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Abstract

Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However,
whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate
the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/2 transgenic mice (hSAA1 mice) with a
specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild
type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and
blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured.
Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face
preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but
undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt
controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to
wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis
development in mice.
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Introduction

Atherosclerosis is considered to be an inflammatory condition

[1]. Patients with atherosclerosis display moderately elevated

levels of clinical markers for inflammation, including C-reactive

protein and serum amyloid A (SAA) [2,3]. SAA is suggested as

a predictor for cardiovascular disease [2–5] and the SAA

protein is also present in the atherosclerotic lesion [6–8].

However, whether SAA directly influences the development of

atherosclerosis is unclear.

SAA1 and SAA2 are the acute phase isoforms of the serum

amyloid A protein family. In the acute phase, SAA is produced by

the liver [9,10] and serum levels can rise 1000-fold in response to

inflammatory stimuli [11,12]. However, the adipocyte is the main

source of SAA during non-acute phase in humans, and obese

individuals chronically display moderately elevated levels of SAA

[13,14]. SAA has been ascribed many different functions of which

some could influence the development of atherosclerosis [15–22].

In the circulation, SAA is an apolipoprotein and associates with

the high density lipoprotein (HDL) particle [23]. It has been

suggested that SAA is pro-atherogenic, for example by impairing

reverse cholesterol transport [15] or by promoting lipoprotein

retention in the vessel wall [8,19,20,24]. However, data suggesting

anti-atherogenic functions of SAA have also been presented

[18,22,25–27]. Furthermore, when studying direct effects of SAA

or SAA peptides on atherosclerosis in vivo, results are conflicting,

both increase and decrease in atherosclerosis development have

been reported [26,28]. Hence, whether SAA actively influences

the development of atherosclerotic lesions needs to be further

investigated.

We have previously reported the establishment of a transgenic

mouse strain expressing human SAA1 in the adipose tissue [29].

The mouse model mimics the state of non-acute phase in humans

where SAA originates from adipose tissue. As in humans, the SAA

protein associates with the HDL-particle in the hSAA1+/2

transgenic mice (hSAA1 mice) [29]. Hence, our mouse model

gives us an opportunity to investigate the effects of adipose tissue-

derived human SAA on atherosclerosis in vivo.
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Materials and Methods

Ethics Statement
The protocol for this study was approved by the local Ethics

Committee for Animal Studies at the Administrative Court of

Appeals (Gothenburg, Sweden) (Permit numbers 281-2008, 328-

2009, 264-2012).

Animals
We have previously reported the generation of the hSAA1+/2

transgenic mice expressing human SAA1 under the control of the

aP2 promoter in the adipose tissue [29]. To obtain hSAA1 mice

that spontaneously develop atherosclerosis, female hSAA+/2 mice

were mated with male ApoE2/2 mice, then back-crossed for 3

generations with ApoE2/2 mice to obtain hSAA1+/2 mice and

wild type (wt) littermates on a homozygous ApoE-deficient

background. Only male animals were used in the current

experiments. The animals were weaned at 3 weeks of age and

housed 3–5 per cage with free access to food and water. They were

kept in a 12-hour dark-light cycle under permanent temperature

conditions (25uC). Body weight was recorded weekly from 11

weeks of age until at the end of the experiment. At 35 weeks of age,

the animals were fasted for 4 hours and euthanized under Isoba

Vet (Schering-Plough, UK) anesthesia. Blood was collected with

heart puncture before perfusion of the circulatory system with

phosphate buffered saline. The aortic arch and the descending

part of the aorta were dissected and placed in paraformaldehyde

for subsequent en face preparation. Gonadal adipose tissue was

excised, snap frozen in liquid nitrogen and stored at 280uC for

further analysis.

En Face Preparations of Aorta and Quantification of
Atherosclerotic Lesions

The aortas were dissected free from perivascular tissue, cut open

longitudinally and pinned out flat on black silicone coated plates.

The atherosclerotic lesions were stained with Sudan IV (Sigma-

Aldrich, St. Louis, MO) and digital images were captured.

Computer-assisted quantification of atherosclerotic lesion area

was performed with BioPix IQ 2.2.1 (Gothenburg, Sweden). The

extent of the atherosclerotic lesions was calculated as the

percentage of the aortic surface covered by atherosclerotic lesions.

RNA Preparations and Gene Expression Analysis
Tissue Lyser (Qiagen, Chatsworth, CA) was used to homogenize

gonadal adipose tissue before subsequent RNA isolation with the

RNeasy Lipid Tissue Mini kit (Qiagen). cDNA was generated from

the RNA preparations using the high capacity cDNA Reverse

Transcription kit (Applied Biosystems, Foster City, CA). Gene

expression was assessed using multiplex real-time PCR according

to standard protocol using standard curve quantification. The

following TaqMan Gene expression assays were used: rplp0

(Mm99999273_gh), SAA1/2 (Hs00761940_s1), Saa3

(Mm00441203_m1). Amplification and detection of PCR-prod-

ucts were performed using ViiA7 real-time PCR systems (Applied

Biosystems) and data was analyzed with ViiA7 ROU software

(Applied Biosystems).

Plasma Analyses
Plasma levels of human and mouse SAA were assessed using the

human SAA ELISA kit (Biosource, Camarillo, CA) and the mouse

SAA ELISA kit (Tridelta Development Ltd, Kildare, Ireland),

respectively. Plasma levels of cholesterol and triglycerides were

measured using Infinity Cholesterol and Infinity Triglycerides

(Triolab AB, Gothenburg, Sweden) with Multiconstituent Cali-

brator 1E65-04 (Abbott, Solna, Sweden) used as reference.

Statistical Analysis
The non-parametric Mann-Whitney U-test was used to

investigate differences between hSAA1 mice and their wt

littermates. Spearman rank correlation test was used to assess

correlation between adipose tissue hSAA1 gene expression and

plasma levels of hSAA. Possible differences in growth rate were

analyzed with repeated measures analysis of variance (ANOVA).

All statistical analyses were performed using PASW 19.0 (Chicago,

IL). Data are presented as mean 6 SEM. A p-value of less than

0.05 was considered significant.

Results

Animal Growth Curves
Male hSAA1 mice (n = 33) displayed no significant difference in

weight compared to wt controls (n = 23) at 11 weeks of age

(28.460.3 g and 28.860.3 g, respectively) or at 35 weeks of age

(37.260.6 g and 38.260.8 g, respectively). In line with previous

results [30], growth curves for male hSAA1 mice and their wild

type littermates were almost identical (data not shown).

SAA Gene Expression in Adipose Tissue and Plasma
Levels of SAA

The human SAA1/2 was expressed in gonadal adipose tissue in

hSAA1 mice and undetectable in wt mice. Plasma levels of human

SAA were in the same range as previously reported for hSAA1

mice fed normal chow [29] and correlated with mRNA levels of

hSAA1 in gonadal adipose tissue. As shown previously in hSAA1

mice fed a high fat diet [29,30], mRNA levels of mouse Saa3 in

gonadal adipose tissue displayed a trend towards down-regulation

in hSAA1 mice compared to wt mice. The same pattern was also

seen for plasma levels of mouse SAA.

Plasma Levels of Cholesterol and Triglycerides
hSAA1 mice and their wt controls displayed similar plasma

levels of cholesterol (13.260.6 mmol/l and 14.060.7 mmol/l,

respectively) and triglycerides (1.560.1 mmol/l and

1.660.1 mmol/l, respectively).

Quantification of Atherosclerotic Lesions
Quantitative computer-assisted image analysis of aortas pre-

pared en face revealed no significant difference in atherosclerotic

lesion area in hSAA1 mice compared to wt mice (Figure 1). The

mean atherosclerotic lesion area was similar in the thoracic aorta

for hSAA1 and wt mice (0.8360.15% and 0.7960.18%,

respectively, p = 0.835). The hSAA1 mice displayed a trend

towards increased atherosclerotic lesion area in the aortic arch

compared to wt mice (10.6261.31% and 8.1161.22%, respec-

tively, p = 0.254). The opposite trend was seen in the abdominal

aorta where hSAA mice displayed decreased atherosclerotic lesion

area compared to wt mice (1.4360.34% and 3.5261.21%,

respectively, p = 0.720). However, none of these differences were

statistically significant and the mean atherosclerotic lesion area in

the whole aorta was similar in hSAA1 mice and wt mice

(3.0960.39% and 3.0860.60%, respectively, p = 0.306).

Discussion

We show in this study that chronic moderately elevated levels of

human SAA derived from adipose tissue does not affect

atherosclerotic lesion area in hSAA1+/2/ApoE2/2 mice. Data
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from aortas analyzed en face demonstrate that hSAA1 mice on an

ApoE-deficient background develop atherosclerotic lesions to the

same extent as their wt littermates in all sections of the aorta.

Several studies have reported links between elevated levels of

circulating SAA and atherosclerotic disease [2–5]. In addition,

SAA mRNA and SAA protein are present in atherosclerotic

lesions [6–8]. However, whether SAA plays a causal role in

atherosclerosis is unknown. Reports have suggested that SAA has

pro-atherogenic effects [8,15,19–21,31–33]. Overexpression of

human SAA1 in mice and moderate inflammation impair HDL-

mediated reverse cholesterol transport [15,34]. Previous studies

also suggest that SAA promotes lipoprotein retention in the vessel

wall by increasing proteoglycan synthesis in smooth muscle cells

and by facilitating the binding of HDL to proteoglycans

[8,19,20,24]. However, several reports also suggest anti-athero-

genic functions of SAA [18,22,25,26,35,36]. The SAA-induced

impairment of reverse cholesterol transport has been questioned

and some data suggest that SAA promotes cholesterol efflux from

macrophages, thereby having possible anti-atherogenic effects

[18,22,37,38].

In this study we have analyzed whether a chronic increase in

circulating hSAA derived from adipose tissue influences the

development of atherosclerosis in ApoE-deficient mice. We show

that the hSAA1 mice display atherosclerotic lesion areas to the

same extent as their wt littermates. Our results are in line with a

previous study where mice deficient in endogenous SAA develop

atherosclerosis to the same extent as their wt littermates [39].

However, one study has shown that increased levels of mouse

SAA1, induced by lentiviral over-expression, lead to increased

atherogenesis [28]. In contrast, administration of mouse SAA2

peptides to mice prevents and reverses atherosclerotic lesion

development [26]. The differences in results between in vivo

models may be due to the type of SAA investigated, the model

used or the source of SAA over-expression. Our hSAA12/+ mouse

model is designed to mimic the human state in non-acute phase

where SAA1 is produced in the adipose tissue [29]. The hSAA1+/

2 mice chronically display moderately elevated levels of human

SAA [29], and the model is suitable for investigating long-term

effects of the chronically elevated SAA levels often seen in patients

with obesity and/or atherosclerosis. We have previously shown

Figure 1. Quantification of atherosclerotic lesion area in en face prepared aortas from male hSAA1 (n = 33) and wt (n = 23) mice on
ApoE-deficient background. Lesion area with positive Sudan IV staining is expressed as the percentage of total area in (A) total aorta, (B) aortic
arch, (C) thoracic aorta and (D) abdominal aorta. Data are presented as mean 6 SEM. ns = non significant with Mann-Whitney U-test. (E) Photographs
illustrating atherosclerotic lesions in wt and hSAA1 mice.
doi:10.1371/journal.pone.0095468.g001
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that adipose tissue-derived human SAA does not influence the

development of insulin resistance or adipose tissue inflammation in

hSAA1 mice [30] and in this report we show that hSAA1 mice on

an ApoE-deficient background develop atherosclerotic lesions to

the same extent as their wt littermates in all sections of the aorta.

In conclusion, we here show that chronically moderately

elevated levels of human SAA derived from adipose tissue does

not affect atherosclerotic lesion area in hSAA1+/2/ApoE2/2

mice. Our data suggest that human serum amyloid A originating

from the adipose tissue is not a mediator of atherosclerotic disease

in mice.
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Performed the experiments: SA ASW K. Skålén K. Sjöholm. Analyzed the
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