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Abstract—This paper discusses the aspects of implementing a 
TDC with Vernier resolution in a microcontroller system. Results 
will show that the proposed solution have a potential time 
resolution corresponding exactly to the theoretically expected 
resolution (equal to the time difference in the Vernier clocks’ 
period), but also that there is an inherent sample-to-sample 
uncertainty due to the fact that microcontrollers cannot compare 
two (running) timer registers in hardware. The moment of 
coincidence of the Vernier clocks must be detected in software 
and that will generate an uncertainty in the coincidence detection 
that depends on the microcontroller architecture. In the design 
example proposed, a time resolution of 2 ns is achieved using a 
PIC microcontroller clocked with a 20 MHz. However, the 
proposed method is general and resolution is limited only to the 
frequency matching of the two Vernier clocks. 

Keywords—TDC; Time-to-Digital Converter; Vernier clock; 
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I.  INTRODUCTION (Heading 1) 
A Time-to-Digital Converter (TDC) is either analog or 

counter-based [1-3] but this work will treat only digital TDCs. 
A “basic” counter-based TDC simply counts the pulses from a 
reference clock during the start and stop interval, see Fig 1. 

Since the start and stop signals are asynchronous with the 
reference clock, there will be an inherent ±1 count uncertainty, 
and hence the time resolution is limited by the reference 
clock’s speed [1]. However, increasing the clock frequency 
raises two issues; first of all the power consumption increases 
and secondly, there is a limit to the maximum oscillator 
frequency that can be implemented in CMOS [1]. (If the start 
and stop signals are asynchronous to the reference clock, the 
resolution can be increased by averaging.) 

 
 
 
 
 
 
 
 

Fig. 1. Schematic principle of basic counting TDC 

If we implement a counting TDC in a microcontroller-
based system, the time resolution will be limited by the 
system’s clock frequency. An 8-bit PIC-controller from 
Microchip with a 20 MHz crystal will internally run at 5 MHz 
[2]. Using its embedded 16-bit timers for time interval 
measurements, using the basic counting technique, would 
render a maximum time resolution of ±200 ns. Hence we need 
more advanced methods in order to achieve the time resolution 
characteristic of high-resolution TDCs. 

There are several different ways to increase the time 
resolution of a digital TDC, such as time-stretching [5-10] and 
tapped delay lines [1,11-12] and they can in some cases be 
implemented in a microcontroller solution [13]. In this work, 
we will discuss the possibility to implement a Vernier TDC in 
a microcontroller design. 

In the Vernier principle, high-resolution TDCs are 
implemented by employing two oscillators with slightly 
different frequencies f1 = 1/T1 and f2 = 1/T2, respectively [1, 2, 
10, 14-16]. The start and stop signals trigger one oscillator 
each, see Fig. 2. 

Oscillator 1, with frequency f1 (<f2), starts on the positive 
edge of the start signal. The second oscillator, with frequency 
f2, is triggered on the positive edge of the stop signal. Since f2 
> f1, the pulses from the f2-oscillator will eventually catch up 
with the pulses from the f1-oscillator. When this happens, both 
counters are stopped (and notice that at this point both 
oscillators have generated exactly the same number of pulses, 
i.e. N1 = N2 = N). From Fig. 2 it is obvious that 

( ) TNTTNTNTN ∆×=−=−= 212211τ  (1) 

 
 
 
 
 
 
 
 

Fig. 2. The Vernier principle 
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The time resolution depends on the time difference ∆T of 
the clocks’ cycle periods. This idea could be implemented in a 
microcontroller as long as it has two separate timers/counters 
that can be clocked independently. This paper discusses how 
to implement such a Vernier TDC in a microcontroller, we 
will present some experimental results and discuss the 
problems involved in the implementation and their origin. 

 

II. IMPLEMENTATION 
In order to implement a Vernier TDC in a 

microcontroller, we need a controller with two independent 
timers, and at least one of them must be able to count external 
pulses (asynchronously); the other timer can be clocked by the 
internal system clock. 

The theoretical time resolution corresponds to the 
difference in cycle periods between f1 and f2, i.e. 

21 11 ffT −=∆ , which indicates an uncertainty of T∆±  in 
the time interval measurement. For example, if f1 = 4.950 
MHz and f2 = 5.000 MHz, the theoretical time resolution 
would be 1/4.95 – 1/5 = 2.02 ns. This should be compared to 
the time resolution of 200 ns that we would get if we only 
used the system clock and one timer. 

However, in order to reach the theoretical resolution 
limit, we must have a perfect detection of the moment of the 
timers’ coincidence in Fig. 2, i.e. the reading of the timers’ 
content must not be delayed but occur exactly at the moment 
of coincidence. This is typically not possible when using 
microcontroller timers. The reason for that is that for a perfect 
detection of the moment of coincidence, the timer registers in 
Fig. 3 must be compared in hardware (and preferably an 
interrupt should be generated and the timers’ content should 
be latched automatically). 

Actually, most microcontrollers have such a mechanism; 
a typical general-purpose microcontroller has a “compare” 
mechanism that can generate an interrupt when a timer register 
equals the content of a compare register. This is indeed a 
comparison in hardware and there is no latency between the 
detection of the moment of coincidence and the interrupt 
signaling (or, the latency is predictable and deterministic). 
However, the comparison register must always be a “fixed” 
dedicated register. The Vernier TDC in Fig. 2 would require 
that we could compare two running timer registers in hardware 
and no microcontroller has been found that can do that. Hence, 
the comparison of the two timer registers must be performed 
in firmware as indicated in Fig. 4. 

 
 
 
 
 
 
 
 
 
Fig. 3. A controller with two independent counter registers 

 
 
 
 
 
Fig. 4. Comparison in firmware of two running counter registers 
 
For hardware-architectural reasons this kind of 

algorithms will necessarily consume more than one instruction 
cycle (ic) and if one of the clocks (f2) runs on the system clock 
(Timer2 is updated synchronously on every ic) the moment of 
timers coincidence may statistically occur at any time during 
the execution of the algorithm; if the algorithm consumes m 
ics, the probability of detecting the exact moment of 
coincidence is only 1/m, see Fig. 5.  

To (partly) overcome this problem, the algorithm must 
not try to detect the moment of coincidence (Timer2 = 
Timer1), but must rather detect the moment when the content 
of Timer2 equals or exceeds Timer1 (Timer2 ≥ Timer1). 
Consequently, if we read Timer2 (= N2) when the condition in 
Fig. 4 is true, the actual moment of coincidence may have 
occurred at any moment in the interval [N2−m..N2] (where m 
is the number of ics consumed by the firmware algorithm in 
Fig. 4). Since this will have a uniform distribution, the best 
estimator is the mid-range value: 
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III. METHODS AND MATERIAL 
The Vernier TDC idea described above was implemented 

in an 8-bit PIC18F controller from Microchip (PIC18F4580). 
It was clocked by a 20 MHz crystal and since the internal 
system clock runs at ¼ of the external crystal frequency, the 
internal system speed is 5 MHz. This system clock was used 
to increment one timer. The other timer was incremented 
asynchronously by an external 4.950 MHz oscillator, see Fig. 
6. 

 
 
 
 
 
 
 
 
 

Fig. 5. Registers are compared only on every mth ic 
 
 
 
 
 
 
 

Fig. 6. Schematic drawing of implementation 
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The edges of the pulse to be measured were used to 
trigger external interrupts; the positive edge triggered a 
context switch that started Timer1 and the negative edge 
triggered a context switch that started Timer2. The timer 
registers were compared in firmware and data were sent to a 
host Windows PC via an asynchronous serial data link.  

From equation (2) it is clear that the uncertainty of the 
moment of coincidence depends on m, and for that reason it is 
important to design the firmware in such a way that the time 
consumed by the algorithm in Fig. 4 is as short as possible 
(minimize m). For that reason the algorithm in Fig. 4 was 
written in assembler while the rest of the firmware was written 
in C (using a C-compiler from Hi-TECH). Even so, the 
minimum number of clock cycles that could execute the 
algorithm in Fig. 4 was 30 ics. Also, by waiting for the start 
and stop signals in idle mode, the microcontroller’s interrupt 
latency is minimized [17]. 

Since we need to reset two 16-bit timers in an 8-bit 
environment, it will take two ics to do that.  

First we clear a buffer register which will be automatically 
loaded into the timer’s eight most significant bits (msb) when 
we clear the eight least significant bits (lsb) on the next ic [4]. 

However, we can clear the buffer registers before we put 
the CPU to sleep and if we clear the eight lsbs as the first 
instruction after wake-up, the 16-bit timer will be cleared 
immediately after wake-up. Notice that this is executed even 
before the ISR (Interrupt Service Routine) is called; the 
controller first executes one instruction after wake-up (the one 
right after the sleep-instruction) and then does the context 
switch. 

Still the ISR needs to be served and even if we only clear 
an interrupt flag in the ISR, there is always some ISR overhead 
that will consume some ics. This is compiler dependent and the 
Hi-TECH C-compiler used in this work (PICC-18 Lite) needs 
64 ics to execute the ISR and return. Hence, there is no delay in 
the clearing of the timer registers, but due the ISR overhead in 
the compiler used, there is a limit to the minimum time interval 
that can be detected. If the system clock runs at 5 MHz, this 
minimum limit is 12.8 µs (64/5 µs). 

IV. EXPERIMENTAL RESULTS 
The TDC in Fig. 6 was tested and calibrated by using 

start-stop pulses of well-known durations. A HP8013B pulse 
generator was used for this purpose. The calibration result is 
illustrated in Fig. 7. The calibration samples in Fig. 7 represent 
the average of 416 samples.  

In order to get an idea of the precision of the sample-to-
sample values, histograms were plotted for a large number of 
samples corresponding to the same input pulse duration. Fig. 8 
illustrates the histogram of 416 samples for a pulse duration of 
52.58 µs. 

V. DISCUSSION 
The gradient of 486 counts/µs in Fig. 7 corresponds 

exactly to the theoretically predicted resolution of 2.02 ns (per 
count). The upper range limit was measured to 131 µs and this 
also agrees very well with the theoretical value (216 × 2.02 ns 

= 132 µs). The lower limit depends on the ISR overhead as 
described in the previous section and was measured to 16 µs 
which is slightly larger than the theoretical value (12.8 µs). 
The sample distribution in Fig. 8 has a standard deviation of 
41 counts. This sample-to-sample uncertainty has two main 
contributions: 

1. The standard uncertainty of the pulse width was 0.02 µs 
(measured with a digital Tektronix oscilloscope, 
TDS5000). With a sensitivity of 486 counts, this 
uncertainty corresponds to 10 counts. 

2. Look at Fig. 6. The timer incremented by the system 
clock is controlled by the external 20 MHz crystal which is 
stable on a ppm-level. However, the other timer is 
incremented by the external 4.95 MHz clock source. This 
clock source was generated by an Agilent 33220A function 
generator and its frequency stability was measured (also 
with a Tektronix TDS5000 oscilloscope). The frequency 
was measured to 4.950 ± 0.007 MHz (1-sigma interval). 
Hence, there is a non-negligible frequency uncertainty in 
the update rate of Timer1 of 0.14%. The mean value of the 
data in Fig. 8 is 25433 counts and a frequency uncertainty 
of 0.14% corresponds to 36 counts.  

If we assume these contributions to be independent, the 
total expected uncertainty is [18]: 

 373610 222
2

2
1 =+=+= σσσ  (3) 

which agrees very well with the experimentally observed 
value of 41. 

The shape of the distribution histogram also needs some 
comments. It is interesting to see that some values seem to be 
missing. This is expected; since executing if (Timer2>= 
Timer1) in firmware consumes 30 ics, only every 30th count 
value should really appear at all, but due to the noise in both 
the pulse width and the external clock source, some 
intermediate values will appear. Also, we really don’t know 
the distribution of the pulse width noise and the external clock 
frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Calibration diagram for the microcontroller TDC 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Typical data distribution diagram 

VI. CONCLUSIONS 
This work has demonstrated how to implement a high-

resolution TDC in a simple 8-bit microcontroller. The 
controller needs to have two counters/timers and a low-power 
idle mode that allows peripherals to run during hibernation. 
The design proposed here improves the TDC resolution by a 
factor of 100 (from 200 ns to 2 ns) but the method is general 
and is limited only by the frequency difference of the Vernier 
clocks. However, due to uncertainties caused by firmware 
overhead and Vernier clock jitter, the 1-shot precision is only 
±30 ns. Very accurate Vernier clocks are necessary in order to 
improve the precision which suggests that both clocks must be 
crystal based. This may be a problem though, because if both 
clocks are crystal based, only certain frequencies are available 
and the time resolution will depend on what quartz crystals are 
available. This might lead to a trade-off between resolution 
and precision but remember that due to the firmware induced 
uncertainty, averaging will most likely be necessary anyway. 
Hence, if we use a tunable external clock for Timer2, the 
trade-off is really between resolution and bandwidth. 

In the proposed design, the microcontroller enters the 
low-power sleep mode and just waits for the start and stop 
edges. If the design requires the controller to be in an active 
mode, the minimum pulse width limit will be affected, since 
the registers in this case must be cleared in the ISR and that 
adds at least 64 ics to the minimum pulse width that can be 
detected. 

The main advantage of the proposed TDC 
implementation is the performance/price ratio. The design has 
not been tested for temperature dependence, but can most 
likely be designed for excellent temperature (in)dependence 
by using crystal based oscillators. 

There are some things in this design that could certainly 
be improved in the future. First of all, a stable clock source for 
Timer1 is necessary and a high-resolution precise counter 

should be used to determine the exact pulse widths instead of a 
digital oscilloscope. More precise measurements of the 
deviation from linearity in Fig. 7 need also be performed.  
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