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Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogen’s evolutionary tra-
jectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the
major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and ad-
hesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in
adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection
pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number
of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this
apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms
(SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolate’s toxicity solely
from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically
relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.

[Supplemental material is available for this article.]

A key factor affecting the severity and outcome of any infection

is the virulence potential of the infecting organism. If the viru-

lence phenotype could be determined directly from its genome

sequence, next generation sequencing technology would provide

for the first time an opportunity to make predictions of virulence at

an early stage of infection. Since the first whole genome sequence

of a free-living organism, Haemophilus influenzae, was published

(Fleischmann et al. 1995) sequencing technology has advanced to

a stage where a bacterial genome can be sequenced in a matter of

hours (Parkhill and Wren 2011; Didelot et al. 2012a; Eyre et al.

2012; Köser et al. 2012a). This has led to an explosion of genomic

data that has allowed us to monitor outbreaks in hospitals (Köser

et al. 2012b; Young et al. 2012; Harris et al. 2013; Sherry et al.

2013; Walker et al. 2013), track strains transitioning from carrier

to invasive status (Young et al. 2012), and perform detailed epi-

demiological studies to understand aspects of pathogen biology

(Castillo-Ramı́rez et al. 2011, 2012; Didelot et al. 2012b; McAdam

et al. 2012; Holden et al. 2013). While some success has also been

made in predicting phenotype from genotype, such as the anti-

microbial resistance (Farhat et al. 2013; Holden et al. 2013),

for more complex phenotypes, such as virulence, involving the

contribution of several genes, this has not yet been possible.

Furthermore, complex interactions between genes (epistasis) are

not apparent from genome sequences alone, nor is the effect of

epigenetics (Borrell and Gagneux 2011; Jelier et al. 2011; Beltrao

et al. 2012; Bierne et al. 2012).

Staphylococcus aureus is a major human pathogen, the treat-

ment of which has been complicated by the worldwide emergence

of multiple lineages that have acquired resistance to methicillin

(methicillin resistant S. aureus, MRSA) (Lowy 1998; Gordon and

Lowy 2008; Otto 2010). Its virulence is conferred by the activity

of many effector molecules which can be broadly grouped into

being either toxins (Lowy 1998; Gordon and Lowy 2008; Otto

2010)—factors that cause specific tissue damage in the host, or
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adhesins—factors that facilitate adherence to and invasion of host

tissues (Foster et al. 2014). The ability of toxins to lyse human cells

causes local tissue damage, facilitating immune evasion, release of

nutrients, dissemination within a host, and transmission to others

(Lowy 1998; Gordon and Lowy 2008; Otto 2010). A complex net-

work of regulatory proteins controls the expression of many in-

dividual toxins (Priest et al. 2012), such that various sites on the S.

aureus chromosome contribute to the overall toxicity of an in-

dividual isolate. The ability of S. aureus cells to bind human gly-

coproteins, such as fibrinogen and fibronectin, is another critical

determinant in disease outcome. It facilitates attachment to and

damage of host tissues, host cell invasion, and systemic dissemi-

nation (Foster et al. 2014). Several genes encode fibronectin- and

fibrinogen-binding proteins (e.g., fnbA, fnbB, clfA, clfB, eap, isdA,

emp, ebh, etc.), whose expression is again controlled by a complex

regulatory network (Priest et al. 2012). Similar to toxicity, many

sites on the chromosome can therefore contribute to the overall

adhesiveness of S. aureus, with many regulators common to both

adhesion and toxicity (Priest et al. 2012).

The success of epidemic MRSA clones such as USA300 and

sequence type (ST) 239 is attributed to a variation in their expres-

sion of either toxins or adhesins (Li et al. 2010; Otto 2010; Li et al.

2012). In response to the prevalence of the highly toxic USA300

clone, guidelines exist that recommend treating suspected

infections with vancomycin and a second antibiotic such as

clindamycin or linezolid to reduce toxin expression and the asso-

ciated disease severity (http://www.hpa.org.uk/webc/HPAwebFile/

HPAweb_C/1242630044068). It is therefore clear that the ability to

predict whether an infecting isolate is either highly adhesive or

highly toxic could allow clinicians to adapt treatment approaches

and increase their index of suspicion for disease complications for

infected individuals.

To address this, we adopted a genome-wide association study

(GWAS) and a machine learning approach to determine the fea-

sibility of predicting virulence from the genome sequences of

90 MRSA isolates. Our findings demonstrate that using whole-

genome sequence data for large collections of isolates to identify

genetic signature associated with a specific trait can be used to infer

complex phenotypes from genotype.

Results

Toxicity varies more than adhesiveness between S. aureus
isolates

We first assayed the ability of 90 independent ST239 isolates (listed

in Supplemental Table 1) to bind fibrinogen and fibronectin in

both exponential and stationary phase of growth, as this varies

and is believed to reflect different stages of infection. As expected,

adhesiveness for all isolates was higher in exponential than sta-

tionary phase (Supplemental Fig. 1A–D). However, across the 90

isolates only two differed significantly from the others, being

higher in both growth phases. The limited variability of this vir-

ulence phenotype suggests it may be under strong purifying se-

lection and would provide limited information on which to base

a prediction of disease severity.

We next measured the gross lytic activity of these isolates

using an immortalized T-cell line (Collins et al. 2008; Rudkin et al.

2012) (sensitive to beta toxin, gamma toxin, delta toxin, LukED

and PSMalpha1, alpha2 and alpha3) and lipid vesicles (Laabei et al.

2012) (sensitive to delta toxin and PSMalpha1, alpha2 and al-

pha3). No differences in lytic abilities were observed across these

two assays (Supplemental Fig. 2), suggesting the effect is either

largely PSM driven for the ST239 clone, or that the toxins assayed

here are co-regulated. We also measured the expression of alpha

toxin, as these lytic systems are not sensitive to this toxin’s activity,

but no variation across the isolates was observed (Supplemental

Fig. 3). However, the combined activity of the other toxins varied

widely between the 90 isolates, with an 18-fold difference be-

tween the most and least toxic isolates (Fig. 1A). Interestingly,

both the highly adhesive isolates identified above expressed low-

level toxicity. (NB: This clone does not contain the Panton-

Valentine leukocidin [PVL] containing phage [Castillo-Ramı́rez

et al. 2012].)

To understand how differences in toxicity are distributed

across the genetic variability that exists within this collection of

isolates we divided the data into three classes, scoring isolates as

expressing either high (red: levels of >63,000 units), medium

(amber: levels of 30,000:63,000 units) or low (green: levels of

<30,000 units) toxicity. These three data ranges were selected so

that a mid-toxicity range was included to account for possible

cumulative effects of genetic polymorphisms. This was mapped

onto a maximum likelihood tree based on the genome sequences

of these isolates, showing a broad distribution of toxicity pheno-

types across the genotypes as well as some clustering (Fig. 1B).

Toxicity correlates with disease severity in vivo

To verify that toxicity correlated with disease severity, two isolates

shown to have the highest and the lowest levels of toxicity in vitro

(HU13 and MU9, respectively) were selected and their in vivo

pathogenicity compared in a model of invasive infection (Josefsson

et al. 2008; Kenny et al. 2009). Mice were injected intravenously

with two different inoculum sizes; and murine survival, the de-

velopment of septic arthritis, and weight loss were monitored over

two weeks as a measure of disease severity (Josefsson et al. 2008;

Kenny et al. 2009). Uninfected control mice did not die, did not

develop septic arthritis, and did not lose weight over the duration

of this experiment. In each aspect of disease measured here, the

highly toxic HU13 isolate caused the most severe disease symp-

toms (Figs. 2A–F). It led to more deaths at both doses, although this

was not statistically significant, caused significantly more severe

arthritis at both doses at day 4, and resulted in significantly greater

weight loss at both doses across many time points.

The isolates tested here are from the same sequence type but

are not isogenic, and so other virulence-related traits may have

played a role in the disease outcome. However, as toxicity is well

established to affect disease severity, its variability even within this

closely related group of isolates suggests that the ability to predict

toxicity at an early stage of infection would be valuable clinical

information.

Identifying virulence-associated loci

We first employed a GWAS on the genomes of these 90 S. aureus

isolates to identify the genetic polymorphisms that associated with

the toxic phenotype. Out of a total of 3060 SNPs, we identified

100 that associated significantly with toxicity (with P < 0.05 after

correction for genomic inflation [Supplemental Fig. 4; Supple-

mental Tables 2A,B], using a frequency cutoff for the occurrence

of a polymorphism [i.e., successfully genotyped] across the pop-

ulation of >90% and a minor allele frequency of >5%). We further

identified 22 toxicity-associated indels, using the same cutoffs for

quality control. To test the effect of population structuring we used
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a hierarchical clustering algorithm (pvclust) in R, which showed

strong bootstrap support for three main clusters (Supplemental

Fig. 5), two of which contained all the highly toxic strains. We

then performed a permutation procedure in PLINK, correcting

for cluster membership, to obtain empirical P-values. Out of the

122 polymorphisms previously identified, only one (snp1360889)

fell out using this procedure. Unfortu-

nately, the limited sample size prevented

us from using a more detailed clustering

approach.

These SNPs and indels were distrib-

uted across the genome amongst mobile

genetic elements, genes involved in me-

tabolism and regulation, in hypothetical

genes, and in intergenic regions. Two

genes previously shown to affect the

expression of toxins contained signifi-

cantly associated SNPs: mecA (Rudkin et al.

2012) and agrC (Ji et al. 1995; Novick and

Geisinger 2008), which provided some

proof of principle for the validity of our

approach. Mobile genetic elements, such

as the S. aureus pathogenicity Island I

(SaPI1) (Ruzin et al. 2001) and the beta-

haemolytic converting phage (Bae et al.

2006), also contained several associated

genetic changes, implying that variabil-

ity in many diverse regions of the genome

contributes to the toxicity of a given iso-

late. Some of the polymorphisms appeared

to be in linkage disequilibrium (Supple-

mental Fig. 6A), which will increase the

rate of false positive associations, but many

were uniquely occurring (i.e., unique pat-

terns of polymorphisms across isolates)

(Supplemental Fig. 6B).

This GWAS approach requires no

evidence of repeatability of a signal, just

an excess association between a SNP and

the phenotype in question, and as such is

likely to produce false positives with

linkage disequilibrium and phylogenetic

structure affecting the outcome. We there-

fore performed a second, more stringent

approach, similar to those described in

other recent work (Farhat et al. 2013;

Sheppard et al. 2013), which instead re-

quires repeatable independent evolution

of a marker to be associated with the

phenotype (toxicity). Although this ap-

proach should have a lower false positive

rate, it is likely to produce a higher false

negative rate. We focused on four clus-

ters of isolates (indicated on Fig. 1B):

cluster 1 (isolates IU20–IU2), cluster 2

(isolates HU16–HU13), cluster 3 (isolates

MU2–IU7), and cluster 4 (isolates DEU3–

DEU19). Clusters 1 and 2 contained the

majority of the highly toxic isolates in

this study, whereas clusters 3 and 4 rep-

resent the closest related clusters of low

toxicity isolates to clusters 1 and 2. Where

toxicity-associated polymorphisms are found in both clusters 1 and

2 but are absent from clusters 3 and 4 suggests that they have arisen

independently. As such they are likely to be causative as they are

independent of phylogeny. Of the 121 polymorphic sites that asso-

ciated significantly with toxicity, only four were found in both high-

toxicity clusters (1 and 2) but not in their sister, low-toxicity clusters

Figure 1. Toxic activity of clinical ST239 isolates. (A) The toxic activity of 90 ST239 isolates was
assayed by incubating their supernatants with lipid vesicles containing a fluorescent dye. Dye release
due to toxin-mediated vesicle lysis is determined using a fluorometer. (B) A maximum likelihood tree
based on whole-genome sequences of the 90 isolates illustrating the distribution of the toxic activities of
each isolate. Toxicity has been color-coded (red for highly lytic, yellow/amber for moderately lytic, and
green for low level lysis). Clusters 1–4 are indicated for use in the stringent GWAS analysis.
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(3 and 4). All four of these polymorphisms (SNPs 78396, 2128192 and

indels 2111134 and 2147199, see Supplemental Tables 2, 3) reside on

mobile genetic elements, suggesting they may have been acquired

horizontally. Of these four polymorphic loci, the mecA gene (in

which SNP78396 resides) confers methicillin resistance and has pre-

viously been shown to affect toxin expression (Rudkin et al. 2012).

Functional verification of effect of polymorphisms on toxicity

With the initial GWAS approach likely to produce a high number

of false positive associations, we sought to obtain an estimate of

this by determining the functional effect of a subset of these

polymorphisms. We focused on 13 of the intergenic poly-

morphisms that could either affect the transcription of neighbor-

ing genes, or encode novel regulatory RNA molecules. We obtained

transposon insertions in these polymorphic loci, ranging from 10

to 304 bp distal to the polymorphic site, and determined the effect

of this insertion on the toxicity of the mutant. Four of the 13 in-

sertions affected toxicity (Fig. 3) verifying that these loci contain

toxicity-regulating activity. The SNP at position 301,089 (repre-

sented by the transposon insertion in strain 95E07 in Fig. 3) is in

Figure 2. Predicted toxicity correlates with disease severity in vivo. Using high and low doses (7.8–8.0 and 3.7–4.1 3 107 CFU, respectively), mice were
inoculated intravenously with the high and low toxic isolates (HU13 and MU9, respectively), and survival of the mice, the development of septic arthritis,
and weight loss were recorded as indications of disease severity. In each case the highly toxic HU13 isolate caused the most severe disease symptoms. (A)
n = 10–15. (B) n = 8–10. (C ) n = 10–20. (D) n = 10. (E) n = 10–19. (F) n = 10. Significant P-values (<0.05) are indicated (*).
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between the tarK and tarF genes that are involved in the synthe-

sis of wall teichoic acids (Qian et al. 2006). The SNP at position

1,121,452 (represented by the transposon insertion in strain

207A03 in Fig. 3) is between a hypothetical gene and fmt, which is

involved in methicillin resistance and autolysis (Komatsuzawa

et al. 1997), both activities known to contribute to staphylococ-

cal virulence. The SNP at position 1,503,110 (represented by the

transposon insertion in strain 90D01 in Fig. 3) is in a locus anno-

tated as a pseudogene in TW20, but as intergenic between genes

encoding a TelA-like protein and a putative branched-chain amino

acid transporter protein in FPR3757. The SNP at position 2,532,617

(represented by the transposon insertion in strain 108B09 in Fig. 3)

is annotated in FPR3757 as intergenic between a hypothetical and

an AcrB/AcrD/AcrF family protein-encoding gene; however, in

TW20 it has been annotated as a hypothetical gene. Further mo-

lecular characterization is underway to determine the activity of

these loci, but this work demonstrates that although this approach

produces false positive associations, having looked at only 13 poly-

morphisms it has identified four novel toxicity-affecting loci.

As the more stringent approach described above yielded

a shortlist of only four toxicity-affecting polymorphisms, we also

sought to determine whether this approach, while reducing the

false positive rate, would inadvertently dismiss potentially impor-

tant loci. For example, a SNP in the agrC gene was identified by the

initial approach as significantly associated with toxicity, but dis-

missed by the secondary more stringent approach. This protein

forms part of a critical toxin regulatory system, and the SNP results

in an A343Tchange to the amino acid sequence of the protein. The

agr locus encodes a classical two-component regulatory system

that allows the bacterium to regulate toxicity and adhesion through

quorum sensing, in response to local cell density (Ji et al. 1995;

Novick and Geisinger 2008). The AgrC protein is responsible for

detecting the secreted autoinducing peptide (AIP) and transmits the

signal to AgrA through phosphorylation. The phosphorylated form

of AgrA acts as a transcriptional regulator at the agrP3 promoter of

the Agr system, which drives the transcription of RNAIII, a regu-

latory RNA molecule, responsible for the regulatory changes that

occur in response to the bacterial cells reaching a threshold density

(Ji et al. 1995; Novick and Geisinger 2008). As such, this is a highly

plausible candidate polymorphism that would have been disre-

garded by a more stringent approach.

The particular nucleotide change described here had not been

identified previously, although other polymorphisms in the agrC

gene have been shown to delay activation of the Agr system and

as a consequence reduced the toxicity (Traber et al. 2008). Using

a reporter system we evaluated the impact of SNP2174068 on the

function of AgrC with respect to activation by exogenous AIP

(Jensen et al. 2008). We compared the response of AgrC from the

ST239 isolate TW20 with the AgrC encoded by the SNP2174068

containing agrC variant, by determining the half maximal effec-

tive concentration (EC50) of exogeneous synthetic AIP-1 for both

(Fig. 4). The EC50 for the TW20 allele was 17.4 6 3.5 nM, but al-

most twice as much AIP (29.5 6 3.1 nM) was needed for the

SNP2174068 containing AgrC variant, which suggests that, like

previously identified polymorphisms in agrC, SNP2174068 delays

the activation of the Agr system and as a consequence reduces

toxicity. This work functionally verified the contribution of this

particular polymorphism to the toxic phenotype, which would

have been disregarded by the more stringent approach.

Identifying epistatic interactions associated with toxicity

Genes and their protein products rarely act independently, with

transcriptional, translational, post-translational regulators, and

protein:protein interactions all playing a role in their activity. As

a further hypothesis-generating exercise, we performed a pairwise

test for toxicity-associated epistatic interactions on all combina-

tions of SNPs and indels. A heat-map representing the genetic loci

predicted to interact to affect toxicity is shown in Figure 5 (P < 1 3

10�6), where the size and color of each circle correspond to the

statistical significance of the interaction, and in tabular form in

Supplemental Table 3. Many of the interactions fell on straight

lines, suggesting that a small number of genetic loci containing

SNPs may be interacting with numerous other loci. From these we

identified five genes that interacted with more than 20 other loci

with high statistical significance: the ileS gene encoding isoleucyl-

tRNA synthetase (Hurdle et al. 2004); the mreC gene involved in

Figure 3. Functional verification using transposon mutagenesis. Mu-
tated S. aureus isolates with transposon insertions in 15 of the 124 toxicity-
associated loci were isolated (all in intergenic loci). Four of the 15 trans-
poson insertions affected the toxicity of the isolate. The bars represent the
mean % T-cell survival following incubation with bacterial supernatant,
and the error bars the 95% confident intervals. Wild type represents the
unmutated parent isolate, AgrB� is a negative control, and the following
are the transposon insertion mutants and their associated polymorphism:
95E07: 301089; 93B09: 761112; 82B04: 787629; 180A03: 799276;
207A03: 1121452; 90D01: 1503110; 137C12: 1931155; 45D06:
2027204; 179E03: 211134; 108B09: 2532617; 113D01: 2571739;
86C03: 2640325; 168E05: 2657438; 72A04: 2753734; 64A09: 2810368.

Figure 4. SNP2174068 has a major impact on the response of AgrC to
AIP and hence toxicity. Dose-response curves for the activation of the lux-
based agrP3 reporter via AIP-1 by the TW20 agrC allele (•) compared with
the SNP2174068 variant (j).
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cell wall synthesis (Kyburz et al. 2010); an uncharacterized gene on

the beta-haemolytic converting phage (Bae et al. 2006); the phy-

toene dehydrogenase gene, which is a key enzyme in the caroten-

oid biosynthetic pathway (Mijts et al. 2005); and a small, putative,

regulatory RNA molecule (ssr100) (Anderson et al. 2006). Inter-

estingly, the SNP in ileS has been shown previously to be re-

sponsible for conferring mupirocin resistance [V(588)F] (Hurdle

et al. 2004), suggesting this may have pleiotropic effects on gene

expression. The analysis also suggested that these loci also interact

with one another, forming a novel and highly variable toxicity-

regulating network.

However, caution must be exercised when interpreting these

findings. As noted above, this approach is likely to produce a high

number of false positives, and linkage between the SNPs that ap-

pear to be interacting with a single locus or population structure

may affect the outcome of such analysis. For example, the SNP in

ileS appears to be interacting epistatically with 30 other loci by this

analysis. A more detailed survey of these 30 loci indicates that there

are only nine independently occurring polymorphisms, which still

suggests that ileS may have pleiotropic effects on the expression of

other genes, but these need to be functionally verified before we

can have full confidence in this interpretation.

Predicting toxicity from genome sequence

Having identified specific genetic signatures (SNPs and indels) that

associate with toxicity, we next investigated whether these sig-

natures could be used to build a predictive model. Of the poly-

morphisms originally associated with toxicity, either directly or

through epistasis, many were not unique but in complete linkage

disequilibrium (Supplemental Fig. 4A). We therefore considered

a subset consisting of all the unique SNPs/indels and one from each

of the linked groups, which left 31 SNPs and 21 indels (Supple-

mental Fig. 4B). Performing a hierarchical cluster analysis on this

subset highlighted two important aspects. First, all but one of the

highly toxic strains (labeled red at the bottom of Fig. 6A) fall within

the same cluster, indicating that these signatures are not simply

based on the genetic relationship between the isolates (cf. Fig. 1B).

Second, there are a number of strains with different levels of tox-

icity but with identical SNP/indel signatures; these form individual

clusters (highlighted as red bars in the dendrogram on top of Fig.

6A) and can therefore not be resolved by a predictive model based

on these signatures alone.

To build the predictive model, we utilized a ‘‘random forest’’

machine learning algorithm (Breiman 2001; Touw et al. 2013),

which we used for both regression analysis and class prediction.

This method, which creates an ensemble of decision trees and then

uses the mean for predictions, produces unbiased error estimates

without the need for cross-validation. For the class-predictive model,

we used the categories described above: low (class 1, green), me-

dium (class 2, amber), and high toxicity (class 3, red), respectively.

Using this set of SNP/indels the model showed an accuracy of

>85%, corresponding to an out-of-bag (OOB) error rate estimate

of <15%. As shown in Table 1A, the majority of low and highly

toxic strains were correctly identified by this model, whereas none

of the medium toxic ones were predicted correctly. This was further

highlighted when performing a regression analysis (Fig. 6B), where

toxicity could be predicted with a high degree of accuracy for most

of the low and highly toxic strains. The top 20 most important

SNPs and indels determined by this approach (in terms of their

influence on the model’s performance) are shown in Figure 6C,

details of which can be found in Supplemental Tables 2 and 3 and

are discussed later.

We further tested this method’s predictive ability by dividing

the isolates randomly into a training set and a test set comprising

60 and 30 isolates, respectively. That is, we trained a random for-

est model on a subset of isolates, which we then used to predict

the toxicity class of the remaining, and to the model unknown,

test isolates. As shown in Table 1B, all of the low and highly toxic

strains (23/23 and 4/4) were predicted correctly, whereas the

strains of medium toxicity were exclusively underestimated. Al-

though this clearly demonstrates the feasibility of our approach in

predicting toxicity from genome sequence data, even in the face of

unknowns such as epigenetic state, to be fully applicable to strains

outside this clonal/ sequence type, the model would necessarily

have to be trained on a much larger set of isolates from different

genetic backgrounds.

Discussion
The continuing emergence of drug resistant microbial pathogens is

an issue of global importance. Although new drugs are being de-

veloped, their widespread use quickly selects for further resistance,

which necessitates the development of approaches that allow cli-

nicians to tailor treatment to a specific patient’s needs. Genomic

data are believed to hold the key, but we do not yet have sufficient

information to know which parts of the genome to examine to

determine the best treatment strategy. While we are beginning to

understand how to determine antibiotic resistance profiles from

genome sequences, with hyper-virulent strains circulating we also

need to understand how to determine the likelihood of an in-

fecting strain to cause severe disease.

As toxicity and adhesion are key to disease outcome for

S. aureus we sought to determine their variability in a set of

90 isolates of the globally important ST239 clone, and whether

these phenotypes can be predicted from genome sequences. Ad-

hesion varied significantly in only two of the 90 isolates tested, and

so for the majority of the isolates used in this study adhesion

was entirely predictable without having to consider the genome

sequence. Toxicity however, showed much greater variability be-

tween isolates, and given its importance in disease outcome be-

came the main focus of this study.

GWAS has been widely used to identify genetic loci associated

with human diseases. Although phylogenetic structure may af-

fect the application of this to a prokaryotic system, GWAS is still

Figure 5. Heat-map representing interacting SNPs conveying epistasis
between SNPs that affects an isolate’s toxicity. Each SNP is represented on
both the x- and y-axes with the origin of replication based at the inter-
section of the axes (at zero). The size and color of the spot represent
the significance of the interaction between SNPs as illustrated by the
colored bar.
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Figure 6. Genetic signatures affecting the toxicity of MRSA isolates. (A) Unsupervised hierarchical clustering analysis of significant SNPs/indels affecting
toxicity in 90 isolates of the MRSA lineage ST239, color-coded (along the bottom) according to toxicity classes: low (green, <35,000), medium (orange,
<65,000), and high (red, >65,000). Where an isolate has either the reference sequence at a site or the SNP/indel is illustrated as a change in block color
across the rows. The most highly toxic strains are found to cluster together, indicating similar signatures independent of genetic background. Clusters
highlighted by red bars on top denote strains with identical SNP/indel signatures. SNPs and indels highlighted in red (on the left-hand side) are those found
to have high importance for the predictive model. (B) Random forest regression analysis shows a good fit between the strains’ observed level of toxicity and
those predicted by the model; most outliers belong to clusters of identical strains, which cannot be resolved by these SNP/indel signatures. (C ) Top 20 SNP
and indels with highest influence on class prediction error, ordered by descending degree of importance.
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a useful tool to identify candidate virulence affecting loci. Bacteria

are haploid with high mutation rates, and so mutations affecting

phenotypes are immediately detectable. Additionally, bacteria read-

ily exchange DNA encoding virulence genes horizontally, and these

are independent of phylogeny. With these considerations, we used

GWAS and identified 121 genetic loci significantly associated with

changes in the toxicity of individual isolates. Some of the genes in

which this variability occurred have been identified previously as

having a role in toxicity regulation, which demonstrated the val-

idity of this approach. More importantly, it also identified a large

number of novel putative toxicity affecting loci, and a set of five

loci that appear to interact epistatically with each other and many

other loci to affect toxicity, suggesting they may form a novel

toxicity regulatory network. A more stringent approach reduced

this list down to four candidate loci, and while this is a more man-

ageable number to functionally verify, at least one functional locus

(SNP in agrC) was lost by this approach. Although one method

produced a high rate of false positives and the other dismissed po-

tentially important loci, both have proven to be informative. When

we attempted to functionally verify a subset (n = 13) from the long

list of 121 by testing transposon insertion mutants in these regions,

four proved to have toxicity regulating activity. This provided an

indication of the false positive rate associated with the initial GWAS

approach, and demonstrated that it is an effective means of priori-

tizing candidate genes for further functional characterization.

As an opportunistic pathogen S. aureus can readily transfer

from carriage to an invasive stage. It also has heterogeneity in its

ability to transmit to new hosts, asymptomatically by direct con-

tact or symptomatically through the production of pus. Adhesion

is critical to all stages and transmission strategies. Toxicity, how-

ever, is more important for disease, pus production, and symptom-

atic transmission. Highly mutable loci in bacterial genes encoding

proteins under strong immune selection are believed to have evolved

to readily switch expression of the gene on and off, proving con-

tingency for a fluctuating environment (Moxon et al. 2006). Here,

however, we see great phenotypic diversity at the population level,

encoded by many loci, the exact number of which can only be

determined experimentally. With the relative benefit of toxicity

being contingent on its life stage, it is therefore possible that

having a complex regulatory system with many loci involved

introduces the opportunity for great variability. This increased

opportunity for variability in toxicity relative to adhesion may

contribute to the opportunistic lifestyle of S. aureus in the same

way a phenotype switch contributes at an individual level.

We adopted a machine learning approach and found that the

presence of these loci was sufficient to predict the toxicity of the

majority of isolates. This analysis also identified a list of highly

important loci (Fig. 6C), the top of which was a 1-bp deletion in an

intergenic region between the gene encoding the 16S ribosomal

subunit and perR, a transcriptional regulator known to affect vir-

ulence (Horsburgh et al. 2001). Preliminary analysis of the sequence

surrounding this site suggests it has a high level of secondary

structure in a single stranded form, and the deletion of this base

reduces this, which suggests it may be a regulatory RNA molecule,

although further molecular analysis is needed to confirm this. The

second most important site was a SNP in an uncharacterized gene

on the S. aureus pathogenicity island 1, the third is in an intergenic

region the effect of which on toxicity has been verified using

transposon mutagenesis (Fig. 3), the fourth is in an uncharac-

terized gene on the beta toxin converting phage, and fifth is the

agrC SNP characterized above. Although work to further charac-

terize these loci and the role they play in toxicity is currently un-

derway, this clearly indicates how this approach might be a useful

tool for identifying new effector loci contributing to complex

phenotypes.

The informative value of our hypothesis generating approach

also extends to the case where there was a significant deviation

between assayed toxicity and model prediction. That is, the tox-

icity of a small number of isolates was not well predicted, and we

hypothesized that this could be explained by rare gain/loss-of-

function genetic events that would not be identified using a sta-

tistical approach. A survey of all genetic changes associated with

these poorly predicted isolates reveals that DEU29, for example,

does not contain the beta-haemolytic converting phage (Bae et al.

2006). As such, unlike all the other isolates in this study, this isolate

has an intact beta-haemolysin gene, providing a plausible expla-

nation for why this is highly toxic despite being predicted as

expressing low toxicity. MU4, which has a low level toxicity but

was predicted to be highly toxic, has a unique SNP in the gene

encoding the Rot (repressor of toxins) protein, which could have

a dominant effect on toxicity (McNamara et al. 2000). The con-

tribution of each SNP and indel event described here needs to be

quantified in isogenic backgrounds, and although the scale of work

involved is currently challenging, it is becoming more feasible

with the development of high efficiency mutational protocols.

An alternative or complimentary explanation for the poor

predictability for some isolates may lie in the mapping approach

used. Illumina sequencing technology was used where the se-

quence data were mapped onto a reference genome, MRSA ST239

isolate TW20 (Holden et al. 2010). A limitation of this approach is

that DNA not found in the reference strain is ignored, so additional

genetic elements that could affect the toxicity of these poorly

predicted isolates may not be identified. As sequencing on this

scale improves with longer, better quality reads we will be able to

perform de novo assemblies for each genome, which would allow

all DNA in an isolate to be identified and tested for association with

a specific trait.

It has been suggested that genome sequencing alone cannot

give sufficient information to explain or predict complex pheno-

types, as it does not consider the additional factors that affect

protein expression such as epigenetics (Borrell and Gagneux 2011;

Jelier et al. 2011; Beltrao et al. 2012; Bierne et al. 2012). However,

here we have shown that using robust statistical techniques on

large collections of sequenced isolates alongside machine learning

approaches can yield desired results. When applied to virulence,

while predicting the outcome of an infection will undoubtedly

have to take into account the health and immune status of the af-

fected host, we have described the first step toward this goal—that it

Table 1. Random forest class prediction of toxicity

(A) Fitted model based on 90 isolates

Predicted Observed Class error

Low Medium High
Low 68 0 1 0.01
Medium 9 0 0 1.00
High 3 0 9 0.25

(B) Prediction of 30 unknown strains

Low 23 0 0 0.00
Medium 3 0 0 1.00
High 0 0 4 0.00
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is possible to predict the potential of a bacterial isolate to cause

severe disease from the genome sequence alone. Further work

quantifying the effect of each SNP on toxicity, virulence, and the

expression of other virulence loci will add further detail to the

model presented here. Also required will be the identification of

more complex, three- and four-way epistatic interactions between

genes, which will allow us to increase the model’s predictive power. As

the time nears when it is as cost-effective for a clinician to send

a clinical sample for genome sequencing as it is to a routine di-

agnostic lab (Parkhill and Wren 2011; Didelot et al. 2012a; Eyre

et al. 2012; Köser et al. 2012a), the next major challenge must be

to adopt approaches as described here to build appropriate tools to

convert genome sequences into information that can be used to

help improve the treatment of infected patients.

We can imagine scenarios in which a patient’s bacteria are

grown, targeted PCR, SNP arrays or rapid genome sequencing can

be performed, and the machine learning approach applied to flag

up, possibly within a few hours of initial bacterial isolation, whether

the strain is likely to be toxic. The patient can then be immediately

isolated, given virulence-modulating antibiotics, and monitored

more stringently for complications. In addition to improving and

personalizing the care of patients infected with highly toxic bacte-

ria, it would also prevent the needless and deleterious administra-

tion of cocktails of potent and expensive antibiotics to patients with

low toxicity infections. The predictive model itself would require

regular updating, given all the new information. Whether there

needs to be one model per clone, or one that adequately covers all

isolates of S. aureus remains to be discovered. Either way, the ap-

proach described in this work is the first step in this direction.

Methods

Isolates and plasmids
The isolates and plasmids used in this study are listed in Supple-
mental Table 1.

Fibronectin- and fibrinogen-binding assays

Bacterial adhesion to human fibronectin (Fn) and fibrinogen
(Fb) (Sigma) was assessed using an adaptation of a previously
published protocol (Edwards et al. 2010). For stationary phase
growth, bacteria were grown for 18 h and were washed three
times in phosphate-buffered saline (PBS). Final bacterial con-
centrations were normalized to an optical density of 0.5–0.55 at
600nm, which corresponds to ;1 3 108 CFU/mL. Exponential
growth phase bacteria were grown for 3–4 h, with supernatant
harvested and bacterial pellet washed and normalized as above.
Adherent bacteria were calculated by using the crystal violet
method (Edwards et al. 2010) and absorbance measured at A595

using a microtitre plate reader. Absorbance measurements were
converted to bacterial numbers as described previously (Edwards
et al. 2010).

Toxicity assays

The toxicity of individual ST239 isolates was assayed in three ways.
The expression of alpha toxin was determined by Western blotting
using TCA precipitated 18-h bacterial supernatants (Ohlsen et al.
1997). No differences in signal intensity were observed across the
90 isolates (Supplemental Fig. 2). The ability of the isolates to lyse
T cells, which measured beta toxin, gamma toxin, delta toxin,
PSMalpha1, alpha2, and alpha3 activity was performed as described
previously (Collins et al. 2008; Rudkin et al. 2012). Lipid vesicles,

which are susceptible to delta toxin, PSMalpha1, alpha2, and al-
pha3, were prepared as described previously (Laabei et al. 2012).
Briefly, vesicles for toxicity assay were composed of 25 mol%
of 10,12-Tricosadiynoic acid (TCDA), 53 mol% 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), 2 mol% 1,2-dipalmitoyl-sn-glycero-
3-phosphoethanolamine (DPPE), and 20 mol% of cholesterol (CHO).
Lipid films were rehydrated in 50 mM 5(6)-carboxyfluorescein (CF)
in HEPES buffer solution, freeze/thawed three times under liquid
nitrogen extruded three times through 2 3 0.1 mm polycarbonate
filters under nitrogen pressure. Vesicle purification was achieved
through filtration through Nap-25 columns, stored overnight at
4°C and then cross-linked under UV for 6 sec. Toxicity assays were
performed using 18-h bacterial supernatant and pure vesicles in a
1:1 ratio and fluorescence intensity measured at excitation and
emission wavelengths of 485–520nm, respectively, on a FLUOstar
fluorometer (BMG labtech). Positive and negative controls were
pure vesicle with 0.01% Triton X-100 and HEPES buffer, re-
spectively. No difference was observed in the lytic activity of the
isolates whether vesicle or T cells were used (Supplemental Fig. 4),
so the data from the vesicles are presented and were used for
further analysis.

Maximum likelihood tree

This was estimated using PhyML with an HKY85 substitution
model, empirical nucleotide usage, no rate heterogeneity, and no
invariant sites.

GWAS

The identification of genetic variation in the clinical isolates
studied has previously been described (Castillo-Ramı́rez et al.
2012). In summary, unique index-tagged libraries for each sample
were created, and up to 12 separate libraries were sequenced in
each of eight channels in Illumina Genome Analyser GAII cells
with 75-base paired-end reads. Data have previously been de-
posited in the European Nucleotide Archive under study number
ERP000228. The paired-end reads were mapped against the chro-
mosome of S. aureus TW20 (accession number FN433596) (Holden
et al. 2010) using SMALT (http://www.sanger.ac.uk/resources/
software/smalt/) and SNPs and indels were identified as described
in Croucher et al. (2011). For each isolate the average coverage
ranged from 38- to 323-fold (stats for each isolate can be found in
Supplemental Table 1), with a mean average coverage of 127 fold.
Mobile genetic elements and accessory regions in the TW20 ref-
erence chromosome had previously been identified by manual
curation (Holden et al. 2010).

We conducted a quantitative association study on a set of 90
isolates of the S. aureus clone ST239 to identify single nucleotide
polymorphisms (SNPs) that were significantly associated with toxic-
ity, using the PLINK software package (http://pngu.mgh.harvard.edu/
purcell/plink/) (Purcell et al. 2007). From the original set of 3060
intragenic SNPs we identified 100 SNPs with statistical significance
of P < 0.05 after quality control (using PLINK options -geno 0.9 and
-maf 0.05) and correction for genomic inflation. A similar associ-
ation study was performed using the indel data, where inserts,
deletions, and wild types were coded as +1,�1, and 0, respectively.
This identified 22 unique indels quantitatively associated with
toxicity and present in at least five strains.

Analysis of SNP–SNP epistatic interactions was performed
using the ‘‘epistasis’’ option in PLINK, which is based on linear
regression analysis and tests the inclusion of an interaction term
(into the regression equation) for statistical significance. Using
a cutoff value of P < 1 3 10�6, we identified a further 20 SNPs that
we included for the predictive model.

Predicting MRSA virulence
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Transposon insertions

Transposon insertion clones of USA300 were obtained from the
Nebraska Transposon Mutant Library (Fey et al. 2013).

Class-predictive model

From the total set of 122 SNPs and indels we then removed those
with identical ‘‘signatures’’ across the strains (see Supplemental
Fig. 4), leaving 50 unique SNPs/indels which we used to build
a class-predictive model. Due to the large number of free parame-
ters and relatively low number of samples (i.e., isolates) we chose
a random forest (Breiman 2001; Touw et al. 2013) approach, using
the randomForest package in R, which is an ensemble machine
learning algorithm based on decision trees. The benefit of this
method is that it naturally provides generalization error estimates
as well as variable importance, without the need for explicit cross-
validation procedures (as these are intrinsic to the method). For
class-prediction we categorized our isolates based on measured
toxicity into low (<40,000), medium (<63,000), and high. ‘‘Vari-
able Importance’’ is automatically calculated by the algorithm by
comparing, for each variable, the out-of-bag error rate for the final
model fit to one where the variable is permuted. Larger differences
therefore relate to higher importance.

Site-directed mutagenesis of AgrC and construction of
modified AIP/AgrC bioreporters

An agrP3Tlux bioreporter strain had previously been constructed
by replacing the entire agr locus in RN4220 with the erythromycin
resistance gene ermB and an agrP3TluxABCDE promoter fusion to
create ROJ48 (Jensen et al. 2008). A previously constructed plasmid
pAgrP2C1A, containing the agrP2 promoter, agrC, and agrA, was
then modified by site-directed mutagenesis to introduce either
the I311T AgrC amino acid substitution found in the TW20 line-
age, or both I311T and the A343T AgrC substitution conferred by
SNP2174068. Mutagenesis was performed using the phosphory-
lated primers shown in Table 2 and Phusion DNA polymerase
(New England Biolabs) before ligation of the resulting PCR prod-
ucts by Quick Ligase enzyme (New England Biolabs). ROJ48 was
then transformed with the modified plasmids to create mutant
bioreporters.

AIP/AgrC bioluminescent reporter assay

The bioreporter strains TJS114 and TJS120, containing one of the
mutated agrP2C1A plasmids, were grown overnight at 37°C in BHI
medium supplemented with 10 mg/mL chloramphenicol. Over-
night cultures were diluted 1:50 in fresh BHI before growth for
a further 2 h and then diluted 1:20 into wells of a 96-well microtiter
plate containing triplicate serial dilutions of AIP-1 in BHI. The plate
was incubated in a Tecan microplate reader overnight and readings
taken for relative light units and OD600 every 15 min. The two
reporters with and without the A343T substitution were each
tested in triplicate. Data were plotted as relative light units per cell
density (RLU/OD) over time in Excel (Microsoft Corp.) and peak
values from each concentration of AIP were extracted. Data for
each reporter assay were normalized so that the RLU/OD at a sat-

urating AIP-1 concentration (1 mM) was 100 and then exported to
PRISM2 program (GraphPad). An EC50 value was then generated
for each reporter based on the variable slope sigmoidal dose re-
sponse curve.

In vivo murine infection models

Female NMRI mice of 6–8 wk of age were obtained from Charles
River Laboratories. Experiments were approved by the Animal
Research Ethical Committee of the University of Gothenburg.
S. aureus strains MU9 and HU13 were prepared for infection ex-
periments as described previously (Josefsson et al. 2008; Kenny
et al. 2009). Invasive infection was induced in mice by intravenous
injection with a lower dose of strain MU9 (3.7 3 107 CFU) or HU13
(4.1 3 107 CFU), or with a higher dose of strain MU9 (8.0 3 107

CFU) or HU13 (7.8 3 107 CFU). Survival, arthritic index, and
weight were monitored for 14 d. The overall condition of each
mouse was examined by assessing signs of systemic inflammation
such as weight decrease, reduced alertness, and ruffled coat. In
cases of severe systemic infection, when a mouse was judged too
ill to survive another 24 h, it was killed by cervical dislocation and
considered dead due to sepsis. Clinical evaluation of septic arthritis
was performed as described before (Josefsson et al. 2008; Kenny et al.
2009). Differences between groups were examined for statistical
significance using the Logrank test at survival analysis, the Mann-
Whitney test at arthritic index analysis, or the Student’s t-test at
weight decrease analysis. Arthritic index and weight change data are
reported as medians, interquartile ranges, and 80% central range.
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