
Implementation of Vernier TDCs in 8-bit
Microcontrollers

Lars E. Bengtsson
Dept. of Physics

University of Gothenburg
SE-412 96 Gothenburg, Sweden
lars.bengtsson@physics.gu.se

Abstract—This paper discusses the aspects of implementing a
TDC with Vernier resolution in a microcontroller system. Results
will show that the proposed solution have a potential time
resolution corresponding exactly to the theoretically expected
resolution (equal to the time difference in the Vernier clocks’
period), but also that there is an inherent sample-to-sample
uncertainty due to the fact that microcontrollers cannot compare
two (running) timer registers in hardware. The moment of
coincidence of the Vernier clocks must be detected in software
and that will generate an uncertainty in the coincidence detection
that depends on the microcontroller architecture. In the design
example proposed, a time resolution of 2 ns is achieved using a
PIC microcontroller clocked with a 20 MHz. However, the
proposed method is general and resolution is limited only to the
frequency matching of the two Vernier clocks.

Keywords—TDC; Time-to-Digital Converter; Vernier clock;
microcontroller;

I. INTRODUCTION (Heading 1)
A Time-to-Digital Converter (TDC) is either analog or

counter-based [1-3] but this work will treat only digital TDCs.
A “basic” counter-based TDC simply counts the pulses from a
reference clock during the start and stop interval, see Fig 1.

Since the start and stop signals are asynchronous with the
reference clock, there will be an inherent ±1 count uncertainty,
and hence the time resolution is limited by the reference
clock’s speed [1]. However, increasing the clock frequency
raises two issues; first of all the power consumption increases
and secondly, there is a limit to the maximum oscillator
frequency that can be implemented in CMOS [1]. (If the start
and stop signals are asynchronous to the reference clock, the
resolution can be increased by averaging.)

Fig. 1. Schematic principle of basic counting TDC

If we implement a counting TDC in a microcontroller-
based system, the time resolution will be limited by the
system’s clock frequency. An 8-bit PIC-controller from
Microchip with a 20 MHz crystal will internally run at 5 MHz
[2]. Using its embedded 16-bit timers for time interval
measurements, using the basic counting technique, would
render a maximum time resolution of ±200 ns. Hence we need
more advanced methods in order to achieve the time resolution
characteristic of high-resolution TDCs.

There are several different ways to increase the time
resolution of a digital TDC, such as time-stretching [5-10] and
tapped delay lines [1,11-12] and they can in some cases be
implemented in a microcontroller solution [13]. In this work,
we will discuss the possibility to implement a Vernier TDC in
a microcontroller design.

In the Vernier principle, high-resolution TDCs are
implemented by employing two oscillators with slightly
different frequencies f1 = 1/T1 and f2 = 1/T2, respectively [1, 2,
10, 14-16]. The start and stop signals trigger one oscillator
each, see Fig. 2.

Oscillator 1, with frequency f1 (<f2), starts on the positive
edge of the start signal. The second oscillator, with frequency
f2, is triggered on the positive edge of the stop signal. Since f2
> f1, the pulses from the f2-oscillator will eventually catch up
with the pulses from the f1-oscillator. When this happens, both
counters are stopped (and notice that at this point both
oscillators have generated exactly the same number of pulses,
i.e. N1 = N2 = N). From Fig. 2 it is obvious that

() TNTTNTNTN ∆×=−=−= 212211τ (1)

Fig. 2. The Vernier principle

start

stop &
reset

n-bit
counter

S

R
Q

τ

tc

τ

start

stop

τ

osc1

osc2

T1

T2

coincidence

N1

N2

∆T = T1-T2

978-1-4673-6386-0/14/$31.00 ©2014 IEEE

The time resolution depends on the time difference ∆T of
the clocks’ cycle periods. This idea could be implemented in a
microcontroller as long as it has two separate timers/counters
that can be clocked independently. This paper discusses how
to implement such a Vernier TDC in a microcontroller, we
will present some experimental results and discuss the
problems involved in the implementation and their origin.

II. IMPLEMENTATION
In order to implement a Vernier TDC in a

microcontroller, we need a controller with two independent
timers, and at least one of them must be able to count external
pulses (asynchronously); the other timer can be clocked by the
internal system clock.

The theoretical time resolution corresponds to the
difference in cycle periods between f1 and f2, i.e.

21 11 ffT −=∆ , which indicates an uncertainty of T∆± in
the time interval measurement. For example, if f1 = 4.950
MHz and f2 = 5.000 MHz, the theoretical time resolution
would be 1/4.95 – 1/5 = 2.02 ns. This should be compared to
the time resolution of 200 ns that we would get if we only
used the system clock and one timer.

However, in order to reach the theoretical resolution
limit, we must have a perfect detection of the moment of the
timers’ coincidence in Fig. 2, i.e. the reading of the timers’
content must not be delayed but occur exactly at the moment
of coincidence. This is typically not possible when using
microcontroller timers. The reason for that is that for a perfect
detection of the moment of coincidence, the timer registers in
Fig. 3 must be compared in hardware (and preferably an
interrupt should be generated and the timers’ content should
be latched automatically).

Actually, most microcontrollers have such a mechanism;
a typical general-purpose microcontroller has a “compare”
mechanism that can generate an interrupt when a timer register
equals the content of a compare register. This is indeed a
comparison in hardware and there is no latency between the
detection of the moment of coincidence and the interrupt
signaling (or, the latency is predictable and deterministic).
However, the comparison register must always be a “fixed”
dedicated register. The Vernier TDC in Fig. 2 would require
that we could compare two running timer registers in hardware
and no microcontroller has been found that can do that. Hence,
the comparison of the two timer registers must be performed
in firmware as indicated in Fig. 4.

Fig. 3. A controller with two independent counter registers

Fig. 4. Comparison in firmware of two running counter registers

For hardware-architectural reasons this kind of

algorithms will necessarily consume more than one instruction
cycle (ic) and if one of the clocks (f2) runs on the system clock
(Timer2 is updated synchronously on every ic) the moment of
timers coincidence may statistically occur at any time during
the execution of the algorithm; if the algorithm consumes m
ics, the probability of detecting the exact moment of
coincidence is only 1/m, see Fig. 5.

To (partly) overcome this problem, the algorithm must
not try to detect the moment of coincidence (Timer2 =
Timer1), but must rather detect the moment when the content
of Timer2 equals or exceeds Timer1 (Timer2 ≥ Timer1).
Consequently, if we read Timer2 (= N2) when the condition in
Fig. 4 is true, the actual moment of coincidence may have
occurred at any moment in the interval [N2−m..N2] (where m
is the number of ics consumed by the firmware algorithm in
Fig. 4). Since this will have a uniform distribution, the best
estimator is the mid-range value:

2

ˆ
2

mNNcoinc −= (2)

III. METHODS AND MATERIAL
The Vernier TDC idea described above was implemented

in an 8-bit PIC18F controller from Microchip (PIC18F4580).
It was clocked by a 20 MHz crystal and since the internal
system clock runs at ¼ of the external crystal frequency, the
internal system speed is 5 MHz. This system clock was used
to increment one timer. The other timer was incremented
asynchronously by an external 4.950 MHz oscillator, see Fig.
6.

Fig. 5. Registers are compared only on every mth ic

Fig. 6. Schematic drawing of implementation

f1

f2

1
0 Timer1, 16-bit

1
0 Timer2, 16-bit

Is
Timer2≥Timer1

? No

 Yes

Timer1:

Timer2:

τ

Timer1>Timer2
Timer1=Timer2

Timer2>Timer1

Moment of
coincidence

Reading

m ics

 start stop

INT1
INT0

T1CKI

TX

OSC1

OSC2
20.0000 MHz

PIC18F4580
f1 = 4.950 MHz

To Host PC

The edges of the pulse to be measured were used to
trigger external interrupts; the positive edge triggered a
context switch that started Timer1 and the negative edge
triggered a context switch that started Timer2. The timer
registers were compared in firmware and data were sent to a
host Windows PC via an asynchronous serial data link.

From equation (2) it is clear that the uncertainty of the
moment of coincidence depends on m, and for that reason it is
important to design the firmware in such a way that the time
consumed by the algorithm in Fig. 4 is as short as possible
(minimize m). For that reason the algorithm in Fig. 4 was
written in assembler while the rest of the firmware was written
in C (using a C-compiler from Hi-TECH). Even so, the
minimum number of clock cycles that could execute the
algorithm in Fig. 4 was 30 ics. Also, by waiting for the start
and stop signals in idle mode, the microcontroller’s interrupt
latency is minimized [17].

Since we need to reset two 16-bit timers in an 8-bit
environment, it will take two ics to do that.

First we clear a buffer register which will be automatically
loaded into the timer’s eight most significant bits (msb) when
we clear the eight least significant bits (lsb) on the next ic [4].

However, we can clear the buffer registers before we put
the CPU to sleep and if we clear the eight lsbs as the first
instruction after wake-up, the 16-bit timer will be cleared
immediately after wake-up. Notice that this is executed even
before the ISR (Interrupt Service Routine) is called; the
controller first executes one instruction after wake-up (the one
right after the sleep-instruction) and then does the context
switch.

Still the ISR needs to be served and even if we only clear
an interrupt flag in the ISR, there is always some ISR overhead
that will consume some ics. This is compiler dependent and the
Hi-TECH C-compiler used in this work (PICC-18 Lite) needs
64 ics to execute the ISR and return. Hence, there is no delay in
the clearing of the timer registers, but due the ISR overhead in
the compiler used, there is a limit to the minimum time interval
that can be detected. If the system clock runs at 5 MHz, this
minimum limit is 12.8 µs (64/5 µs).

IV. EXPERIMENTAL RESULTS
The TDC in Fig. 6 was tested and calibrated by using

start-stop pulses of well-known durations. A HP8013B pulse
generator was used for this purpose. The calibration result is
illustrated in Fig. 7. The calibration samples in Fig. 7 represent
the average of 416 samples.

In order to get an idea of the precision of the sample-to-
sample values, histograms were plotted for a large number of
samples corresponding to the same input pulse duration. Fig. 8
illustrates the histogram of 416 samples for a pulse duration of
52.58 µs.

V. DISCUSSION
The gradient of 486 counts/µs in Fig. 7 corresponds

exactly to the theoretically predicted resolution of 2.02 ns (per
count). The upper range limit was measured to 131 µs and this
also agrees very well with the theoretical value (216 × 2.02 ns

= 132 µs). The lower limit depends on the ISR overhead as
described in the previous section and was measured to 16 µs
which is slightly larger than the theoretical value (12.8 µs).
The sample distribution in Fig. 8 has a standard deviation of
41 counts. This sample-to-sample uncertainty has two main
contributions:

1. The standard uncertainty of the pulse width was 0.02 µs
(measured with a digital Tektronix oscilloscope,
TDS5000). With a sensitivity of 486 counts, this
uncertainty corresponds to 10 counts.

2. Look at Fig. 6. The timer incremented by the system
clock is controlled by the external 20 MHz crystal which is
stable on a ppm-level. However, the other timer is
incremented by the external 4.95 MHz clock source. This
clock source was generated by an Agilent 33220A function
generator and its frequency stability was measured (also
with a Tektronix TDS5000 oscilloscope). The frequency
was measured to 4.950 ± 0.007 MHz (1-sigma interval).
Hence, there is a non-negligible frequency uncertainty in
the update rate of Timer1 of 0.14%. The mean value of the
data in Fig. 8 is 25433 counts and a frequency uncertainty
of 0.14% corresponds to 36 counts.

If we assume these contributions to be independent, the
total expected uncertainty is [18]:

 373610 222
2

2
1 =+=+= σσσ (3)

which agrees very well with the experimentally observed
value of 41.

The shape of the distribution histogram also needs some
comments. It is interesting to see that some values seem to be
missing. This is expected; since executing if (Timer2>=
Timer1) in firmware consumes 30 ics, only every 30th count
value should really appear at all, but due to the noise in both
the pulse width and the external clock source, some
intermediate values will appear. Also, we really don’t know
the distribution of the pulse width noise and the external clock
frequency.

Fig. 7. Calibration diagram for the microcontroller TDC

Fig. 8. Typical data distribution diagram

VI. CONCLUSIONS
This work has demonstrated how to implement a high-

resolution TDC in a simple 8-bit microcontroller. The
controller needs to have two counters/timers and a low-power
idle mode that allows peripherals to run during hibernation.
The design proposed here improves the TDC resolution by a
factor of 100 (from 200 ns to 2 ns) but the method is general
and is limited only by the frequency difference of the Vernier
clocks. However, due to uncertainties caused by firmware
overhead and Vernier clock jitter, the 1-shot precision is only
±30 ns. Very accurate Vernier clocks are necessary in order to
improve the precision which suggests that both clocks must be
crystal based. This may be a problem though, because if both
clocks are crystal based, only certain frequencies are available
and the time resolution will depend on what quartz crystals are
available. This might lead to a trade-off between resolution
and precision but remember that due to the firmware induced
uncertainty, averaging will most likely be necessary anyway.
Hence, if we use a tunable external clock for Timer2, the
trade-off is really between resolution and bandwidth.

In the proposed design, the microcontroller enters the
low-power sleep mode and just waits for the start and stop
edges. If the design requires the controller to be in an active
mode, the minimum pulse width limit will be affected, since
the registers in this case must be cleared in the ISR and that
adds at least 64 ics to the minimum pulse width that can be
detected.

The main advantage of the proposed TDC
implementation is the performance/price ratio. The design has
not been tested for temperature dependence, but can most
likely be designed for excellent temperature (in)dependence
by using crystal based oscillators.

There are some things in this design that could certainly
be improved in the future. First of all, a stable clock source for
Timer1 is necessary and a high-resolution precise counter

should be used to determine the exact pulse widths instead of a
digital oscilloscope. More precise measurements of the
deviation from linearity in Fig. 7 need also be performed.

REFERENCES

[1] Henzler, S. “Time-to-Digital Converters”, Springer Series in Advanced
Microelectronics 29, doi 10.1007/978-90-481-8628-0__2, 2010.

[2] Jovanovic, G.S. and Stojcev, M.K., Appl. Math. Inform. and Mech. vol
1, 1(2009), pp 11-20.

[3] Webster, J.G. “Time Interval Measurement.” Wiley Encyclopedia of
Electrical and Electronics Engineering. [online] (Updated 13 July,
2007). Available at <http://onlinelibrary.wiley.com/doi/10.1002/
047134608X.W3989.pub2/pdf> [Accessed December 2011].

[4] Microchip Inc. “PIC18F2480/2580/4480/4580 Data Sheet”, DS39637D,
Tuscon, Arizona, 2009. [online] (Updated: November 16, 2009)
Available at <http://ww1.microchip.com/downloads/en/Device
Doc/39637d.pdf> [Accessed December 27, 2011].

[5] Agilent Technologies. “Fundamentals of Electronic Counters”,
Application Note 200, [online] (Updated October 15, 2004). Available at
<http://www.leapsecond.com/pdf/ an200.pdf> [Accessed December 23,
2011].

[6] Nutt R., Rev. Sci. Instrum. 39, pp. 1342-1345, 1968.
[7] Ward, J. Time Interval Measurement Literature Review. [online]

(Updated March 29, 2011). Available at <http://www.rrsg.ee.uct.ac.za/
members/jon/activities/timcs.pdf> [Accessed December 19, 2011].

[8] Kalisz, J., Pawlowski, M. and Pelka, R., J. Phys. E: Sci. Instrum. vol 18,
pp. 444-452, 1985.

[9] Räisänen-Ruotsalainen, E., Rahkonen, T. and Kostamovaara, J., IEEE
Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1507-1510, October
2000.

[10] Agilent Technologies. “Fundamentals of Time Interval Measurements”,
Application Note 200-3, [online] (Updated October 15, 2004). Available
at <http://www.leapsecond.com/pdf/an200-3.pdf> [Accessed December
16, 2011].

[11] Levine, P.M. and Roberts, G.W. “A high-resolution flash time-to-digital
converter and calibration scheme.” In: ITC International Test
Conference 2004. [online] (Updated May 16, 2006). Available at
<http://www.itcprogramdev.org/ itc2004proc/papers/pdfs/0040_2.pdf>
[Accessed December19, 2011].

[12] Roberts, G.W. and Ali-Bakhshian, M., IEEE Transactions on Circuits
and Systems-II: Express Briefs, vol. 57, no. 3, March 2010.

[13] Bengtsson, L. Rev. Sci. Instr., 83, 045107 (2012), doi
10.1063/1.3700192.

[14] Porat D.I., IEEE Transactions on Nuclear Science, vol. 20(5), pp. 36-51,
October 1973.

[15] Kang, X., Liu, Y, Sun, X, Wang, S., Yan, X., Zhang, Z., Wu, Z. and Jin,
Y., 2008 International Conference on BioMedical Engineering and
Informatics, doi: 10.1109/BMEI.2008.350, 2008.

[16] Amiri, A. M., Boukadoum, M and Khouas, A., IEEE Transactions on
Instrumentation and Measurement, vol. 58, no 3, March 2009.

[17] Reverter F. and Pallàs-Areny R., 2006. Elsevier: Sensors and Actuators
A, 127, pp 74-79, 2006.

[18] Adams, T. M., 2002. “G104-A2LA Guide for Estimation of
Measurement Uncertainty in Testing”, [online] (Updated February 29,
2008) Available at <http://www.a2la.org/guidance/ est_mu_testing.pdf>
[Accessed January 2, 2012].

