical framework to a reanalysis of the main

finding of the aforementioned study in numerical cognition [4].

Study 1

Analysis
To demonstrate how a regression artifact may arise in compar-

isons of groups, Campbell and Erlebacher [2] specified a model for

test scores and abilities in two hypothetical groups. The model

assumed abilities to be constant over time. Test scores could change,

but only because of random errors. In the model it was therefore

absolutely certain that finding any influence of group membership

on change in test scores must be an artifact of the random errors.

Here we consider the case where children vary on a continuous

property P rather than belong to one of two groups. We will

demonstrate how a regression artifact arises when the test score

difference is regressed on property P if the pretest score is included as

a covariate. Adapting the model of Campbell and Erlebacher [2] to

the case of a continuous property, we let child i’s actual ability (equal

at pretest and posttest) be generated by the following equation:

Ui~azbPizEi ð4Þ

The first two terms specify a linear relationship between ability

and property P, while the last term denotes unexplained between-

individual variation in ability. We assume these random errors to

be independently drawn from a normal distribution with mean 0

and standard deviation s.

Following equations (2) and (3), pretest and posttest scores of

child i are obtained by addition of random errors to the child’s

level of ability. We assume these random errors to be indepen-

dently drawn from a normal distribution with mean 0 and

standard deviation s.

It is then possible to mathematically derive the expected size of

the regression artifact. Under the model assumptions (2–4), the

linear regression model (1) translates into

e
post
i {e

pre
i ~DzKPizL azbPizEize

pre
i

� �
zfi:

To analyze the results obtained from least-square estimation of

this regression model we use the standard approach of letting the

sample size tend to infinity, such that stochastic effects can be

ignored. We can then identify coefficients between the left-hand

and right-hand expressions to obtain

D̂D~{L̂La and K̂K~{L̂Lb, ð5Þ

and mean-square residual

f̂fi~e
post
i { 1zL̂L

� �
e

pre
i {L̂LEi

the law of large numbers. Least-square estimation entails

minimizing this expression with respect to L̂L. The minimum is

attained for

L̂L~{
s2

(s2zs2)

and plugging this into the second identity of equation (5) we obtain

A Regression Artifact
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K̂K~
bs2

(s2zs2)
: ð6Þ

Results and Discussion
For infinite samples, equation (6) gives the exact size of the

regression artifact. For finite sized samples there will also be

stochastic effects and (6) is then an unbiased estimate of the

regression artifact. Note that this estimate is the product of the

strength of the relation between property P and ability (b) and the

proportion of the total variance in pretest scores that is accounted

for by random within-individual variation. The regression artifact

arises when these two entities are nonzero, which is equivalent to

the two critical conditions stated earlier.

Study 2

Following Campbell and Erlebacher [1], we will use computer

simulations of our model (i.e., equations 2–4) to demonstrate the

regression artifact arising from estimation of the regression model

(1).

Method
In order to simulate data we need to choose values for the

model parameters a, b, s, and s. We must also create a number of

simulated children by assigning them a level of property P. To

demonstrate the size of regression artifact that might arise in real

empirical studies, we have chosen parameter values to roughly

match the data of [4]. We will discuss that study in detail in a later

section. For now it suffices to say that 105 children were measured

on the linearity of their numerical magnitude estimations,

corresponding to our property P. We used this dataset as our P

levels, fixed throughout our simulations. Model parameter values

a = 0.5, b = 0.4, s = 0.1, and s = 0.1, were chosen to give a rough fit

to the empirical data on test scores in [4]. Simulated abilities and

test scores were then obtained from the model equations (2–4),

with random terms obtained from a generator of random numbers

built into Excel. One thousand simulated datasets were generated

in this way. For each dataset we then estimated regression model

(1).

Results

Our interest lies in K̂K , the estimated size of the influence of

property P on test score change. Figure 1 shows how K̂K was

distributed over the 1,000 simulations. It was greater than zero in

more than 98 percent of simulations, with a mean value of 0.2004.

Because of the large number of simulations, the mean value should

be very close to the unbiased estimate given by equation (6).

Indeed, plugging the parameter values (b = 0.4, s = 0.1, and

s = 0.1) into equation (6) yields K̂K = 0.2.

Let us emphasize what these simulations tell us. They assume a

situation where no child’s ability change between tests, so a fortiori

there is no influence of property P on change in abilities. Despite

this absence of a genuine effect, the simulations indicate that

researchers using regression model (1) will almost always find a

substantial influence of property P on change in test scores.

Note that the artifact tended to be half as large as b, the

coefficient describing how property P relates to ability. Equation

(6) explains why: The parameter values we used satisfied s = s,

which implies that random within-individual variation accounted

for half the total variance in pretest scores, with the other half

accounted for by between-individual variation in abilities.

Discussion
We shall close the theoretical part of this paper by a discussion

of Lord’s paradox. In its original form, Lord’s paradox is about

comparison of groups. Let us therefore consider hypothetical

children whose P values are either 0 or 1, such that groups can be

based on P values. Using our simulation model we generated

abilities and test scores for a hypothetical set of 105 children,

equally distributed over the two P values. The results are presented

in a scatter plot of pretest score against test score change (i.e.,

posttest minus pretest), see Figure 2. We shall discuss this plot in

some detail.

First consider the solid line, indicating no change in test score.

Because abilities did not change between tests in our model, the

solid line is where all datapoints would have been if test scores had

been perfect measures of ability. Because test scores included

random errors in our model, the data points are instead distributed

above and below the solid line to the same extent. Based on this

observation an empirical researcher could draw the conclusion

that property P had no systematic influence on change in test scores.

Now consider the dashed lines, showing the results of regressing

test score change on pretest score in each group. These lines

demonstrate another observation about this dataset: For children

with the same pretest score, test score change tends to differ

substantially between the high P group and the low P group. Based

on this observation, an empirical researcher could instead draw

the conclusion that property P has a substantial systematic influence on

change in test scores.

This phenomenon, that the same data on pretests and posttests

in two groups can yield conflicting conclusions depending on what

aspect of the data is observed, was first pointed out in a classic

paper by Lord [6]. It is commonly referred to as Lord’s paradox.

By considering a continuous property P instead of group

membership, we have the same paradox in a continuous setting.

Figure 1. Histogram over the distribution of the unstandard-
ized coefficient for the influence of property P on test score
change, obtained from estimating regression model (1) in
1,000 simulated datasets in which actual abilities did not
change between tests.
doi:10.1371/journal.pone.0095949.g001
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So, which conclusion is correct? Given our knowledge about the

model that generated this dataset, the answer is unambiguous: The

first conclusion is correct and the second conclusion is incorrect.

The relation between property P and change in test scores is just

an artifact of regression to the mean and reflects no causal

influence. Figure 2 allows an intuitive way to think about the

regression artifact: Because of regression to the mean, high pretest

scorers are more likely to score worse next time and data will

therefore tend to slope downwards to the right. The high P group

tended to score higher, and therefore lie to the right of the low P

group. For data that slope downwards to the right, a slope that lies

to the right of another slope will also look as if it lies above it.

The crux of the matter is that the empirical researcher would

not know which model generated the data. Specifically, our

mathematical analysis implies that equivalent data are generated

by the following model:

U
pre
i ~T

pre
i ~azbPizEpre

i , where Epre
i ~Eize

pre
i

DUi~D̂DzK̂KPizL̂LU
pre
i zEchange

i , where

Echange
i ~e

post
i { 1zL̂L

� �
e

pre
i {L̂LEi

ð7Þ

In words, this says that equivalent data would be observed if test

scores were perfect measures of ability and if change in abilities

were to some degree random but positively influenced by property

P and negatively influenced by pretest ability. In such a world, the

influence of P found by including pretest score as a covariate

would be genuine and not a regression artifact. Instead it would be

the analysis without the covariate that would point toward an

incorrect conclusion, as it would not detect the positive influence

of property P. Finally, in a world represented by a mixture of the

two models both analyses would be biased.

The empirical researcher who wants to draw a conclusion about

how much influence, if any, property P has on change in ability

therefore needs additional knowledge about the underlying

processes. Such knowledge may well exist. For instance, one

may have an understanding about the mechanisms whereby ability

changes. According to such understanding it might be implausible

that ability would systematically decrease between tests among

highly able children. This would support the first conclusion that

the observed decrease in test scores among high pretest scorers is

due to regression to the mean. It is also likely that a researcher has

some knowledge about the extent of within-individual variation in

test scores. Such knowledge can come from the nature of the test

itself as well as from analysis of repeated tests with no treatment in-

between. We shall later appeal to this kind of knowledge in our

reanalysis of an empirical study.

Lord’s own version of the paradox presented data on weight

change among male and female college students over an academic

year [6]. The question was whether men and women tended to

respond differently to the diet provided in the college dining halls.

This is exactly the dichotomous version of the problem we study in

this paper. Thus, individuals differ on a property P (gender in

Lord’s problem), and the question is how this property of

individuals affects their response to the same treatment. Most of

the literature on Lord’s paradox focuses on another setup in

which, depending on group membership, individuals either receive

treatment or no treatment (control) and the question is if treatment

has a different effect than no treatment. The statistical analyses

look the same but interpretations will be different.

For a recent review and analysis of Lord’s paradox in treatment

vs. control we refer to van Breukelen [3]. The focus of van

Breukelen’s analysis is the circumstances under which the two

methods of analysis (i.e., whether or not to include the pretest

score as a covariate) will give unbiased results. Assuming non-

randomized group assignment and presence of random errors, the

conclusions can very briefly be summarized as follows: First,

inclusion of the covariate will lead to biased results if groups differ

in initial ability. This echoes what Campbell and Erlebacher [2]

pointed out 40 years ago and is the same that we have said here in

a continuous setting. Second, the alternative of not including the

covariate may suffer from another source of bias, namely, that

pretest ability actually influences the response to treatment, as in

model (7). Third, both methods are unable to account for inherent

differences between groups in how they respond to treatment, as

treatment was only given to one of the groups. The third point

obviously does not apply to the problem we (and Lord [6])

consider, in which everyone is given the same treatment.

To be able to test for the presence of bias in results, van

Breukelen [3] suggests that experimental designs include two

pretests with sufficient time in-between. If the analysis is unbiased,

no effect should then be found treating the second pretest as

posttest. The same logic applies if there are two posttests instead.

In our below reanalysis of data from [4], we shall follow van

Breukelen’s suggestion.

Study 3

So far we have theoretically discussed why and when a certain

statistical analysis method will produce a regression artifact. We

now turn to an empirical study where this method of analysis was

used. The background is an interesting and well-established

research finding that children’s proficiency in solving arithmetic

problems correlates with the linearity of their estimations of

Figure 2. Scatter plot of simulated pretest score and test score
change for children having either value 0 or 1 on property P.
Latent abilities depended on P and did not change between tests.
doi:10.1371/journal.pone.0095949.g002
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numerical magnitudes. Specifically, arithmetic performance tends

to be better the more the child estimates numerical magnitudes in

a linear rather than logarithmic way. This fact has been

demonstrated in many studies, as reviewed by Booth and Siegler

[4]. The objective of their 2008 study was to investigate whether

arithmetic learning was also influenced by this property. The

researchers’ hypothesis was that if children are trained on

arithmetic problems, their arithmetic learning will be influenced

by the linearity of their numerical magnitude estimations.

Specifically, they predicted that children who make more linear

estimations of numerical magnitudes would benefit more from

training on arithmetic problems.

Methods
Booth and Siegler [4] studied 105 first graders over several

sessions across a few weeks, collecting a number of measures. For

the purposes of our paper, only the below-mentioned measures are

relevant as they were the ones that entered the critical analysis.

Numerical magnitude estimations. The first session in-

cluded the task of estimating the positions of 26 different numbers

(ranging between 2 and 98) on a number line between 0 and 100.

The researchers then measured the linearity of a child’s

estimations by calculating the proportion of variance in estima-

tions explained by a best-fitting linear expression of the numbers to

be estimated. This measure will be referred to as R2
Lin.

Test of arithmetic performance. A set of four arithmetic

problems (9+18, 26+27, 17+29, and 49+43) was used to test

arithmetic performance. Children were asked to solve these

problems in the first session. A child’s performance on the problem

set was measured as the average absolute error in answers divided

by 100, referred to as ‘‘percent absolute error’’ (PAE). For

instance, a child giving answers 28, 50, 50, and 80 to these

problems would have made absolute errors 1, 3, 4, and 12,

yielding an average absolute error of 5 and a PAE of 0.05.

In two subsequent sessions, children received training on the

same problems. (Training occurred in four between-subject

conditions using different instructional procedures. However, all

conditions were pooled in the analysis of the main hypothesis.

Because this is the analysis we are concerned with in the present

paper, the fact that there were different conditions will not be

relevant to our account.) At the end of training, children were

again given the same problems to solve. In a follow-up session two

weeks after the end of training, children solved the same set of

problems for a third time. Thus, three performance measures were

collected: pre-training (PAEpre), at end-of-training (PAEend), and at

follow-up (PAEfollowup).

Analysis
Booth and Siegler [4] analyzed their data using regressions that

included pre-training performance (PAEpre) as a covariate. An

impressive 39 percent of the variance in the test score difference

PAEend2PAEpre was explained by a multiple regression on R2
Lin

and PAEpre, with both factors coming out as highly significant

predictors. A similar result was obtained for the difference in

performance between the first session and the follow-up session:

R2
Lin and PAEpre together explained 29 percent of the variance in

PAEfollowup2PAEpre, again with both factors coming out as highly

significant predictors. The researchers concluded that arithmetic

learning is influenced by the linearity of children’s numerical

magnitude estimations.

Assessing the risk of a regression artifact. Note that this

study fits perfectly with our previous theoretical discussion. The

researchers’ aim was to study how arithmetic learning is influenced

by a certain continuous property, linearity of numerical magnitude

estimations, operationalized by the quantity R2
Lin. This property is

known to be related to arithmetic ability. The first condition for a

regression artifact was therefore likely to be satisfied. Further,

learning was measured as the change in test scores. These test

scores measure how far off children were from the correct answers

to difficult arithmetical problems. As a measure of arithmetic

ability, this must be expected to suffer from substantial random

errors. Children are likely to use guessing when they don’t know

the right answer. They will then, by chance, sometimes come close

to the right answer and sometimes not. Thus, the second critical

condition for a regression artifact was also likely to be satisfied.

Because the researchers used a method of statistical analysis that

suffers from a regression artifact under the combination of these

two critical conditions, we must expect their results to be biased. It

might be that their finding was entirely due to the regression

artifact. This calls for a reanalysis of their data.

Aim of reanalysis. Our aim is to estimate to what extent

Booth and Siegler’s results suffer from the regression artifact and

to assess whether or not their research conclusion still holds when

the regression artifact is accounted for. To estimate the size of the

regression artifact, we have conducted some additional analyses.

We thank Julie Booth for sharing the raw data for this reanalysis.

The data are presented in three scatter plots.

Relation between initial test score and R2
Lin. Figure 3

plots children’s pretest score (PAEpre) against their linearity of

numerical magnitude estimations (R2
Lin). Recall that the test score

measures percent absolute error in responses, so lower values mean

better performance. It is clear from Figure 3 that children higher on

R2
Lin performed better on the pretest. This is the first of the two

conditions that give rise to the regression artifact. A simple linear

regression of PAEpre on R2
Lin yields an estimated value of 20.36 of

the unstandardized coefficient. This corresponds to parameter b in

our simulation earlier. However, it should be noted that the

relation in Figure 3 seems to be non-linear, whereas the simulation

model was linear.

Relation between test score change and R2
Lin. Figure 4

plots the test score difference to the end-of-training test (PAEend2

PAEpre) against R2
Lin. Similarly, Figure 5 plots the test score

difference to the follow-up test (PAEfollowup2PAEpre) against R2
Lin.

No correlations are evident in these plots. Statistical tests confirm

that there was no statistically significant link between linearity of

Figure 3. Scatter plot of pre-training performance (PAEpre)
plotted against linearity of numerical magnitude representa-
tion (R2

Lin).
doi:10.1371/journal.pone.0095949.g003
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numerical magnitude estimations (R2
Lin) and improvement in test

scores from training, neither when measured at end of training

(PAEend2PAEpre), rS = .07, p = .47, nor when measured at follow-

up (PAEfollowup2PAEpre), rS = .03, p = .76. To avoid any misun-

derstanding of this result, let us point out that the meaning of the

positive sign of the non-significant correlations is that linearity of

numerical magnitude estimations negatively correlated with test

score improvement. In other words, this analysis if anything

suggests an effect in the opposite direction to Booth and Siegler’s

reported finding. Next we replicate Booth and Siegler’s analysis.

Including the initial test score (PAEpre) as a covariate in a linear

regression of the test score differences on R2
Lin, we find estimated

unstandardized coefficients of 20.27 at end of training and 20.26

at the follow-up session. These values correspond to the outcome

variable in our simulations in Study 2 (although with the opposite

sign because PAE test scores measure negative ability). However,

note that the real data do not support that relations between

variables are linear, which they were assumed to be in our

simulations.

Lord’s paradox in a continuous setting. Taken together,

the above analyses show that the dataset exhibits our continuous

version of Lord’s paradox. On the one hand, simple correlations

indicate that linearity of numerical magnitude estimations does not

have any positive influence on test score improvement. On the

other hand, when the pretest score was included as covariate the

results clearly indicate a positive influence on test score improve-

ment. Which of these results best reflect the answer to the real

research question – whether there is any influence on arithmetic

learning? Recall that we have very good reason to believe that test

scores include substantial random variation due to guessing. When

a child happens to make worse guesses on the second test than on

the first test it is incorrect to infer that the child’s arithmetic ability

has deteriorated. Similarly, it is incorrect to infer that a child’s

arithmetic ability has improved if a child happens to make better

guesses on the second test than on the first test. For this reason, it is

crucial to estimate how much of children’s changes in test scores

are due to learning and how much is due to random variation.

Arithmetic learning. Did arithmetic learning take place at

all? In Figures 3 and 4 it is not obvious to the eye that later test

scores showed any systematic improvement from the pretest. A

statistical analysis reveals that the median change in test score from

pre-training to end of training was small (0.022, less than a fifth of

the standard deviation of 0.118) but statistically significant,

p = .014, signed rank test. From pre-training to follow-up,

however, there was no statistically significant change in scores

(median = 0.005), p = .72, signed rank test. This indicates that

arithmetic learning was weak or even non-existent. Changes in test

scores seem mainly to be driven by random variation. We must

therefore expect biased regression to the mean to be a strong

driver of the results of Booth and Siegler’s analysis. Figure 6

provides another way of looking at the data. Here we plot test

score change (to the end-of-training session) against the pretest

score. To illustrate R2
Lin in the same plot we have conducted a

median split of children into ‘‘more linear’’ and ‘‘less linear’’ (i.e.,

above and below median on R2
Lin, respectively). Figure 6 is

analogous to how we presented Lord’s paradox in simulated data

Figure 4. Scatter plot of change in performance from the first
session to the end of training (PAEend2PAEpre) plotted against
linearity of numerical magnitude representation (R2

Lin).
doi:10.1371/journal.pone.0095949.g004

Figure 5. Scatter plot of change in performance from the first
session to follow-up (PAEfollowup2PAEpre) plotted against
linearity of numerical magnitude representation (R2

Lin).
doi:10.1371/journal.pone.0095949.g005

Figure 6. Scatter plot of change in performance from the first
session to end of training (PAEend2PAEpre) plotted against
initial test score. Black and white dots signify ‘‘more linear’’ and ‘‘less
linear’’ children according to a median split based on R2

Lin.
doi:10.1371/journal.pone.0095949.g006
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in Figure 2. In the plot it is apparent that children who performed

well on the pretest tended to exhibit a worsening of performance

on the next test. To reconcile this pattern with the hypothesis that

test scores differences reflect actual learning, we must accept that

children with high ability tend to lose ability from arithmetic

training. This seems implausible. Indeed, Booth and Siegler’s

theoretical argument clearly assumes that training increases

ability.
The regression artifact in a no-training period. Our final

analysis capitalizes on Booth and Siegler’s inclusion of a follow-up

test. Between the tests at end-of-training and follow-up no child

received training. This is as close as an empirical study can get to

ascertain that no actual learning affects the results between two

tests. As suggested by van Breukelen [3], we obtain an estimate of

the size of the regression artifact by running the same statistical

method using the first posttest as a pretest to the second posttest. In

other words, we regress the test score difference PAEfollowup2

PAEend on R2
Lin, including PAEend as a covariate. The result is an

estimated unstandardized coefficient of 20.25. This result is

essentially identical to the results of our replication of Booth and

Siegler’s analyses, which yielded unstandardized coefficients of 2

0.27 and 20.26. We conclude that there is no evidence of any

influence of R2
Lin on test score changes beyond the influence that

stems from random variation in test scores.

Discussion

In this paper we have discussed a pitfall in regression analysis of

individual differences in change of test scores between a pretest

and a posttest. Inclusion of the pretest score as a covariate may

produce a regression artifact of a kind that has been discussed for a

long time in the statistical literature [1–3,5–6]. The problem arises

when two critical conditions hold, namely, when the property used

to predict learning is correlated with initial ability and when

individuals’ test scores show some random change between tests

even if their actual ability does not change. Under the second

condition, test scores on the second test will exhibit regression to

the mean. Under the first condition, this will make individuals that

happen to have the same pretest score tend to differ systematically

on the second test. The effect is that inclusion of the pretest score

as a covariate in the regression will make it look as if the property

actually predicts learning, when it actually just predicts the pretest

score. Whereas previous literature has focused on the case when

the property is group membership, we have discussed how the

same problem occurs in a continuous setting.

In an empirical study, Booth and Siegler [4] included the pretest

score as a covariate in their regression analyses of how arithmetic

learning is influenced by the linearity of numerical magnitude

estimations. Their study satisfied the conditions under which the

regression artifact arises and their results were therefore likely to

be biased. Reanalysis showed that their data are consistent with

the null hypothesis that arithmetic learning is not influenced by the

linearity of numerical magnitude estimations. In other words, the

null hypothesis should not be rejected. Thus, the regression artifact

made the researchers draw the wrong conclusion about their

research question. We first pointed out the regression artifact to

the journal that published the original study. They responded that

they receive far more manuscripts than they can publish and

therefore declined to publish a refutation. We would like to offer

an alternative viewpoint: Readers have reason to believe that

publication in a highly selective journal is a reliable sign of

correctness. Journals would safeguard this reliability by making

sure to inform their readers in all (hopefully few) cases where the

conclusions of research they have published later turns out to be

seriously flawed. Such a practice would also help to avoid

prolonged popular belief in incorrect findings [7].
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