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In this paper we consider the problem of estimating parameters in ordinary differential equations given
discrete time experimental data. The impact of going from an ordinary to a stochastic differential equa-
tion setting is investigated as a tool to overcome the problem of local minima in the objective function.
Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the
objective functions to be minimized in the parameter estimation procedures are regularized in the sense
that the number of local minima is reduced and better convergence is achieved. The advantage of using
stochastic differential equations is that the actual states in the model are predicted from data and this
will allow the prediction to stay close to data even when the parameters in the model is incorrect. The
extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accu-
rate calculation of the gradient of the objective function. The method is illustrated using in silico data
from the FitzHugh–Nagumo model for excitable media and the Lotka–Volterra predator–prey system.
The proposed method performs well on the models considered, and is able to regularize the objective
function in both models. This leads to parameter estimation problems with fewer local minima which
can be solved by efficient gradient-based methods.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

This paper concerns the problem of estimating parameters in
dynamical systems described by ordinary differential equations
given discrete time measurement data. Dynamical systems and
ordinary differential equations (ODEs) are applicable in a large
number of areas, for example biology, medicine, aerospace, and
process engineering. For an introduction to dynamical systems
described by ordinary differential equations, see for example [1].

Estimation of parameters in ordinary differential equations
given discrete time measurement data is a complex problem,
which has been addressed by several authors in many different
fields. Given a model structure and discrete time measurement
data we are interested in identifying the values of the parameters
in the model that best agree with observed data. The definition of
deviation from the model can differ in various ways. Schittkowski
[2] uses an geometric approach where the goal is to minimize the
quadratic distances between model and data while Bohlin and
Graebe [3], Särkää [4] and Kristensen et al. [5] use a probabilistic
approach. Throughout this paper, we will utilize the probabilistic
approach.

As discussed by Schittkowski [2], there are a number of possible
difficulties regarding parameter estimation in dynamical systems.
These include convergence to local minima, flat objective functions
and non-differentiable terms in the system dynamics. Existing
methods for parameter estimation in dynamical systems include
least-square methods, multiple shooting methods [6–8], stochastic
methods [9], and hybrid methods [10,11]. For a review on the
parameter estimation problem in biological systems, see [12].

We propose a method observed to regularize the objective func-
tion used for parameter estimation in dynamical systems. The
introduction of uncertainty in the underlying model can be utilized
to decrease the number of local minima, which in turn leads to a
less complex optimization problem that can be solved by efficient
gradient-based methods. To regularize the objective function and
overcome the problem of local minima, the introduction of noise
in the differential equations describing the dynamics is considered.
By extending the deterministic model to a stochastic model the
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objective function may be better suited for a gradient-based search
method. The reason for this is that when the underlying model is
described by a stochastic differential equation the state and its
covariance are updated at each measurement. This will in turn lead
to that the model predictions will stay closer to the measurements
even when the parameters values are far from being optimal.

Stochastic differential equations have received great attention
in a large number of fields, including finance, pharmaceutics, and
systems biology. For an introduction to the theory and numerical
solution of stochastic differential equations, see [13–16]. Stochas-
tic differential equations serve as a natural way of introducing
uncertainty into a deterministic model. In contrast to the classical
approach where uncertainty only exists in the measurements, sto-
chastic differential equations can provide a more flexible frame-
work to account for deviations in states and parameters that
describe the underlying system.

Parameter estimation in stochastic differential equations is an
area where several methods are available, as reviewed in [17].
For applications to pharmacokinetic and pharmacodynamic mod-
els, see [18,19]. There are several available software tools for
parameter estimation in stochastic differential equations. Bohlin
and Graebe [3] presented a parameter estimation scheme and an
associated software named IdKit, further developed into a more
sophisticated tool named MoCaVa [20]. Another estimation soft-
ware tool is CTSM (Continuous Time Stochastic Modelling) [5,21],
developed at DTU Compute.

However, the observation that the introduction of noise in the
system dynamics provides a mean to regularize the optimization
problem associated with the parameter estimation in ordinary dif-
ferential equations seems to have been unnoticed. This paper illus-
trates this fact using two different models, the FitzHugh–Nagumo
model describing excitable media [22,23] and the Lotka–Volterra
predator–prey system. A gradient-based search method is pro-
posed, using the extended Kalman filter as a state estimator. In
addition, sensitivity equations for the underlying system and the
filter updating equations are derived, which are used for an accu-
rate gradient calculation.
2. Modeling of dynamical systems

Consider a continuous dynamical system described by a set of n
potentially nonlinear ordinary differential equations

dxt

dt
¼ fðxt ;ut; t; hÞ; xðt0Þ ¼ x0ðhÞ; ð1Þ

where t 2 R denotes time, xt 2 Rn is the state vector, ut 2 Rm is the
input, and h 2 Rp is the parameter vector. The function f is a func-
tion describing the underlying dynamics. Furthermore, the system
is sampled at discrete time points tk; k ¼ 1; . . . ;N under Gaussian
white noise according to

yk ¼ hðxtk
;utk

; tk; hÞ þ ek; k ¼ 1; . . . ;N; ð2Þ

where yk 2 Rl is the vector of output variables at discrete time point
tk and h is a function describing the measurement structure. Here
ek 2 Rl is a l-dimensional white noise process with
ek � Nð0; Sðutk

; tk; hÞÞ.
In the model above the uncertainty is introduced through the

measurement Eq. (2). However, this assumption may not always
be sufficient. Such situations may arise if the underlying system in-
cludes stochastic parts, if the model fails to capture the true
dynamics, or if some of the parameters in the model are uncertain.

By extending the ordinary differential Eq. (1) to a stochastic dif-
ferential equation (SDE) the dynamical system includes a stochas-
tic part which we refer to as the system noise (also known as
diffusion). The system noise serves as a tool to account for all the
unknown phenomena which are not captured by the deterministic
model, for example approximations, modeling errors and oversim-
plifications. Hence the noise in the model is divided into two parts,
measurement noise and system noise. The stochastic differential
equation model written on differential form is

dxt ¼ fðxt;ut; t; hÞdt þ Rðxt ;ut ; t; hÞdxt ; xðt0Þ ¼ x0ðhÞ; ð3Þ

where Rðxt ;ut; t; hÞdxt is the system noise with R 2 Rn�q and x 2 Rq

is a standard q-dimensional Wiener process, also known as Brown-
ian motion. Note that R ¼ 0 corresponds to the initial model (1).

The solution x to (3) is a stochastic process, which is described
by its transition probability density pðx; t; y; sÞ. The transition
probability density pðx; t; y; sÞ is given by the solution to the Kol-
mogorov-Forward partial differential equation (with dependence
on ut and h omitted)

@pðx; t; y; sÞ
@t

¼ �
Xn

i¼1

@

@xi
pðx; t; y; sÞfiðx; tÞð Þ

þ 1
2

Xn

i¼1

Xn

j¼1

@2

@xi@xj
pðx; t; y; sÞðRðx; tÞRTðx; tÞÞij
� �

; ð4Þ

which has no closed form solution, except for a few special cases.
The interested reader is referred to [13,14].

3. Parameter estimation in stochastic differential equations

Given a parameterized model and a set of measurements, we
seek the parameter values h that give a model in good agreement
with observed data. This is commonly referred to as the parameter
estimation problem. As mentioned in the introduction, we need to
define a measure of deviation from the model.

Due to the random elements in our underlying model we will
utilize the probabilistic approach where we work in a maximum
likelihood setting. Hence the goal is to find the parameters that
maximize the likelihood function of a given sequence of measure-
ments. To put the objective in a formal way; given a sequence of
measurements y1; y2; . . . ; yk; . . . ; yN , let

Yk , fyk; . . . ; y1g ð5Þ

denote the collection of measurements up to time point tk. The like-
lihood function is defined as

Lðh;YNÞ , pðYNjhÞ; ð6Þ

which is a function of the parameters h. By repeated use of Bayes law,
PðA \ BÞ ¼ PðAjBÞPðBÞ, the likelihood function can be rewritten as

Lðh;YNÞ ¼
YN
k¼2

pðykjYk�1; hÞ
 !

pðy1jhÞ: ð7Þ

An exact evaluation of the likelihood function is in general
computationally infeasible since it requires solving the Kolmogo-
rov-Forward partial differential Eq. (4). Since the differential
equations are driven by Wiener processes and the increments of a
Wiener process are Gaussian, it may be reasonable to assume that
the conditional densities can be approximated reasonably well by
Gaussian densities [21], which are characterized by their mean
and covariance. We introduce the notation

ŷkjk�1 , EfykjYk�1; hg ð8Þ

Rkjk�1 , VarfykjYk�1; hg: ð9Þ

For a Gaussian random variable with mean ŷkjk�1 and covariance
Rkjk�1 the likelihood function is

Lðh;YNÞ ¼
YN

k¼2

exp � 1
2�

T
k R�1

kjk�1�k

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRkjk�1Þ

p
ð
ffiffiffiffiffiffiffi
2p
p

Þl

0
@

1
Apðy1jhÞ; ð10Þ
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where �k ¼ yk � ŷkjk�1. Taking the negative logarithm gives the neg-
ative log likelihood

lðhÞ ¼ lðh;YNÞ ¼ � lnðLðh;YNÞ

¼ 1
2

XN

k¼1

lnðdetðRkjk�1ÞÞ þ �T
k R�1

kjk�1�þ l lnð2pÞ
� �

; ð11Þ

which is to be minimized with respect to the parameter vector h.
Here R1j0 corresponds to the initial covariance. Since the objective
function depends nonlinearly on the parameters h there may be
several local minima, which can introduce severe problems in the
optimization routine. The aim of this paper is to demonstrate the
impact of the introduction of system noise on the presence of local
minima in the objective function (11).

4. Extended Kalman filter

When the underlying model is described by a stochastic differ-
ential equation the states can change randomly due to the random
fluctuations in the Wiener process. Given measurements and the
underlying structure the state and covariance of the system have
to be estimated in order to compute the residuals �k and output
covariance Rkjk�1. To do this, we make use of the extended Kalman
filter (EKF), which is a state estimator in nonlinear continuous-dis-
crete state space models [24] of the form

dxt ¼ fðxt ;ut; t; hÞdt þ Rðut; t; hÞdxt; xðt0Þ ¼ x0ðhÞ;

yk ¼ hðxk;uk; tk; hÞ þ ek:

The EKF is an extension of the Kalman filter [25] to nonlinear mod-
els. Note that there is no state-dependence in the expression for the
system noise R. When there is state-dependent diffusion the EKF
may fail and a transformation, known as the Lamperti transform,
of the stochastic differential equation may be necessary. For appli-
cations of the Lamperti transform to stochastic differential equa-
tions with state-dependent diffusion, see [26].

When the dynamics is linear, the Kalman filter provides an opti-
mal state estimator for a given parameter vector h. For nonlinear
models the EKF uses a first order linear approximation of the mod-
el. The EKF provides estimates of the conditional expectation of the
state x̂kjk ¼ Efxtk

jYk; hg and its covariance Pkjk ¼ Varfxtk
jYk; hg. Fol-

lowing the notation of [21,27] the scheme is as follows. Given ini-
tial conditions x̂1j0 ¼ x0 and P1j0 ¼ P0 and linearizations

At ¼
@f
@xt
jxt¼x̂tjk

ð12Þ

Ck ¼
@h
@xt
jxt¼x̂kjk�1

ð13Þ

the state and state covariance are predicted between two consecu-
tive measurement time points according to

dx̂tjk

dt
¼ fðx̂tjk;ut ; t; hÞ; t 2 ½tk; tkþ1�; ð14Þ

dPtjk

dt
¼ AtPtjk þ PtjkAT

t þ RRT ; t 2 ½tk; tkþ1�: ð15Þ

From the predicted state and state covariance we get the output
prediction equations

ŷkjk�1 ¼ hðx̂kjk�1;uk; tk; hÞ; ð16Þ

Rkjk�1 ¼ CkPkjk�1CT
k þ S: ð17Þ

From the state covariance Pkjk�1 and measurement covariance Rkjk�1

the Kalman gain is given by

Kk ¼ Pkjk�1CT
k R�1

kjk�1: ð18Þ
Finally the state and its covariance are updated according to

x̂kjk ¼ x̂kjk�1 þ Kk�k; ð19Þ

Pkjk ¼ Pkjk�1 � KkRkjk�1KT
k ; ð20Þ

where the residual �k is given by

�k ¼ yk � ŷkjk�1: ð21Þ

Note that the Kalman gain Kk is a combination of the state
covariance and output covariance. If there is no system noise at
all (R ¼ 0), we trust the model completely. If there is no measure-
ment variance at all (S ¼ 0), we trust the measurements com-
pletely. Depending on the relation between the covariances, the
updated state prediction is more or less influenced by the mea-
surement. This will in turn lead to that the model prediction is
closer to the actual measurements. This is the core and strength
of the EKF and we refer the interested reader to [24]. Pseudocode
for the EKF is given in Algorithm 1.

Algorithm 1. Extended Kalman Filtering

Given a parameter vector h and initial state x0 with covariance
P0

for k ¼ 1 to N do
Predict state and covariance with (14) and (15)
Predict output and output covariance with (16) and (17)
Compute Kalman gain with (18)
Update state and covariance with (19) and (20)

end for
Return x̂kjk and Pkjk for k ¼ 1; . . . ;N
5. Differentiation of the extended Kalman filter equations

We are considering the problem of finding a minimum of the
nonlinear objective function lðhÞ. When the underlying system is
described by a system of ordinary differential equations there
may be problems with gradient-based methods due to the existence
of local minima in the objective function [2]. However, in this paper
we demonstrate how the objective function can be regularized to
obtain an objective function with fewer or no local minima. In the
case of no local minima the objective function can be optimized
by efficient gradient-based methods to achieve global convergence.

The optimization method used in this paper is the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, which is a Quasi-New-
ton optimization algorithm. BFGS is a robust, well-established
method for gradient-based optimization and we omit the details
of the algorithm for the sake of simplicity. For information about
BFGS, see for example [28].

Since we consider a gradient-based optimization method we
need to calculate the gradient @lðhÞ

@h
. A common choice for calculating

the gradient is to approximate it by finite differences, something
that is utilized in CTSM [21]. In this paper we instead derive the
analytical expression of the gradient based on differentiation of
the underlying system of equations.

Differentiation of the objective function (11) with respect to the
ith component of the parameter vector h gives the ith component
of the gradient according to

dlðhÞ
dhi
¼ 1

2

XN

k¼1

d�T
k

dhi
R�1

kjk�1�kþ�T
k

dR�1
kjk�1

dhi
�kþ�T

k R�1
kjk�1

d�k

dhi

 

þd lnðdetðRkjk�1ÞÞ
dhi

�
: ð22Þ

Using the fact that

dR�1

dhi
¼ �R�1 dR

dhi
R�1 ð23Þ



Fig. 1. Voltage V (black, solid) and recovery variable R (purple, dashed) for the
FitzHugh–Nagumo model with a ¼ 0:2; b ¼ 0:2, and c ¼ 3. The voltage is sampled
at discrete time points tk ¼ 0;1;2; . . . ;20, shown as black dots. The measurement
variance was set to S ¼ 0:1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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together with

d lnðdetðRkjk�1ÞÞ
dhi

¼ Tr R�1
kjk�1

dRkjk�1

dhi

� �
; ð24Þ

the final expression for the ith component dlðhÞ
dhi

of the gradient is

dlðhÞ
dhi
¼ 1

2

XN

k¼1

d�T
k

dhi
R�1

kjk�1�k � �T
k R�1

kjk�1
dRkjk�1

dhi
R�1

kjk�1�k þ �T
k R�1

kjk�1
d�k

dhi

�

þTr R�1
kjk�1

dRkjk�1

dhi

� ��
: ð25Þ

To calculate this gradient, the partial derivatives d�k
dhi

and dRkjk�1

dhi
are

needed. They are obtained from the sensitivity analysis of the
EKF, which has been done in [4]. In this paper the model is extended
to allow for parameters in the output function h and measurement
covariance S. This has been utilized in [29,30].

Differentiation of the state predictions Eqs. (14) and (15) yields
the sensitivity equations. For convenience, the dependence on the
state, input, time, and parameters has been omitted below.

d
dt

dx̂tjk

dhi
¼ @f
@x̂tjk

dx̂tjk

dhi
þ @f
@hi

; t 2 ½tk; tkþ1�; ð26Þ

d
dt

dPtjk

dhi
¼ dAt

dhi
PtjkþAt

dPtjk

dhi
þdPtjk

dhi
AT

t þPtjk
dAT

t

dhi
þdRRT

dhi
; t2 ½tk;tkþ1�:

ð27Þ

In the same fashion we have the derivative of the output prediction
Eqs. (16) and (17)

dŷkjk�1

dhi
¼ @h
@x̂kjk�1

dx̂kjk�1

dhi
þ @h
@hi

; ð28Þ

dRkjk�1

dhi
¼ dCk

dhi
Pkjk�1CT

k þ Ck
dPkjk�1

dhi
CT

k þ CkPkjk�1
dCT

k

dhi
þ dS

dhi
: ð29Þ

Differentiation of the Kalman gain Eq. (18) and the residual Eq. (12)
gives

dKk

dhi
¼ dPkjk�1

dhi
CT

k R�1
kjk�1 þ Pkjk�1

dCT
k

dhi
R�1

kjk�1 þ Pkjk�1CT
k

dR�1
kjk�1

dhi
; ð30Þ

d�k

dhi
¼ � dŷkjk�1

dhi
: ð31Þ

At last the updating Eqs. (19) and (20) are differentiated according
to

dx̂kjk

dhi
¼ dx̂kjk�1

dhi
þ dKk

dhi
�k þ Kk

d�k

dhi
; ð32Þ

dPkjk

dhi
¼ dPkjk�1

dhi
� dKk

dhi
Rkjk�1KT

k � Kk
dRkjk�1

dhi
KT

k � KkRkjk�1
dKT

k

dhi
: ð33Þ

In the general case At ¼ Atðx̂tjk; hÞ and Ck ¼ Ckðx̂tjk; hÞ which implies
that

dAt

dhi
¼ @At

@x̂tjk

dx̂tjk

dhi
þ @At

@hi
; ð34Þ

dCk

dhi
¼ @Ck

@x̂tjk

dx̂tjk

dhi
þ @Ck

@hi
: ð35Þ

By applying the differentiated filter Eqs. (26)–(32), the gradient for
the likelihood can be obtained together with the ordinary filter
equations. This in turn leads to a more robust optimization proce-
dure since there is no need to approximate the gradient using finite
differences. Instead the step size control of the algorithm for
numerical integration of the total system of ordinary differential
equations is utilized to obtained necessary precision and accuracy
of both filter entities and their parametric sensitivities. When using
a combination of an optimization routine and integration scheme
utilization of finite differences may lead to unsatisfactory results
due to the adaptive step length in the integration scheme, see for
example [30]. With differentiated filter equations no such problems
occurs and the precision in the gradient only depends on how accu-
rate the used integration scheme is.

6. FitzHugh–Nagumo model for excitable media

In this section we consider a nonlinear model describing the re-
ciprocal dependencies of the voltage V across an exon membrane
and a recovery variable R summarizing outward currents. The
model was developed in [22,23] based on the model by Hodgkin
and Huxley [31]. The model is general and is also used to model
excitable media, for example heart tissue.

In [32], it is pointed out that the objective function for parame-
ter estimation in this model has a large number of local minima,
and an regularization method is proposed. The purpose of this
section is to illustrate how the likelihood can be regularized by
introducing system noise in the ordinary differential equation.

6.1. Model equations

The model is described by the following system of ordinary dif-
ferential equations

dV
dt
¼ c V � V3

3
þ R

 !
; ð36Þ

dR
dt
¼ �1

c
ðV � aþ bRÞ; ð37Þ

with parameters a; b, and c, initial conditions Vð0Þ ¼ �1 and
Rð0Þ ¼ 1 together with the measurement equation

yk ¼ VðtkÞ þ ek; ð38Þ

where ek � Nð0; SÞ. The voltage VðtÞ is assumed to be sampled be-
tween t ¼ 0 and t ¼ 20 at discrete time points tk ¼ 0;1;2; . . . ;20
with an additive measurement variance S ¼ 0:1, using parameter
values c ¼ 3; a ¼ 0:2, and b ¼ 0:2. In Fig. 1 the voltage VðtÞ (black,
solid) and recovery variable RðtÞ (purple, dashed) are plotted as
functions of time together with the sampled voltage (black dots).

The negative log likelihood function (11) is calculated as a func-
tion of the parameter values �1 6 a 6 2 and �1 6 b 6 2, keeping



Fig. 2. Illustration of the extended Kalman filter. Prediction with no system noise
(solid, black) and system noise (piecewise, blue) using different parameter values of
a. The black dots corresponds to measurements and the blue crosses corresponds to
state updates. Fig. 2(b) shows that even when the parameters are far from the true
values and the dynamic is different the prediction is still close to data. The
parameter b is set to 0.2 and system noise level R was set to a diagonal matrix with
diagonal elements 0.1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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c ¼ 3. The reason to only consider two parameters is for easy visu-
alization and demonstration. In Fig. 3(a) the objective function is
shown as a contour plot, where darker colors implies lower func-
tion values. From Fig. 3(a) we conclude that the objective function
has several local minima. Using gradient-based methods and start-
ing at a point far away from the global minima will lead to an
unsatisfactory estimate as the optimization most likely will end
up in a local minima. For this data set, the optimum (the maximum
likelihood estimate) was found to be â ¼ 0:18 and b̂ ¼ 0:31. The
reason that the optimum is not in the parameter values used for
simulation is that we sample with noise.

6.2. Regularization of the objective function

To regularize the objective function (11) the idea is to introduce
system noise in the ordinary differential equation system used in
the estimation procedure. The motivation of this is that when there
is no system noise in the ordinary differential system the predic-
tion of the model output, given by the expected value of the model
output conditioned on past measurements, will follow the noise
free trajectory, even when parameters values are far away from
their true values. When system noise is introduced in the system
the state prediction and its covariance will change at each mea-
surement according to the updating formula in the EKF. This is
due to the correlation between the variables introduced by the
use of stochastic differential equations instead of ordinary differ-
ential equations. This will in turn lead to that the prediction is clo-
ser to the measurements and the corresponding piecewise
trajectory will not drift away from the measured data. This concept
is illustrated in Fig. 2 where the state prediction for deterministic
model (black, solid) and the stochastic model (piecewise, blue)
are shown for two different values of a with b ¼ 0:2. The black dots
correspond to measurements and blue crosses state updates. From
Fig. 2(b) we see that even when the parameters are far from the
true values the prediction with the stochastic model is still close
to the measurements. The system noise level R was set to a diag-
onal matrix with diagonal elements 0.1.

Since R 2 Rn�q one has to choose the dimension q. In this paper
we restrict to the case q ¼ n. Hence R is a 2� 2 matrix which we
will assume to be diagonal with diagonal elements r, which im-
plies that the system noise is of equal magnitude in both states.
The corresponding stochastic differential equation system
becomes

dV ¼ c V � V3

3
þ R

 !
dt þ rdx1t; ð39Þ

dR ¼ �1
c
ðV � aþ bRÞdt þ rdx2t; ð40Þ

with measurement equation

yk ¼ VðtkÞ þ ek: ð41Þ

In the equations above, x1t and x2t correspond to the two compo-
nents of the 2-dimensional Wiener process xt .

The objective function is given by (11) with Rkjk�1 and �k given
by the EKF, described in Algorithm 1. Note that r ¼ 0 corresponds
to the deterministic model where Rkjk�1 ¼ S for all k. When r > 0
the output covariance Rkjk�1 changes in each time step according
to the filter equations. This will force the state estimate towards
the observed data. In Fig. 3 the corresponding contour plots of
the negative log likelihood (11) for the two cases r ¼ 0:1 and
r ¼ 0:2 are shown. The actual values of the likelihood is not of
large importance, instead we would like to draw the reader’s atten-
tion to the qualitative properties of the objective function com-
pared with Fig. 3(a).
6.3. Optimization benchmarking

To illustrate the regularizing effect on the optimization when
introducing system noise we optimize the negative log likelihoods
in the deterministic and stochastic setting, respectively. Using 50
random starting values of the parameters a and b between �1
and 2 the estimates from the two cases are compared to illustrate
the difference in convergence. In the case when system noise is
present, the noise level is set to r ¼ 0:2.

In Fig. 4 the estimates are shown together with the correspond-
ing contour plots. The black circles indicate the different initial
values for the optimizations and the red dots correspond to the
estimated parameters. The solid lines show the convergence of
the different starting values.

The plots of the attractor points reveal that local minima exist
in the deterministic model and that the optimization sometimes
converges to a local minima. For the deterministic model, 16 out
of the 50 optimizations ended up near the global minima. For the
model with system noise, all the 50 optimizations converged to
the same point (using the same starting values as in the determin-
istic model). The mean value for the 50 optimizations in the
stochastic model was �a ¼ 0:27 and �b ¼ 0:48. Since we now
consider a different model incorporating system noise, the
optimum is not the same as in the deterministic model (with opti-
mum â ¼ 0:18; b̂ ¼ 0:31). However, the values �a ¼ 0:27; �b ¼ 0:48
is still in the region of attraction of the global optimum in the
deterministic model. By introducing system noise in the ordinary



Fig. 3. Contour plots of the objective function (11) for different values of r with�1 6 a 6 2 and�1 6 b 6 2, keeping c ¼ 3, where darker colors implies lower function values.
As the system noise level increases, the objective function shows a more regular behavior without local minima.

Fig. 4. Estimated parameters visualized as points in the contour plots in the FitzHugh–Nagumo model. The dots correspond to the estimated parameters and the black circles
to the initial guesses. The solid lines show the convergence of the different starting values. A total of 50 random starting values was considered.
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differential equation the objective function is observed to be more
regular and smooth which has a large effect on the estimated
parameters.
To further demonstrate the results from the FitzHugh–Nagumo
model we will perform the same analysis on another model,
namely the Lotka–Volterra predator–prey model.
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7. Lotka–Volterra predator–prey model

As a second example of the implication of introducing noise in
the model we consider the Lotka–Volterra predator–prey system.
The system describes the interaction between two species (preda-
tor and prey) in an ecological system and shows an oscillatory
behavior which in turn leads to a hard optimization problem when
using gradient-based methods.
Fig. 5. Prey (black, solid) and predator (purple, dashed) in the Lotka–Volterra
system considered together with sampled data. The parameter values are
7.1. Model equations

The system of ordinary differential equations describing the
relation between the prey xðtÞ and predator yðtÞ is

dx
dt
¼ xða� byÞ; ð42Þ
a ¼ 1; b ¼ 0:2; c ¼ 1, and d ¼ 0:15. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
dy
dt
¼ �yðc� dxÞ; ð43Þ

with model parameters a; b; c, and d describing the interaction be-
tween the two species. The initial conditions are xð0Þ ¼ 10 and
yð0Þ ¼ 10. The two states are measured between t ¼ 0 and t ¼ 24
at discrete time points tk ¼ 0;0:5;1; . . . ;24 using parameter values
a ¼ 1; b ¼ 0:2; c ¼ 1, and d ¼ 0:15. In Fig. 5 we depict the states
with added measurement noise with variance S ¼ 0:1 in both states.
Fig. 6. Contour plots of the objective function (11) for different value r for parameters 0:
The negative log likelihood function (11) is calculated as a func-
tion of the parameter values a and d keeping b ¼ 0:2 and c ¼ 1
fixed. In Fig. 6(a) a contour plot of the negative log likelihood func-
tion is shown for 0:4 6 a 6 2 and 0:1 6 d 6 0:5. For the considered
data set, the optimum was â ¼ 1:00; d̂ ¼ 0:15, which is the same as
the parameter values used for simulation. This objective function is
very problematic for local, gradient-based optimization algorithm
4 6 a 6 2 and 0:1 6 d 6 0:5. The other parameters are fixed using b ¼ 0:2 and c ¼ 1.



Fig. 7. Estimated parameters visualized as points in the contour plots in the Lotka–Volterra model. The dots correspond to the estimated parameters and the black circles to
the initial guesses. The solid lines show the convergence of the different starting values. A total of 50 random starting values was considered.
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since it contains a large number of local minima, which is often the
case when considering a model describing oscillating phenomena.

7.2. Regularization of the log likelihood

Following the same approach as in the FitzHugh–Nagumo
model the likelihood is regularized by introducing system noise.
As before, we set R to a diagonal 2� 2 matrix with diagonal ele-
ments r. In Fig. 6 the contour plot of the objective function is
shown for two different levels of noise using parameter values
0:4 6 a 6 2 and 0:1 6 d 6 0:5.

7.3. Optimization benchmarking

Again, the objective function is minimized using 50 different
starting values of the parameters a and d. The minimization is per-
formed using the deterministic model and the model incorporating
system noise at level r ¼ 0:1. The estimated parameters for the 50
runs are shown in Fig. 7 with the respective contour plots. The
black circles indicate the different initial values for the optimiza-
tions and the red dots correspond to the estimated parameters.
The solid lines show the convergence of the different starting
values.

For the deterministic model the optimization converged to the
global minima 36 times out of the 50 optimizations. Note that
the valleys in the contour plot serve as attractors for the optimiza-
tion. For the model incorporating system noise all the 50 runs con-
verged to a value very close (mean value �a ¼ 1:00; �d ¼ 0:15) to the
global minima â ¼ 1:00; d̂ ¼ 0:15. We conclude that the optimum
point is the same up to two decimal places.

Regularizing the objective function using stochastic differential
equations works well for the Lotka–Volterra model as well using a
system noise level of r ¼ 0:1. The objective function shows no local
minima where the optimization can converge to a suboptimal
point. Instead, the objective function for the stochastic model has
a global minima which exists at a point very close to the parameter
values that was used for generating the measurements.
8. Conclusions and future work

In this paper, the extension of ordinary differential equations to
stochastic differential equations was considered as a tool for
regularizing the objective function for parameter estimation in
dynamical systems. Using two biological different examples, the
FitzHugh–Nagumo model and the Lotka–Volterra predator–prey
system, the method was described and demonstrated using in silico
data. The two examples revealed that the objective function could
be regularized using an appropriate choice of the system noise. By
allowing noise in the model itself, the state estimates are attracted
towards the observed data and the number of local minima in the
objective function are observed to be reduced.

Both the level of the system noise and the measurement covari-
ance will have an impact on the regularization. Since the Kalman
gain depends on both the state covariance and the measurement
covariance, the updating depends on the relation between those
two.

Moreover, it is important to note that the level of the system
noise could be treated as a design parameter in the optimization
and that the final estimate will depend on the selected level. How-
ever, starting with a larger level of the system noise and then
decreasing it as the optimization approaches the global minimum
may also be considered. This approach can be compared to the
method of Simulated annealing [33], when cooling of a tempera-
ture is used during the optimization. In the beginning of the opti-
mization the search space is increased by allowing a large
uncertainty (which would correspond to the system noise). The
uncertainty is then decreased during the optimization until the
optimization has reached an optimum. In contrast to stochastic
methods, gradient-based methods are known to be highly efficient
when applicable and the structure of the model can be used in the
optimization. Their applicability, though, is determined by general
properties of the objective function such as smoothness and a lim-
ited number of local minima, which is what our regularization ap-
proach tries to achieve. Stochastic optimization methods, on the
other hand, require a large number of function evaluations and
have much slower convergence but are necessary for irregular,
non-smooth, multi-modal objective functions. Using the regulariz-
ing method proposed in the paper to remove local minima together
with a gradient-based optimization method is a highly efficient ap-
proach, in particular if the regularization succeeds in removing all
but one minimum.

The gradient in the objective function was calculated by para-
metric sensitivities of the EKF for a robust calculation. This is a
great benefit to the frequently used finite difference approxima-
tion. When the system of differential equations becomes larger
we need to solve a large number of differential equations to obtain
the required sensitivities. However, in many cases the covariance
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of the states reaches a steady-state rather quickly. One possible
solution to decrease the number of differential equations is to com-
pute the steady-state solution of the matrix differential equation
describing the evolution of the covariance at each and every mea-
surement time point (a system of linear equations), provided this is
as a reasonable approximation. This has not been implemented in
the current version of the algorithm.

The proposed method has some similarities with the method of
multiple shooting [6–8]. In this method the time domain is divided
into disjoint intervals and the solution is re-initialized at the start
of each interval, giving a discontinuous model solution. Slack vari-
ables to be penalized are introduced in the objective function to
eventually achieve a continuous solution. However, the proposed
method using stochastic differential equations guarantees that
the states of the underlying system are estimated from data and
not only forces the output of the system to be close to the
measurements.

If some prior knowledge exists about the parameters one may
consider the Bayesian approach, as illustrated in [34,35]. In these
papers, the authors illustrate the benefit of using a prior when such
information about the parameters are available from previous
studies. The prior can then be used to make the parameters in
question identifiable. However, in our work we assume no á priori
information about the model parameters. In the case of flat prior
the Bayesian approach reduces to the maximum likelihood
approach which has been considered in this paper.

We conclude that a stochastic differential equation setup can be
used as a tool to regularize a complex objective function used for
parameter estimation in ordinary differential equations. The use
of SDEs, which is a model class including ODEs as a special case
(for R ¼ 0), provide means to regularize the estimation problem.
The cost of using this more complicated model structure is well
motivated by the reduced complexity of the associated optimiza-
tion problem (in terms of number of local minima). In this paper
we only considered objective functions depending on two param-
eters to allow for better visualization and understanding of the
behavior of the objective function. For future work, we suggest
an extended analysis to high dimensional problems that are known
to be multi-modal. This has not been investigated in the present
work, but will naturally be considered in a future paper.
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