

GUP
http://gup.ub.gu.se

Gothenburg University Publications

This is an author produced version of a paper published in Information and
Software Technology

This paper has been peer-reviewed but does not include the final publisher proof-
corrections or journal pagination.

Citation for the published paper:

Radjenovic, D; Hericko, M; Torkar, R; Zivkovic, A:

Software fault prediction metrics: A systematic literature review

Information and Software Technology, 55 (8) s. 1397-1418

http://dx.doi.org/10.1016/j.infsof.2013.02.009

Access to the published version may require subscription. Published with
permission from: Elsevier

Software Fault Prediction Metrics:
A Systematic Literature Review

Danijel Radjenovića,b,∗, Marjan Heričkob, Richard Torkarc,d, Aleš Živkovičb

aPro-bit programska oprema d.o.o., Stari trg 15, SI-3210 Slovenske Konjice, Slovenia
bUniversity of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, SI-2000 Maribor, Slovenia

cBlekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
dChalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden

Abstract

Context: Software metrics may be used in fault prediction models to improve software quality by predicting fault location.
Objective: This paper aims to identify software metrics and to assess their applicability in software fault prediction. We investi-

gated the influence of context on metrics’ selection and performance.
Method: This systematic literature review includes 106 papers published between 1991–2011. The selected papers are classified

according to metrics and context properties.
Results: Object-oriented metrics (49%) were used nearly twice as often compared to traditional source code metrics (27%) or

process metrics (24%). Chidamber and Kemerer’s (CK) object-oriented metrics were most frequently used. According to the
selected studies there are significant differences between the metrics used in fault prediction performance. Object-oriented and
process metrics have been reported to be more successful in finding faults compared to traditional size and complexity metrics.
Process metrics seem to be better at predicting post-release faults compared to any static code metrics.

Conclusion: More studies should be performed on large industrial software systems to find metrics more relevant for the industry
and to answer the question as to which metrics should be used in a given context.

Keywords: Software metric, Software fault prediction, Systematic Literature Review

1. Introduction

Fault prediction models are used to improve software quality
and to assist software inspection by locating possible faults1.
Model performance is influenced by a modeling technique
[9, 16, 20, 29, 30] and metrics [89, 138, 130, 88, 66]. The
performance difference between modeling techniques appears
to be moderate [38, 30, 60] and the choice of a modeling tech-
nique seems to have lesser impact on classification accuracy of
a model than the choice of a metrics set [60]. To this end, we
decided to investigate the metrics used in software fault predic-
tion and to leave the modeling techniques aside.

In software fault prediction many software metrics have been
proposed. The most frequently used ones are those of Abreu
and Carapuca (MOOD metrics suite) [1, 51], Bansiya and Davis
(QMOOD metrics suite) [3], Bieman and Kang [5], Briand
et al. [70], Cartwright and Shepperd [74], Chidamber and Ke-
merer (CK metrics suite) [12, 13], Etzkorn et al. [17], Hal-

∗Corresponding author. Tel.: +386 31 461 290
Email addresses: danijel.radjenovic@pro-bit.si (Danijel

Radjenović), marjan.hericko@uni-mb.si (Marjan Heričko),
richard.torkar@bth.se (Richard Torkar), ales.zivkovic@uni-mb.si
(Aleš Živkovič)

1A correct service is delivered when the service implements the system
function. A service failure is an event that occurs when the delivered service
deviates from the correct/expected service. The deviation is called an error. The
adjudged or hypothesized cause of an error is called a fault [2].

stead [24], Henderson-Sellers [25], Hitz and Montazeri [26],
Lee et al. [37], Li [41], Li and Henry [39, 40], Lorenz and
Kidd [42], McCabe [44], Tegarden et al. [49]. Many of them
have been validated only in a small number of studies. Some of
them have been proposed but never used. Contradictory results
across studies have often been reported. Even within a single
study, different results have been obtained when different envi-
ronments or methods have been used. Nevertheless, finding the
appropriate set of metrics for a fault prediction model is still
important, because of significant differences in metrics perfor-
mance. This, however, can be a difficult task to accomplish
when there is a large choice of metrics with no clear distinction
regarding their usability.

The aim of this systematic literature review (SLR) is to de-
pict current state-of-the-art software metrics in software fault
prediction. We have searched in seven digital libraries, per-
formed snowball sampling and consulted the authors of primary
studies to identify 106 primary studies evaluating software met-
rics. The most commonly used metrics were identified and their
fault prediction capabilities were assessed to answer the ques-
tion of which metrics are appropriate for fault prediction. Ten
properties were extracted from the primary studies to assess the
context of metrics usage. We identified the most important stud-
ies according to study quality and industry relevance. We ag-
gregated the dispersed and contradictive findings to reach new
conclusions and to provide directions for practitioners and fu-

Preprint submitted to Information and Software Technology February 12, 2013

ture research.
The remainder of this paper is organized as follows: Sec-

tion 2 presents related work. In Section 3 the systematic review
method that we used, is described. Section 4 contains the results
and answers the research questions. The study is concluded in
Section 5.

2. Related work

Kitchenham [34] has published a preliminary mapping study
on software metrics. The study was broad and included theoret-
ical and empirical studies which were classified in the following
categories: development, evaluation, analysis, framework, tool
programs, use and literature survey. The study was later nar-
rowed to 15 studies evaluating metrics against fault proneness,
effort and size. Fault proneness was used as a dependent vari-
able in 9 out of 15 studies. The most frequently used metrics
were object-oriented (OO) metrics and, among these, CK met-
rics.

A systematic review of software fault prediction studies was
performed by Catal and Diri [10]. Later, a literature review on
the same topic was published [11]. They included all papers
(focusing on empirical studies) concerning software fault pre-
diction. They classified studies with respect to metrics, methods
and data sets. Metrics were classified in six categories: method-
level (60%), class-level (24%), file-level (10%), process-level
(4%), component-level (1%) and quantitative-level (1%).

Recently, a review that was similar in design to Catal and
Diri’s, but more comprehensive in terms of the number of in-
cluded studies and analyses, was published by Hall et al. [23].
In the review, papers on software fault prediction were included
(focusing once again on empirical studies). The main objec-
tives were to assess context, independent variables and model-
ing techniques. A quantitative model across 19 studies was built
to compare metrics performance in terms of F-measure, preci-
sion and recall. According to the quantitative model, models
using OO metrics perform better than those using complexity
metrics, while models using LOC perform just as well as those
using OO metrics and better than those using complexity met-
rics. Models using a combined range of metrics performed the
best, while models using process metrics performed the worst.

Our study differs from the above reviews in both the aim
and scope of the selected studies. The objectives of this re-
view are to assess primary studies that empirically validate soft-
ware metrics in software fault prediction and to assess metrics
used in these studies according to several properties. In the
Catal and Diri review, no assessment of software metrics was
performed; only metrics distribution was presented. In Hall’s
review, a quantitative model was presented to assess the raw
performance of metrics, without taking into account the con-
text in which the studies were performed. This is most evident
in the results of the process metrics, which are reported to be
the least successful among all metrics. This might be due to
the fact that process metrics are evaluated in post-release soft-
ware, where faults are rarer and may be more difficult to detect
[46, 136, 115]. Some studies suggest that process metrics are

���������	�
���
�����
��	
�������
���������������

���

�
�
�����

����������������������
��������

�����������������������
��������

���������������������

���	���

����� ���!������	��������
������
����	���

�����"��#������$�����
���
������
����	���

�����%���

�����&��	���

�����'���������
���
�������

(�
	����
�
�����

)������
�
�����

�������
���������������

�
	��
���������������

�����*�������������������

���	���

Figure 1: Systematic review steps.

more successful in detecting post-release faults than any static
code metrics [88, 115, 73, 85, 60].

Of the nine studies that evaluate metrics against faults in
Kitchenham’s study, only one study was selected by Catal and
Diri. As pointed out by Kitchenham, this reflects the different
scope of the studies. Catal and Diri were focused on the anal-
ysis methods used to construct fault models, whereas Kitchen-
ham’s study was focused on using fault models to validate met-
rics [34]. Our review is different in scope compared to Catal
and Diri’s, and Hall’s study, since we are interested in studies
that evaluate metrics and have explicitly excluded studies eval-
uating modeling techniques. Our review extends Kitchenham’s
study by continuing from the nine studies evaluating metrics
against fault proneness.

Studies evaluating modeling techniques were excluded be-
cause they focus on techniques and generally do not contain
sufficient information on metrics required by this review. Stud-
ies evaluating modeling techniques and evaluating or discussing
metrics were included.

3. Research method

In order to summarize the current situation in the field, we
have performed a systematic literature review. We followed
Kitchenham’s guidelines for performing systematic literature
reviews in software engineering [32, 33] and considered recom-
mendations published in [7, 48]. The review design and some
of the figures in this section were also inspired by [50].

Following these guidelines, the systematic review was per-
formed in three stages: planning, conducting and reporting the
review (Fig. 1). In the first step we identified the need for a
systematic review (Step 1, Fig. 1). The objectives for perform-
ing the review were discussed in the introduction of this paper.
We identified and reviewed existing systematic reviews on the

2

topic in Section 2. None of the previously published reviews
were related to our objectives and research questions (Table 1).

The review protocol was developed to direct the execution of
the review and reduce the possibility of researcher bias (Step
2) [33]. It defined research questions, search strategy (includ-
ing search string and digital libraries to search in), the study
selection process with inclusion and exclusion criteria, quality
assessment, data extraction and the data synthesis process. The
review protocol is described in Sections 3.1–3.5.

The review protocol was developed and evaluated by two re-
searchers (Step 3) and iteratively improved during the conduct-
ing and reporting stage of the review.

3.1. Research questions

To keep the review focused, research questions were spec-
ified. They were framed with the help of the PICOC criteria
[33, 45]:

• Population: software, software application, software sys-
tem, software project, information system.

• Intervention: software fault prediction models, methods,
techniques, software metrics.

• Comparison: n/a

• Outcomes: prediction accuracy of software metrics, suc-
cessful fault prediction metrics.

• Context: empirical studies in academia and industry, small
and large data sets.

The main goal of this systematic review is to identify soft-
ware metrics used in software fault prediction (RQ1, Table 1).
We searched the literature for publications performing an em-
pirical validation of software metrics in the context of software
fault prediction. From the primary studies found, we extracted
software metrics to answer RQ1. We analyzed the software
metrics to determine which metrics are, and which are not, sig-
nificant fault predictors (RQ2, R2.1, RQ2.2, RQ2.3, RQ2.4,
RQ2.5, RQ2.6). RQ1 and RQ2 were the main research ques-
tions, whereas the remaining questions helped us assess the
context of the primary studies.

With RQ3 we assessed the data sets used in the primary
studies. We were particularly interested in study repeatability
(RQ3.1), validity (RQ3.2) and domain, in which the software
metrics can be used (RQ3.3).

The software development life cycle (SDLC), also known as
the software development process, was first introduced by Ben-
ington [4] and was later standardized by ISO/IEC and IEEE
[27]. Since there are many SDLC interpretations available, we
identified the SDLC phases found in the selected primary stud-
ies (RQ4). We then analyzed the influence of the SDLC phases
on the selection of software metrics (RQ4.1) and fault predic-
tion accuracy (RQ4.2).

���������	��
������
���

�������
�
����
����	

��������������
�
���

��������������
����
���������
��

�����

������

!
"���������#��$������
���
�����
������%

�������
�
����
����	

&'!���	��
��(���
������)�
'�������� ��*�*

+��� ,����� ��-).

+�
��� ���-/
+�+ 0�����������������..

������������� �/��

�����	��(��# �1��

������������
���
�����
��

��
���������
���
�
��
��

����

������������
���
�����
��

��
������������

�/-

�����$�����
���
�����

���������

���

'���
�������
���
�����

�����

��

!
#��
����
����
�������������
����
���
�����

�/-�2����2���3��-�

Figure 2: Search and selection of primary studies.

3.2. Search strategy

The search process (Step 4) consisted of selecting digital li-
braries, defining the search string, executing a pilot search, re-
fining the search string and retrieving an initial list of primary
studies from digital libraries matching the search string (Fig. 2).

The databases were selected on the basis of our own expe-
rience in conducting a systematic review (third author), rec-
ommendations from researchers with experience in SLR and
with the help of the universitys bibliographers. The largest,
most important and relevant databases were selected. Com-
pleteness was favored over redundancy, which resulted in a high
repetition of studies between databases and a large number of
false positives. The initial list of databases was discussed and
amended by other researchers with experience in SLR as well
as university bibliographers. The selection of databases was not
limited by the availability of databases. For the Inspec database,
which was not available at the home university, international ac-
cess was secured.

Fig. 2 presents the selected digital libraries and the number of
primary studies found for each database on October 21, 2011.
A total of 13,126 primary studies were found in 7 digital li-
braries. The list was extensive and included many irrelevant
studies. However, we decided not to alter the search string
to gain less false positives because relevant studies would be
missed.

The search string was developed according to the following
steps:

1. Identification of search terms from research questions.

3

Table 1: Research questions.
ID Research question Motivation
RQ1 Which software metrics for fault prediction exist in literature? Identify software metrics commonly used in software fault prediction.
RQ2 What kind of empirical validation was performed on the metrics found

in RQ1?
Assess the fault prediction performance of software metrics.

RQ2.1 Are size metrics useful for fault prediction? Assess the appropriateness of size metrics as fault predictors.
RQ2.2 Are complexity metrics useful for fault prediction? Do they have addi-

tional benefits after being adjusted for size?
Assess the appropriateness of complexity metrics as fault predictors and
determine whether they correlate with size metrics.

RQ2.3 Are OO metrics useful for fault prediction? Do they have additional
benefits after being adjusted for size?

Assess the appropriateness of OO metrics as fault predictors and deter-
mine whether they correlate with size metrics.

RQ2.4 Are process metrics superior to traditional and OO metrics? Is the an-
swer dependent upon the life cycle context?

Assess the appropriateness of process metrics as fault predictors.

RQ2.5 Are there metrics reported to be significantly superior in software fault
prediction; and if so, which ones?

Identify metrics reported to be appropriate for software fault prediction.

RQ2.6 Are there metrics reported to be inferior in software fault prediction;
and if so, which ones?

Identify metrics reported to be inappropriate for software fault predic-
tion.

RQ3 What data sets are used for evaluating metrics? Assess the data sets used in the studies and assess the studies’ validity.
RQ3.1 Are the data sets publicly available? Determine whether the studies can be repeated and results can be

trusted.
RQ3.2 What are the size of the data sets? Investigate the studies’ external validity.
RQ3.3 What software programming languages are used to implement software

from which the data sets are extracted?
Investigate the software metrics domain.

RQ4 What are the software development life cycle (SDLC) phases in which
the data sets are gathered?

Identify the SDLC phases in which data sets are gathered.

RQ4.1 Does the SDLC phase influence the selection of software metrics? Determine whether different metrics are used in different SDLC phases.
RQ4.2 Does software fault prediction accuracy differ across various SDLC

phases?
Investigate the effect of an SDLC phase on software fault prediction
accuracy.

RQ5 What is the context in which the metrics were evaluated? Assess the context of the studies according to the properties ‘Re-
searcher’, ‘Organization’, ‘Modeling technique’, ‘Dependent variable’
and ‘Dependent variable granularity’.

2. Identification of search terms in relevant papers’ titles, ab-
stracts and keywords.

3. Identification of synonyms and alternative spellings of
search terms.

4. Construction of sophisticated search string using identified
search terms, Boolean ANDs and ORs.

The following general search string was eventually used:
software AND (metric* OR measurement*) AND (fault* OR de-

fect* OR quality OR error-prone) AND (predict* OR prone* OR

probability OR assess* OR detect* OR estimat* OR classificat*)
A pilot search was performed. We had a list of nine known

relevant studies. When searching digital libraries, eight out of
the nine studies were found. One study [67] was not found be-
cause the word metric was not used in the title or abstract. We
tried to adjust the search string, but decided to keep the original
one, since the amendment of the search string would dramati-
cally increase the already extensive list of irrelevant studies.

The search string was subsequently adapted to suit the spe-
cific requirements of each database. We searched databases by
title and abstract. The search was not limited by the year of
publication. Journal papers and conference proceedings were
included. The search was limited to English.

3.3. Study selection

During the systematic review, we included empirical studies
validating and assessing software metrics in the area of soft-
ware fault prediction. For the selection of primary studies, the
following inclusion and exclusion criteria were used.

Inclusion criteria:

• Empirical studies (academic and industry) using large and
small scale data sets AND

• Studies comparing software metrics performance in the
area of software fault prediction.

Exclusion criteria:

• Studies without an empirical validation or including ex-
perimental results of software metrics in fault prediction
OR

• Studies discussing software metrics in a context other than
software fault prediction (e.g. maintainability) OR

• Studies discussing modeling techniques (e.g. Naive Bayes,
Random Forest) and not software metrics.

Studies discussing and comparing prediction techniques
were excluded from the review, since the goal of this review
was to assess software metrics and not prediction techniques.
Studies evaluating prediction techniques generally do not dis-
cuss metrics. They sometimes provide a list of metrics used,
but do not evaluate metrics or discuss their role in fault predic-
tion. Studies evaluating prediction techniques and evaluating or
discussing metrics were included.

Studies proposing new software metrics and not empirically
validating them were also excluded, since we investigated the
usefulness of software metrics in predicting software faults; that
usefulness is, to one extent, measured by the level of empiri-
cism.

Before performing a study selection, the inclusion and exclu-
sion criteria were tested by two researchers on a random sample

4

Table 2: Researchers’ agreement on the exclusion of the primary studies based
on title and abstract.

Researcher 1
Included Excluded Totals

Researcher 2 Included 72 17 89
Excluded 33 13,004 13,037

Totals 105 13,021 13,126

of a hundred studies. Although the first results looked promis-
ing, there were disagreements among the researchers. A com-
mon interpretation was established through dialogue and the in-
clusion and exclusion criteria were refined.

The study selection process (Step 5) was performed in two
steps: the exclusion of primary studies based on the title and
abstract and the exclusion of primary studies based on the full
text (Fig. 2).

The exclusion of primary studies based on the title and ab-
stract was carried out independently by two researchers. Each
developed his own list of selected studies. Table 2 shows the
agreement between the two researchers for the first stage. The
first researcher included 105, and the second one 89 studies.
They agreed in 72 cases to include a study and in 13,004 cases
to exclude a study. They did not agree in 50 cases. The fi-
nal list of selected studies for the first stage was obtained by
adding both researchers’ selected studies. It included 122 pri-
mary studies.

We used inter-rater agreement analysis to determine the de-
gree of agreement between the two researchers. Cohen’s Kappa
coefficient [14] was calculated. According to the different lev-
els, as stipulated by Landis and Koch [36], the agreement be-
tween the two researchers for the exclusion of primary studies
based on title and abstract was ‘substantial’ (0.74).

Full texts were obtained and analyzed for 122 primary stud-
ies. In addition to the inclusion and exclusion criteria, the qual-
ity of the studies, their relevance to the research questions and
study similarity were considered. Similar studies published by
the same authors in various journals were removed. 90 primary
studies remained after the exclusion of studies based on the full
text.

Grey literature was covered by snowball sampling and con-
tacting the authors of primary studies (Fig. 2). The snowball
sampling method [21] was used to review the references of the
90 primary studies selected from the databases. It was also used
to review the references of the related studies which were not
included in the review as primary studies [34, 10, 11, 23]. Ad-
ditional 13 relevant studies were found and added to the list of
primary studies.

We tried to contact all the authors of the primary studies by
e-mail to obtain their opinion on whether we missed any stud-
ies. Of the 71 e-mails sent, 23 e-mails failed to be delivered, 7
authors replied and 3 new studies were brought to our attention.

Hence, the final list of 106 primary studies was compiled by
adding up the primary studies found by searching the databases
(90), studies found through snowball sampling (13) and studies
found by contacting the authors of primary studies (3).

3.4. Data extraction

For each of the 106 selected primary studies, the data extrac-
tion form was completed (Step 6). The data extraction form
was designed to collect data from the primary studies needed to
answer the research questions. It included the following proper-
ties: ‘Title’, ‘Authors’, ‘Corresponding email address’, ‘Year of
publication’, ‘Source of publication’, ‘Publication type’, ‘Re-
sults’, ‘Note’ and ten properties listed in Table 3 and further dis-
cussed in Sections 3.4.1–3.4.10. The properties were identified
through the research questions and analysis we wished to intro-
duce. Ten properties were used to answer the research questions
(Table 3), while others were used to describe the study (proper-
ties ‘Title’ and ‘Authors’); send an email to corresponding au-
thors during the search process (property ‘Corresponding email
address’); analyze the distribution of the studies over the years
(property ‘Year of publication’); analyze the number of stud-
ies per source (property ‘Source of publication’); analyze the
number of conference proceedings and journal articles (prop-
erty ‘Publication type’); and analyze the metrics’ effectiveness
(properties ‘Results’ and ‘Note’).

Establishing a valid set of values for all the properties is im-
portant in order to summarize the results [33]. A valid set of
values was established for the properties ‘Data set availabil-
ity’, ‘Software development life cycle’, ‘Researcher’, ‘Organi-
zation’, ‘Modeling technique’, ‘Dependent variable’ and ‘De-
pendent variable granularity’. The values were chosen on the
basis of preliminary research prior to this SLR. For the prop-
erties ‘Metrics’, ‘Data set size’ and ‘Programming language’ it
was difficult to predict the valid set of values. Therefore, we
decided for trivial data extraction, where we extracted data as
presented in the studies [48]. After data extraction, a valid set of
values based on the gathered data was established for the prop-
erties ‘Metrics’, ‘Data set size’ and ‘Programming language’ to
enable data synthesis (Step 8).

The data extraction form was piloted on a sample of ten ran-
domly selected primary studies to evaluate sets of values [33].
Because not all studies could fit into predefined values, two new
values were introduced. For the property ‘Data set availability’,
the value ‘Partially public’ was added to account for studies us-
ing open source projects, where source code and fault data was
publicly available, but not the metrics’ values. For the property
‘Dependent variable granularity’ the value ‘Other’ was added to
support studies with rarely used granularities (e.g. build). Af-
ter the adjustment, sets of values were suitable for all the 106
selected primary studies and were not altered afterwards.

3.4.1. Metrics (P1)
Our initial goal was to extract all the metrics used in the pri-

mary studies. Since there were almost as many metrics used
as studies available, we were not able to draw any conclusions
from this. Therefore, we decided to categorize the studies ac-
cording to the metrics used in the following manner:

• Traditional: size (e.g. LOC) and complexity metrics (e.g.
McCabe [44] and Halstead [24]).

5

Table 3: Data extraction properties mapped to research questions and inter-rater
agreement.

ID Property RQ Agreement
P1 Metrics RQ1, RQ2,

RQ2.1, RQ2.2,
RQ2.3, RQ2.4,
RQ2.5, RQ2.6

0.82

P2 Data set availability RQ3, RQ3.1 0.71
P3 Data set size RQ3, RQ3.2 0.84
P4 Programming language RQ3, RQ3.3 1.00
P5 Software development

life cycle
RQ4, RQ4.1,
RQ4.2

0.80

P6 Researcher RQ5 0.95
P7 Organization RQ5 0.62
P8 Modeling technique RQ5 1.00
P9 Dependent variable RQ5 0.83
P10 Dependent variable

granularity
RQ5 1.00

• Object-oriented: coupling, cohesion and inheritance
source code metrics used at a class-level (e.g. Chidamber
and Kemerer [13]).

• Process: process, code delta, code churn, history and de-
veloper metrics. Metrics are usually extracted from the
combination of source code and repository. Usually they
require more than one version of a software item.

3.4.2. Data set availability (P2)
The property ‘data set availability’ was used to assess

whether the data sets used were publicly available, which would
allow studies to be more easily repeated. If private data sets
were used, the study could not be repeated by other researchers
in an easy manner, and the results would always be question-
able. In our case, we categorized the studies according to data
set availability in the following manner:

• Private: neither data set, fault data or source code is avail-
able. The study may not be repeatable. (If the study did
not state the data set availability it was categorized as pri-
vate in order to make a conservative assessment.)

• Partially public: usually the source code of the project
and fault data is available, but not the metrics’ values,
which need to be extracted from the source code and
matched with the fault data from the repository (e.g. open
source projects like Eclipse and Mozilla). Extracting met-
rics values and linking them with fault data is not a trivial
process. It can lead to different interpretations and errors.
Hence, we deem the study as repeatable to some degree
only.

• Public: the metrics values and the fault data is publicly
available for all the modules (e.g. the Promise Data Repos-
itory [6]). The study is deemed to be repeatable.

3.4.3. Data set size (P3)
We examined the data set size to determine the external va-

lidity of the studies, with the idea being that the larger the data
size, the higher the external validity. We are well aware that

this is only one aspect of external validity; however, we believe
it to be an important aspect. For studies with a small data set
size there is a greater possibility that the results have been influ-
enced by the data set and a generalization of the findings may
be limited. Therefore, greater validity was given to studies with
larger data set sizes.

Data set size was, of course, described differently in the 106
primary studies; mostly by lines of code (LOC), number of
classes, files and binaries. We extracted data as specified by
the studies and defined data set size categories after the data ex-
traction process. We defined three groups (small, medium and
large) and two criterions (LOC and number of classes or files).
Categories were defined based on our own experience and the
extracted data. If the study specified both LOC and number of
classes, the criterion to place the study in a higher group was
chosen, e.g. if the study used software with 200 KLOC and
1,100 classes it would be classified as medium according to the
KLOC, and as large according to the number of classes. Be-
cause we applied a liberal assessment in this case, the study
should be classified as large. If the study used more than one
data set, the sum (size) of the data sets were considered. When
the data set size was not stated, the study was categorized as
small per default. The studies were categorized according to
the data set size as follows:

• Small: less than 50 KLOC (thousands of LOC) OR 200
classes

• Medium: between 50 KLOC OR 200 classes AND 250
KLOC OR 1000 classes

• Large: more than 250 KLOC OR 1000 classes.

3.4.4. Programming language (P4)
We extracted data regarding the programming languages

used to implement software from which metrics values were ob-
tained. We assessed which programming languages were most
often used in software fault prediction and if the choice of the
programming language was associated with a choice of soft-
ware metrics. Programming languages were extracted as stated
and were not categorized, except for rarely used programming
languages which were grouped as ‘Other’. The ‘Not stated’
group was introduced for primary studies where the type of pro-
gramming language was not described.

3.4.5. Software development life cycle (P5)
According to Shatnawi and Li [136], the post-release evolu-

tion process of a system is different from the pre-release de-
velopment process, because the system has been through some
rigorous quality assurance checks. Post-release systems tend
to have fewer faults than pre-release systems. Faults are also
harder to locate and fix in post-release systems.

We decided to use the ‘software development life cycle
(SDLC)’ property to determine whether the SDLC phase in-
fluences the selection of software metrics (RQ4.1). We also
investigated the effect of the SDLC phase on software fault pre-
diction accuracy (RQ4.2). The studies were categorized accord-
ing to SDLC into: pre-release and post-release. Pre-release

6

SDLC included all studies using software in the design, imple-
mentation or testing phase. The studies performing validation
on software used in production, or those having more than one
version of software, were classified as post-release. If SDLC
was not stated, the study was categorized as pre-release.

3.4.6. Researcher (P6)
To rank studies we believed to be especially relevant to the

industry we used the properties ‘Researcher’ (P6) and ‘Organi-
zation’ (P7). With these two properties we want to point out
research performed by researchers coming from the industry as
well as research performed in an industrial setting. We believe
that the ultimate goal of every study validating metrics is to find
metrics, which can later be used in the industry. Therefore, it is
essential that metrics are validated also in the industry.

The ‘Researcher’ property was used to analyze the share of
research performed by researchers coming from the industry.
Studies were categorized according to the authors’ affiliation
with either academia or industry. When authors of the same
paper came from academia and from the industry, the first au-
thor was considered.

3.4.7. Organization (P7)
The property ‘Organization’ was introduced because many

studies were performed by researchers coming from academia
working in an industry setting. As with the property ‘Re-
searcher’, the focus here was on studies performing validation
on the data sets from the industry. With this property we cat-
egorized studies with regard to the origin of the data set into:
academia and industry. When the domain was not stated, the
study was categorized as academic, in order to conduct a more
conservative assessment.

3.4.8. Modeling technique (P8)
The property ‘Modeling technique’ was used to examine the

influence of the modeling technique on the selection of met-
rics. The studies were categorized into: statistical and ma-
chine learning. The ‘statistical’ category included all the statis-
tical models like logistic and linear, univariate and multivariate
regression, whereas the ‘machine learning’ category included
machine learning and genetic algorithms. (The modeling tech-
niques are covered in more detail in [23, 10, 11].)

3.4.9. Dependent variable (P9)
To extract data about dependent variables we introduced the

properties ‘Dependent variable’ (P9) and ‘Dependent variable
granularity’ (P10).

The studies were categorized, based on the dependent vari-
able, into: detecting, ranking and severity. The ‘detecting’
category included studies classifying modules as fault-prone
or not. The ‘ranking’ category included studies ranking mod-
ules according to the number of faults they exhibited while the
‘severity’ category included studies classifying modules into
different fault severity levels.

3.4.10. Dependent variable granularity (P10)
We used the property ‘Dependent variable granularity’ to de-

termine the level at which predictions were made. Predictions
carried out on a lower level of granularity were deemed to be
more useful than ones carried out on larger modules, since it en-
abled more accurate predictions of fault location. Studies were
classified according to the ‘Dependent variable granularity’ into
the following categories: Method, Class, File, Package and
Other.

3.5. Study quality assessment

In addition to the inclusion/exclusion criteria, the quality of
each primary study was assessed by the quality checklist for
quantitative studies. The quality checklist questions were de-
veloped by suggestions summarized in [33]. Each question in
the quality checklist was answered with ‘Yes’, ‘Partially’ or
‘No’, and marked by 1, 0.5 and 0 respectively. The final score
of the study ranged from 0 to 20, where 0 is the lowest score,
representing lower quality, and 20 is the highest score, repre-
senting high quality studies, according to our definitions. A
cutoff value for excluding a study from the review was set at
10 points. Since the lowest score for the study was 11, all the
studies were included on the basis of the quality checklist.

All 20 questions, with a summary of how many studies were
marked with ‘Yes’, ‘Partially’ and ‘No’ for each question, are
presented in Table B.6 (see appendix). Most of the studies were
successful at answering questions regarding metrics Q4, Q5 and
Q6, with the exception being question Q5, where 9% of the
studies did not fully define the metrics they used. The metrics
were considered as defined if it was possible to establish the
definition or origin of the metrics. Sometimes only the number
of metrics or a group of metrics was given, without specifying
or referencing the metrics. Most of the studies poorly defin-
ing the metrics were, for some reason, published in conference
proceedings.

Questions regarding the data sets Q2, Q7, Q8 and Q20 were
rated lower. The data set size (Q2) was considered not justi-
fied if it was not stated or it was too small. 25% of the studies
failed to meet this request. Many studies failed to report the
data set size. In [150, 100] the authors mention a very large
telecommunication system, but its size was never specified. In
[152, 80, 140, 148] a small data set with less than 100 classes
was used, making the studies’ validity questionable, since the
conclusions were based on a small sample.

Only 53% of data sets were adequately described (Q8) when
listing information about data set size, availability, program-
ming language used and context. This information is important
when comparing studies and when deciding on using a specific
set of metrics in a system, since not every metric is suitable for
every system. The question with the lowest rate was data set
availability and repeatability of the studies (Q20). Only 21% of
all these studies used publicly available data sets, whereas 58%
of the studies used a private data set. The importance of data
set availability in discussed in more detail in Section 4.4.1.

There was a noticeable difference in rates between journal
papers and papers published in conference proceedings. Con-

7

ference proceedings scored slightly worse, because they failed
to report all the details, which could be due to space limitations.

For the interested reader we suggest taking into consideration
four studies in particular, [113, 137, 76, 153], which scored the
maximum of 20 points.

Readers from the industry, searching for metrics to imple-
ment in their systems, may be especially interested in 14 stud-
ies [117, 120, 121, 119, 118, 124, 130, 131, 128, 129, 147,
146, 149, 92] performed by researchers in the industry and in
an industrial setting. They were performed on large data sets,
but unfortunately private ones. The exception are two studies,
[128, 129], which were performed using partially available data
sets, and [149], which used a small data set.

3.6. Validity threats

3.6.1. Publication bias
Publication bias is the tendency to publish positive results

over negative results, where studies presenting positive results
are more likely to be published than studies with negative re-
sults [33]. Although one of our objectives was to find success-
ful software fault prediction metrics, we did not limit our study
prior to the search and selection process. On the contrary, we
searched for all studies performing an empirical evaluation of
software metrics in software fault prediction, which was our
only criterion. In addition, we tried to address this issue by
searching conference proceedings and Grey Literature, contact-
ing the authors of the selected studies and by using snowball
sampling.

The authors of the primary studies could be biased when se-
lecting metrics. This might be the reason for a higher num-
ber of studies validating OO metrics rather than traditional size
and complexity metrics. The selected studies are from time pe-
riod when many organizations were adopting or already using
OO systems. The broad acceptance of the OO development
paradigm could have influenced the authors to use OO metrics
in greater extent.

3.6.2. Searching for primary studies
The search strategy was designed to find as many studies as

possible. We constructed a very wide search string, which re-
sulted in 13,126 studies found in seven databases. Although the
result list was extensive and included a lot of false positives, we
decided to keep the original search string in order not to miss
any potentially relevant studies.

Our additional search strategy, snowball sampling, resulted
in an additional thirteen relevant studies and, finally, three stud-
ies were discovered by contacting the authors themselves. Out
of the total of 16 studies, we were somewhat relieved to dis-
cover that seven studies could not be found in any of the seven
databases. The remaining nine studies could be found in the
databases but were not captured by our already extensive search
string.

We concluded that searching for primary studies in databases
is neither efficient nor effective, which is primarily due to incon-
sistent terminology [19]. (Similar observations have been made
in [33, 48, 7].)

In addition to searching databases, we used alternative search
strategies to minimize the possibility of missing potentially rel-
evant studies. However we cannot exclude the possibility that
we overlooked a relevant study.

3.6.3. Study selection
The search and exclusion of studies based on the title and ab-

stract (13,126 studies in total), was carried out independently by
two researchers. First, a pilot selection process was performed
on 100 randomly selected studies to establish a common ground
of understanding regarding the inclusion/exclusion criteria and
to find and resolve any potential disagreements. After the pilot
search, the inclusion/exclusion criteria were refined.

Each researcher developed his own list of selected studies.
An inter-rater agreement analysis was then used to determine
the degree of agreement between the two researchers (Table 2),
which was substantial, according to Landis and Koch [36].

A final exclusion, based on full text, was carried out by a
single researcher. There is therefore a possibility that the ex-
clusion was biased and that a study may have been incorrectly
excluded.

3.6.4. Data extraction and quality assessment
Due to time constrains and the large number of studies to

review, data extraction and quality assessment were performed
by one researcher and checked by a second researcher, as sug-
gested in [7, 48]. In our case, the second researcher performed
data extraction and quality assessment on ten randomly selected
studies.

As in the study selection process we used an inter-rater
agreement analysis to calculate the Cohen’s Kappa coefficient.
Agreement between the two researchers for each property is
presented in Table 3. The researchers were in agreement on ex-
tracting the programming language (P4), modeling technique
(P8) and dependent variable granularity (P10). There were
some misunderstandings about extracting data with multiple
choices and incomplete data, which were later discussed and
agreed upon. Eight out of the ten properties had a Cohen’s
Kappa coefficient of 0.80 or higher, which is substantial, ac-
cording to Landis and Koch [36].

The most bias was expected in the quality assessment, since
questions may be hard to answer objectively. None of the ten
studies assessed by two researchers got the same final score.
However, the most significant difference in the score for an indi-
vidual study between the two researchers was two. The quality
checklist may not be the most precise form of quality assess-
ment, but we believe it is solid enough to distinguish between
better and weaker studies.

4. Results

In this section the selected primary studies are described and
the results are provided. A short overview of the studies’ dis-
tribution over the years, and per source, is presented in Sec-
tion 4.1. In Sections 4.2–4.6 research questions are answered.

8

0

2

4

6

8

10

12

14

16

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

CK PROMISE

Figure 3: The distribution of studies over the years.

4.1. Primary studies
In this review, we have included 106 primary studies that

evaluate the performance of software metrics fault prediction.
In Section 4.1.1 the distribution over the years is presented to
demonstrate how the interest in metrics validation has changed
over time. The most dominant publication sources are pre-
sented in Section 4.1.2.

4.1.1. Publication year
One of the oldest and well-known metrics presented by Mc-

Cabe [44] dates back to 1976. In 1991, Chidamber and Kemerer
[12] presented the CK metrics suite and refined it in 1994 [13].
Although we found a few studies from the 1980s, none were
included in the review. In Fig. 3 it can be seen that after the
CK metrics suite was introduced, many studies validating soft-
ware metrics were published. From 1996 until 2005, an aver-
age of four studies per year were published. In 2005, when the
PROMISE repository [6] was released, the number of studies
per year started to increase, reaching 14, 15 and 13 studies per
year in the years 2008, 2009 and 2010, respectively. Data is
not consistent for the year 2011, since the year was not yet fin-
ished when we started searching for studies in October 2011; it
takes up to half a year for studies to appear in databases. Nev-
ertheless, five studies from 2011 were included. Since 2005, 71
(67%) studies were published, indicating that we have included
more contemporary and relevant studies. It also shows that the
software metrics research area is still very much relevant to this
day.

4.1.2. Publication source
The number of selected studies per source is shown in Ta-

ble 4. Only sources having three or more publications are listed.
The most dominant journal, with 19 publications, is IEEE
Transactions on Software Engineering, followed by the Interna-
tional Conference on Software Engineering and the PROMISE
conference. The first three sources contain 38% and the first
ten sources contain 66% of all the selected studies. This makes
searching for studies about software metrics easier, since there
are journals and conferences where studies such as these are
published in most cases.

There were slightly more studies presented at conferences
(59) than in journals (47).

Table 4: Number of studies per source and the cumulative percent of studies for
top sources.

Source # Σ %
IEEE Transactions on Software Engineering 19 18
International Conference on Software Engineering 13 30
International Conference on Predictive Models in Soft-
ware Engineering

8 38

Empirical Software Engineering 5 42
Information and Software Technology 5 47
International Software Metrics Symposium 5 52
Journal Of Systems and Software 5 57
International Symposium on Software Reliability Engi-
neering

4 60

European Conference on Software Maintenance and
Reengineering

3 63

Software Quality Journal 3 66

4.2. RQ1: What software metrics for fault prediction exist in
literature?

In 61 (49%) studies, the object-oriented metrics were used,
followed by traditional metrics, which were used in 34 (27%)
studies. Object-oriented metrics were used twice as often when
compared with traditional metrics. There were many studies
comparing fault prediction performance of OO and traditional
metrics. They used and validated OO metrics but had tradi-
tional metrics (e.g. LOC) just for comparison. As we have seen
from the distribution of studies over the years, all of the studies
except one were published after the CK metrics suite was intro-
duced, which has had a significant impact on metrics selection
ever since.

Process metrics were used in 30 (24%) studies. It is interest-
ing to note that there is no significant difference in the number
of studies using process or traditional metrics.

After 2005, the use of process metrics (30%) has slightly in-
creased and the use of OO metrics (43%) has slightly decreased.
The number of studies using traditional metrics (27%) has re-
mained the same.

The most frequently used metrics are the Chidamber and Ke-
merer [13, 12] (CK). According to our primary studies, the CK
metrics were validated for the first time in 1996 [62] and most
recently in 2011 [75, 82, 76, 105]. They were also the first
validated metrics in our selected studies with the exception of
[102]. Their popularity is evenly distributed over the years and
there is no sign that this will change in the future. Out of 106
selected studies, CK metrics were used in half of them. The
most commonly used metrics from the CK metrics suite in-
clude: NOC (53), DIT (52), RFC (51), LCOM (50), CBO (48)
and WMC (44). (The number in parenthesis indicates the num-
ber of times the metrics were used used.)

The WMC metric (‘Weighted Methods per Class’) is defined
as the sum of methods complexity [12, 13]. But, method com-
plexity was deliberately not defined in the original proposal in
order to enable the most general application of the metric [13].
To calculate method complexity, any traditional static size or
complexity metric can be used. In this review, we did not make
any distinction between different implementations of WMC be-
cause studies do not always report how the metric was calcu-
lated.

9

There are three common implementations of the WMC met-
ric found in the primary studies:

• Simple WMC: The complexity of each local method is
considered to be unity. The WMC is equal to the number
of local methods in a class. However, it should not be mis-
taken for the NLM metric (‘Number of Local Methods’),
which is the number of local methods defined in a class
that are accessible outside the class (e.g. public methods)
[41]. The NLM metric was used in [154, 57, 94, 129, 136].
Second similar metric is the NOM metric (‘Number Of
Methods’), which is the count of all methods defined in
a class (including inherited methods) [3] and was used in
[156, 61, 58, 77, 76, 153, 128, 94, 105, 136]. Another sim-
ilar metric is the NMC metric (‘Number of Methods per
Class’), which is defined as the number of public, private
and protected methods declared in a class, but does not in-
clude inherited methods [15]. It was used in [149, 83, 87].
When counting methods in a class, the WMC is essentially
a size measure.

• WMC LOC: The complexity of each local method is cal-
culated using the LOC metric. The WMC is equal to the
sum of lines of code of all local methods in a class. In this
case, WMC is a size measure.

• WMC McCabe: The complexity of each local method is
calculated using McCabe’s cyclomatic complexity. The
WMC is equal to the sum of McCabe’s cyclomatic com-
plexity of all local methods in a class. In this case, the
WMC is a complexity measure.

Therefore, the WMC is not really an OO metric, but it is more
of a size or complexity metric, depending on implementation.

McCabe’s cyclomatic complexity [44] was the most fre-
quently used of the traditional metrics. It was used in 43 studies.
Other popular metrics include LCOM1 by Henderson-Sellers
[25] (14); NOA by Lorenz and Kidd [42] (13); NOM by Ban-
siya and Davis [3] (12); LCOM3 by Hitz and Montazeri [26]
(11); N1, N2, η1 and η2 by Halstead [24] (12); ACAIC, ACMIC,
DCAEC, DCMEC and OCMEC by Briand et al. [70] (11); TCC
and LCC by Bieman and Kang [5] (10).

The extensive list of the most commonly used metrics in the
selected studies is presented in appendix, Table C.7.

4.3. RQ2: What empirical validation was performed on the
metrics found in RQ1?

This section presents the results of metrics evaluation found
in the selected studies. The studies are grouped according to
software metrics into: size, complexity, OO and process met-
rics.

The overall effectiveness of metrics and effectiveness in re-
gard to SDLC, size and programming language is summarized
in Table 5. In overall effectiveness, all the studies were taken
into account to get a general assessment. To investigate which
metrics were effective in a particular environment, we assessed
how the metrics’ effectiveness was influenced by pre- and post-
release SDLC, small and large data sets, procedural and OO

Table 5: Metrics’ effectiveness in terms of SDLC, size, programming language
and overall.

Metric Overall SDLC Size Prog. language
Pre Post Small Large Proc OO

LOC + ++ + ++ + + ++

N1 0 + 0 + 0 0 0
N2 0 + 0 + 0 0 0
η1 0 0 0 0 0 0 0
η2 0 0 0 0 0 0 0
CC + 0 + 0 + 0 +

CBO ++ ++ ++ ++ ++ ++

DIT 0 + 0 + 0 0
LCOM 0 + 0 + 0 0
NOC 0 - 0 - 0 0
RFC ++ ++ ++ ++ ++ ++

WMC ++ ++ ++ ++ ++ ++

Delta + + + 0 +

Churn ++ ++ ++ ++ ++

Developer + + + 0 ++

Past faults + + + 0 +

Changes ++ ++ ++ ++ ++

Age ++ ++ ++ ++ ++

Change set ++ ++ ++ + ++

programming languages. For the category ‘size’, medium and
large data sets were merged, as there were not many studies
using medium-sized data sets. This way, a clear distinction be-
tween studies using small and large data sets was made.

Metrics were selected based on their frequency of use in the
selected primary studies. Including more metrics in the table
was not possible due to a lack of use of other metrics. Nev-
ertheless, we believe the selected metrics represent each of the
metrics’ categories. The LOC metric was selected as the rep-
resentative of size metrics, as other size measures were rarely
used. Complexity metrics were described by McCabe’s cyclo-
matic complexity CC and Halstead’s total number of operators
N1, total number of operands N2, number of unique operators
η1 and number of unique operands η2. Chidamber and Kemerer
metrics (CBO, DIT, LCOM, NOC, RFC and WMC) were se-
lected as the most frequently used object-oriented metrics, since
other OO metrics, like MOOD and QMOOD, were rarely used.
Process metrics were represented by code delta, code churn, the
number of developers, the number of past faults, the number of
changes, the age of a module and the change set size.

Effectiveness was assessed with a five-point scale to depict
the degree of the metrics’ effectiveness. It was denoted by the
symbols ++, +, 0, - and - -, where ++ indicates a strong posi-
tive, + a weak positive, 0 no, - a weak negative and - - a strong
negative correlation between the metrics and software fault pre-
diction. A blank entry indicates that the estimation of a metric’s
effectiveness could not be made, because there were not any (or
not enough) studies in the category. When assessing the met-
rics’ effectiveness, the reliability of the studies was considered
by taking into account the results of a study quality assessment.
Greater reliability was given to the studies with a higher quality
assessment score. The results of the studies with higher relia-
bility were considered to a greater extent than the results of the
studies with lower reliability.

10

4.3.1. RQ2.1: Are size metrics useful for fault prediction?

The simplest, the easiest to extract and the most frequently
used metric, i.e. LOC, is still being discussed to this day. There
are many studies investigating the relationship between lines of
code and number of faults. The simplest studies have ranked
the modules according to their size to find out whether a small
number of large modules are responsible for a large proportion
of faults. E.g. in Zhang [151] three versions of Eclipse were
used to investigate pre-release and post-release ranking ability
of LOC at the package level. This study showed that 20% of the
largest modules were responsible for 51%–63% of the defects.

Ostrand et al. [130] used the negative binomial regression
model on two large industrial systems. In the simple model,
using only LOC, the percentage of faults, contained in the 20
percent of the files that were the largest in terms of the num-
ber of lines of code, was on average 73% and 74% for the two
systems. In a richer model, where other metrics were used, the
top-20% of files ordered by fault count contained, on average,
59% of the lines of code and 83% of the faults. The top-20%
of files contained many large files, because the model predicted
a large number of faults in large files. In analyzing which files
were likely to contain the largest number of faults relative to
their size, they used the model’s predicted number of faults and
the size of each file to compute a predicted fault density. The
top-20% of files contained, on average, only 25% of the lines
of code and 62% of the faults. Sorting files by predicted fault
density was not as effective as sorting files according to fault
count at finding large numbers of faults, but it does result in
considerably less code in the end.

Fenton and Ohlsson [84] investigated, among many hypothe-
ses, the Pareto principle [28] and the relationship between size
metrics and the number of faults. They used a graphical tech-
nique called the Alberg diagram [127] and two versions of a
telecommunication software. As independent variables LOC,
McCabe’s cyclomatic complexity and SigFF metrics were used.
In pre-release 20% of the modules were responsible for nearly
60% of the faults and contained just 30% of the code. A repli-
cated study by Andersson and Runeson [59] found an even
larger proportion of faults, in a smaller proportion of the mod-
ules. This result is also in agreement with [130, 151].

Fenton and Ohlsson also tested the hypothesis of whether
size metrics (such as LOC) are good predictors of pre-release
and post-release faults in a module and whether they are good
predictors of a module’s pre-release and post-release fault den-
sity. They showed that size metrics (such as LOC) are moderate
predictors of the number of pre-release faults in a module, al-
though they do not predict the number of post-release failures
in a module, nor can they predict a module’s fault density. Even
though the hypothesis was rejected, the authors concluded that
LOC is quite good at ranking the most fault-prone modules.
Andersson and Runeson, on the other hand, got varying results.
The first two projects did not indicate any particularly strong
ranking ability for LOC. However, in the third project, 20% of
the largest modules were responsible for 57% of all the faults.

Koru et al. [35, 104] reported that defect proneness increases
with size, but at a slower rate. This makes smaller modules

proportionally more problematic compared with larger ones.
In [34, 59], it is noted that relating size metrics to fault den-

sity may be misleading, as there will always be a negative cor-
relation between size metrics and fault density, because of the
functional relationship between the variables [47]. However,
no studies using fault density as dependent variable were ex-
cluded from the review because we wanted to represent the en-
tire research field. In this section, studies using fault density
are compared with LOC size ranking ability to assess the LOC
predictive capabilities.

To some extent, size correlates with the number of faults
[130, 151, 154, 112, 83, 78], but there is no strong evidence
that size metrics, like LOC, are a good indicator of faults
[84, 59]. A strong correlation was observed between the size
metric LOC and fault proneness in pre-release and small stud-
ies, while in post-release and large studies, only a weak associ-
ation was found (Table 5). This may indicate that studies with
lower validity (smaller data sets) gave greater significance to the
LOC metric than studies with higher validity (larger data sets).
Therefore, the reliability of the studies in terms of study quality
assessment was taken into account and the overall effectiveness
of the LOC metric was estimated as moderate.

4.3.2. RQ2.2: Are complexity metrics useful for fault predic-
tion? Do they have additional benefits after being ad-
justed for size?

Popular complexity metrics, like McCabe’s cyclomatic com-
plexity [44] and Halstead’s metrics [24], were used in 22 and
12 studies, respectively. McCabe’s cyclomatic complexity was
a good predictor of software fault proneness in [127, 156, 112,
111, 121, 92, 75], but not in [64, 87, 141, 148]. Cyclomatic
complexity was fairly effective in large post-release environ-
ments using OO languages but not in small pre-release envi-
ronments with procedural languages (Table 5). This indicates
that cyclomatic complexity may be more effective in large and
OO environments. One potential explanation for this could be
that in large data sets, modules are more complex than in small
data sets. We assumed that modules in small data sets (usually
academic and written by students) were not as complex as in
large industrial cases. Also, the modules used in OO program-
ming languages (usually class) are generally bigger than mod-
ules used in procedural languages (usually method) and may,
therefore, be more complex. Although the cyclomatic com-
plexity was not found to be effective in all the categories, the
overall effectiveness was estimated as moderate, as there were
individual studies reporting its usability.

Poor results were reported for Halstead’s metrics, which
were significant in [116, 148], but not in [101, 112, 111]. Ac-
cording to the evidence gathered, Halstead’s metrics were not as
good as McCabe’s cyclomatic complexity or LOC [111]. They
were found to be somewhat effective in pre-release and small
studies, suggesting low validity of the results. The total number
of operators N1 and the total number of operands N2 performed
better than the number of unique operators η1 and the number of
unique operands η2 [148]. In other categories, Halstead’s met-
rics were ineffective when compared to other metrics. Hence,

11

they were estimated as inappropriate for software fault predic-
tion.

Fenton and Ohlsson [84] reported that complexity metrics are
not the best, but reasonable predictors of fault-prone modules.
They found a high correlation between complexity metrics and
LOC. Zhou et al. [154] also noted that class size has a strong
confounding effect on associations between complexity metrics
and fault-proneness, and that the explanatory power of com-
plexity metrics, in addition to LOC, is limited. McCabe’s and
Halstead’s metrics were highly correlated to each other and to
the lines of code in [88, 18]. The high correlation between com-
plex metrics and LOC is reasonable, since complexity metrics
are essentially a size measurement [112]. From the evidence
gathered, it seems complexity metrics are not bad fault predic-
tors, but others are better [112, 84, 88, 154, 155].

4.3.3. RQ2.3: Are OO metrics useful for fault prediction? Do
they have additional benefits after being adjusted for
size?

The most frequently used and the most successful among
OO metrics were the CK metrics. However, not all CK met-
rics performed equally well. According to various authors
[62, 66, 67, 81, 149, 89, 153, 128, 132, 136, 53, 137] the best
metrics from the CK metrics suite are CBO, WMC and RFC,
which were effective across all groups (Table 5). LCOM is
somewhere in between [62, 89, 132, 137] and was found to be
effective in small pre-release studies. When all the evidence is
considered and compared to other CK metrics, LCOM is not
very successful in finding faults. DIT and NOC were reported
as untrustworthy [139, 153, 89, 128, 132, 136, 87, 83, 137].
DIT was only significant in some small and pre-release stud-
ies, while NOC was unreliable and occasionally inverse signif-
icant. This means that the module has greater fault potential if
it has fewer children, which is the opposite of the NOC origi-
nal definition. Consequently, DIT and NOC were assessed as
ineffective OO metrics.

Abreu and Carapuca MOOD [1, 51] and Bansiya and Davis
QMOOD metric suites [3] were only validated in a few studies.
Olague et al. [128] reported that the QMOOD metrics were,
while the MOOD metrics were not, suitable for predicting soft-
ware fault proneness. They also stated that the CK metrics
performed better than QMOOD and MOOD metrics. Among
QMOOD metrics, CIS and NOM metrics performed better than
others. In [82], MOOD metrics were evaluated and compared
with the Martin suite [43] and CK metrics. The MOOD metrics
were outperformed by the Martin suite. In the MOOD suite, the
CF metric had the highest impact.

The MOOD metrics were also theoretically evaluated in [31].
This study is not included in the list of primary studies because
there was no empirical validation. The study reported that the
MOOD metrics operated at the system level, while the CK met-
rics operated at the component level. Therefore, MOOD met-
rics are appropriate for project managers to assess the entire
system, and CK metrics are more appropriate for developers
and monitoring units. Al Dallal [56, 55] used CAM metrics
from the QMOOD metrics suite to compare it with other cohe-
sion metrics and the proposed SSC metric. In the two studies,

both CAM and SSC performed well.
The predictive performance of cohesion metrics LCC and

TCC [5] was estimated as modest by all ten studies [71, 65,
69, 66, 67, 52, 109, 53, 56, 55]. They have a similar definition
and share similar performance [53, 56, 55]. LCC was found
to perform slightly better than TCC [69, 52]. In [109] TCC and
LCC performed the worst among ten cohesion metrics, whereas
TCC was slightly better than LCC.

Briand et al. [70] studied and proposed new object-oriented
metrics. The coupling metrics were reported to be successful
[70, 71, 65, 69, 66, 67, 8, 81, 54, 53]. The coupling metrics
were further divided into import coupling and export coupling.
The import coupling metrics were reported to be superior over
export coupling [69, 71, 66, 67, 68, 54, 53]. Only in [81] were
export coupling metrics more successful.

El Emam et al. [80] investigated the association between
class size, CK metrics and Lorenz and Kidd OO metrics. They
demonstrated that after controlling for size, metrics correlation
with faults disappeared, indicating a strong correlation between
OO metrics and size. The association between OO metrics and
size was also observed in [60], where the cost-effectiveness of
OO metrics was studied. The OO metrics were good predictors
of faulty classes, but did not result in cost-effective prediction
models. Subramanyam and Krishnan [138] tended to agree to
some extent with El Emam, but they suggested that the addi-
tional effect of OO metrics beyond the one explained by size is
statistically significant.

Since only a few studies have taken into account the potential
correlation between size and OO metrics, additional validation
is needed to assess the impact of software size on OO metrics.

4.3.4. RQ2.4: Are process metrics superior to traditional and
OO metrics? Is the answer dependent upon the life cycle
context?

Process metrics are computed from the software change his-
tory. They can be further divided into delta metrics and code
churn metrics. Delta metrics are calculated as the difference of
metrics values between two versions of a software. They show
the end result, i.e. how the metrics value has changed between
two versions, but not how much change has occurred. For ex-
ample, if several lines of code have been added, this change will
be reflected in a changed delta value. But if the same number of
lines have been added and removed, the delta value will remain
the same. This weakness is corrected by code churn metrics,
which capture the overall change to the software between two
versions. The delta and the code churn metrics can be computed
for any metric [22].

The first study in our review to investigate the process metrics
was [116]. Of the three independent variables of code churn,
deltas and developer measures used in the study, code churn
had the greatest correlation with trouble reports. There was no
apparent relationship between the number of developers imple-
menting a change and the number of trouble reports.

Graves et al. [88] looked at how code changes over time.
They reported that the number of changes to code in the past,
and a measure of the average age of the code, were successful
predictors of faults; clearly better than product measures such

12

as lines of code. Their most successful model, the weighted
time damp model, predicted fault potential using a sum of con-
tributions from all the changes to the module in its history,
whereas large and recent changes contribute the most to fault
potential. In [130, 93] new and changed files had more faults
than existing, unchanged files with otherwise similar character-
istics.

Moser et al. [115] compared 18 process metrics to static
code metrics. They reported that process related metrics con-
tain more discriminatory and meaningful information about the
fault distribution in software than the source code itself. They
found four metrics to be powerful fault predictors and explained
that files with a high revision number are by nature fault prone,
while files that are part of large CVS commits are likely to
be fault free, and bug fixing activities are likely to introduce
new faults. Refactoring, meanwhile, seems to improve software
quality.

In [117], relative code churn metrics were found to be good
predictors of binaries’ fault density, while absolute code churn
was not.

Arisholm et al. [60] performed an extensive comparison of
OO, delta and process metrics on 13 releases of a large Java
system. They found large differences between metrics in terms
of cost-effectiveness. Process metrics yielded the most cost-
effective models, where models built with the delta and the
OO metrics were not cost-effective. Process metrics were also
the best predictor of faulty classes in terms of ROC area, fol-
lowed by the OO and delta metrics. The differences between
metrics were not as significant as they were in terms of cost-
effectiveness. A good prediction of faulty classes and low cost-
effectiveness of the OO metrics may be explained by the afore-
mentioned association with size measures [80].

Developer metrics were investigated by several studies, but
their usability in fault prediction remains an important unan-
swered research question. Schröter et al. [135] investigated
whether specific developers are more likely to produce bugs
than others. Although they observed substantial differences in
failure density in files owned by different developers in pre-
release and post-release, they suspect that the results do not in-
dicate developer competency, but instead reflect the complexity
of the code.

Weyuker et al. [147, 146, 131] introduced three developer
metrics: the number of developers who modified the file dur-
ing the prior release, the number of new developers who modi-
fied the file during the prior release, and the cumulative number
of distinct developers who modified the file during all releases
through the prior release. Only a slight improvement of pre-
diction results was recorded when developer information was
included. Graves et al. [88] found that the number of differ-
ent developers, who worked on a module, and a measure of
the extent to which a module is connected with other mod-
ules, did not improve predictions. On the other hand, developer
data did improve predictions in [118, 93, 110]. All four studies
have the same quality assessment score and are very similar in
all properties, but different in the property ‘Programming lan-
guage’. Graves et al. [88] used procedural programming lan-
guage, while in [118, 93, 110] OO programming language was

used. However, we do not believe this is the reason for the con-
tradictory results.

Source code metrics (i.e. size, complexity and OO metrics)
do not perform well in finding post-release faults [57, 128, 136,
60], because these are more likely due to the development pro-
cess and less likely due to the software design [136]. Fault pre-
diction models are influenced not just by source code but by
multiple aspects, such as time constraints, process orientation,
team factors and bug-fix related features [46].

Moser et al. [115] gives a simple explanation why process
metrics contain more meaningful information about fault distri-
bution than source code metrics. They explain that a very com-
plex file, which would be classified as faulty by a prediction
model based on complexity metrics, can be fault free, because
it was coded by a skilled developer who did a very prudent job.
On the other hand, if a file is involved in many changes through-
out its life cycle, there is a high probability that at least one of
those changes will introduce a fault, regardless of its complex-
ity.

In contrast to source code metrics, process metrics were
found to be useful in predicting post-release faults [100, 107,
58, 73, 85, 91, 60, 93, 110, 88, 115, 117, 118]. Only in [150]
did additional process metrics not improve classification accu-
racy.

According to included studies and to our assessment of the
metrics’ effectiveness (Table 5), the best process metrics are
code churn, the number of changes, the age of a module and the
change set size. They were strongly related to fault proneness
in all categories. When compared to other three metrics, the
change set size metric showed slightly poorer results in stud-
ies using procedural languages. Code delta, the number of de-
velopers and the number of past faults metrics exhibited some
evidence relating them to fault proneness, but the results were
not as strong as with other process metrics. Code churn met-
rics were found to be more appropriate than delta metrics. The
developer metric showed only moderate correlation with faults
and seemed to dependent upon the environment, since different
observations were reported. It is not immediately clear whether
past faults are related to faults in the current release, but there
seems to be a weak connection between them.

Industry practitioners looking for effective and reliable pro-
cess metrics should consider code churn, the number of
changes, the age of a module and the change set size metrics.
Researchers looking for poorly investigated areas may consider
the number of past faults and the change set size metrics, since
there is not much evidence relating them to faults. Another
challenging area would be to find new ways to measure process
related information and to evaluate their relationship with fault
proneness.

4.3.5. RQ2.5: Are there metrics reported to be significantly
superior for software fault prediction, and if so which
ones?

Although there is evidence for each metric category asso-
ciating metrics with fault proneness, we have considered how
strong the evidence is, taking into account contradictory argu-
ments and studies’ reliability. According to the 106 primary

13

studies, there are metrics reported to be more successful at fault
prediction than others. From the evidence gathered, it seems
OO and process metrics are more successful at fault prediction
than traditional size and complexity metrics.

In the OO category, the most frequently used and the most
successful metrics are the CK metrics. The CBO, WMC and
RFC were reported to be the best from the CK metrics suite.
The coupling metrics were reported to be better than inheritance
and cohesion metrics.

Process metrics were found to be successful at finding post-
release faults [100, 107, 58, 73, 85, 91, 60, 93, 110, 88, 115,
117, 118], while source code metrics were not [57, 128, 136,
60]. Metrics code churn, the number of changes, the age of
a module and the change set size have the strongest correla-
tion with post-release faults among process metrics. However,
it is not immediately clear whether fault prediction is also in-
fluenced by having developer data available. Some studies, i.e.
[118, 93, 110], found that additional developer data improved
prediction results, while others [116, 88, 135, 147, 146, 131]
did not find any or found just a slight improvement of predic-
tion results, when developer information was included. Only
weak evidence supporting correlation with faults was also ex-
hibited for the past faults and code delta metrics. Therefore,
metrics developer, past faults and code delta are not among the
most successful process metrics.

Our findings are similar to those of Hall et al. [23] for size,
complexity and OO metrics, but differ regarding process met-
rics. Hall reported that process metrics performed the worst
among all metrics. This could be due to the quantitative model
used, which only takes into account the raw performance of the
models, without considering the context in which the studies
were performed. Poor process metrics performance might be
explained by the fact that process metrics are usually evaluated
in post-release software, where faults are harder to find. In ad-
dition, Kitchenham [34] also concluded that process metrics are
more likely to predict post-release faults than static code met-
rics.

There have been many published studies that validate CK
metrics, and much attention has been paid to LOC, but there are
not that many studies using process metrics. In the future, we
would like to see more studies proposing and validating process
metrics, since they may be of great potential in software fault
prediction.

4.3.6. RQ2.6: Are there metrics reported to be inferior for soft-
ware fault prediction, and if so which ones?

Complexity metrics do have some predictive capabilities, but
may not be the best metrics for software fault prediction, since
they are highly correlated with lines of code [84, 88, 112, 154].

Size measures like LOC metrics are simple and easy to ex-
tract; but as with the complexity metrics, they only have limited
predictive capabilities. They are partly successful in ranking the
most fault prone modules, but are not the most reliable or suc-
cessful metrics [84, 130, 59, 151].

Neither are all OO metrics good fault predictors. For exam-
ple, NOC and DIT are unreliable and should not be used in fault
prediction models [139, 153, 89, 128, 132, 136, 87, 83, 137].

There is also little evidence for other OO metrics like the
MOOD and QMOOD metrics, but they do not promise much
on the other hand [128].

There are some metrics that could not be classified either
as successful or unsuccessful fault predictors, due to either
the lack of research (e.g. MOOD, QMOOD, individual process
metrics) or conflicting results (e.g. LCOM, developer metrics).
These metrics will be left for future research to determine their
usefulness.

4.4. RQ3: What data sets are used for evaluating metrics?
In the case of our primary studies, data was gathered from

different software items and software development processes.
This section describes what data sets were used, whether they
were publicly available, the size of the data sets, and what pro-
gramming languages were used.

4.4.1. RQ3.1: Are the data sets publicly available?
62 (58%) of the studies used private, 22 (21%) partially pub-

lic and only 22 (21%) public data sets. The number of stud-
ies using private data sets is concerning, since 58–79% of the
studies are, in our opinion, not repeatable, and the results can
therefore be questioned. Using private data sets lowers a study’s
credibility.

In 2005, the PROMISE repository [6] was introduced. It in-
cludes publicly available software measurements and is free for
anyone to use. One would imagine that it would help raise the
question of publicly available data sets, but only a slight im-
provement can be detected. After 2005, 41% of the selected
studies still used private data sets, 30% used partially public
and 28% used publicly available data sets.

4.4.2. RQ3.2: What are the size of the data sets?
58 (55%) studies used large and 12 (11%) used medium sized

data sets. In our estimation, these two groups have data sets
large enough to make a trustworthy conclusion. We are con-
cerned with 36 (33%) studies, which used small data sets, be-
cause there is a great threat of generalizing the results. Data
sets were classified as small if they used less than 200 modules
(classes, files, etc.), which is a low value of cases for a predic-
tive model to make a reliable decision. Such a model can easily
be influenced by the underlying data sets and any conclusion
drawn from it could be misleading. Therefore, the results of the
studies with small data sets should be interpreted with caution.

After 2005, larger data sets have been used. The number of
large data sets (72%) increased and the number of small (18%)
and medium (10%) sized data sets decreased. Hence, with re-
spect to the previous research question, and with respect to this
research question, we can discern a positive trend.

Process metrics were almost always evaluated on large data
sets (Fig. 4), which increases the validity of studies using pro-
cess metrics. However, the validity of studies using OO metrics
is a source of concern, since half of the studies used small data
sets. Small data sets are only strongly associated with OO met-
rics, but not with two other metrics’ categories. Because of this
phenomenon, special attention was paid to the results of the
studies using small data sets and OO metrics.

14

9

5

27

7

3

2

20 27 25

D
a
ta

 s
e
t

s
iz

e

Metrics

Traditional OO Process

S
m

al
l

L
ar

g
e

M
ed

iu
m

Figure 4: The number of studies using metrics by data set sizes.

4.4.3. RQ3.3: What software programming languages are used
to implement software from which data sets are ex-
tracted?

The mostly frequently used programming languages were
C++ (35%), Java (34%) and C (16%). Other programming lan-
guages were rarely used (8% in total), while in 7% of the studies
the programming language was not even stated. It is interesting
that, in addition to Java, not many other modern OO program-
ming languages were used (two studies, [121, 107], used C#).
In the future, more studies should use OO programming lan-
guages other than Java (e.g. C#, Ruby, Python, not to mention
web programming languages such as PHP and JavaScript) to
see how metrics perform in different programming languages,
since the predictive capabilities of metrics may differ between
programming languages [138].

The choice of the programming language is associated with
the choice of software metrics. OO metrics cannot be used
in procedural programming languages, because they do not in-
clude object-oriented concepts like coupling, cohesion and in-
heritance. Figure 5 shows the number of studies using metrics
in procedural and OO programming languages. It confirms that
OO metrics are only used in OO programming languages. Tra-
ditional and process metrics can be used in both types of pro-
gramming languages, but they were more frequently used in
OO programming languages, because of their prevalence. One
would expect traditional metrics to be more often used in pro-
cedural than OO programming languages, but according to Fig-
ure 5, the opposite is the case. This could be due to the large
number of studies validating OO metrics and using traditional
metrics for comparison. The more frequent use of process met-
rics in object-oriented than procedural programming languages
is expected, since process metrics are newer.

4.5. RQ4: What are the software development life cycles in
which the data sets are gathered?

The number of studies using pre-release software (64%) is
larger than the number of studies using post-release software
(36%). In recent years there was a slight increase in studies
using post-release software. Since 2005, the number of stud-
ies using post-release software (47%) is about the same as the

14

21

4

7

56

2

3

12

23

2

4

P
ro

g
ra

m
m

in
g
 l

a
n

g
u

a
g
e

Metrics

Traditional OO Process

P
ro

c
e
d

o
ra

l
O

O

O
th

e
r

U
n
k
n
o

w
n

Figure 5: The number of studies using metrics by programming languages.

number of studies using pre-release software (53%).

4.5.1. RQ4.1: Are there different metrics used in different soft-
ware development life cycles?

Different metrics are used in pre-release compared to post-
release software. In pre-release, size, complexity and OO
metrics are used, while process metrics are not used, because
process-related information is normally not available and only
one version of software exists. In post-release, size, complexity
and OO metrics can be used, but they are rarely found as they
do not predict faults very well in long, highly iterative evolu-
tionary processes [57, 128, 136, 60]. In post-release, process
metrics are commonly used, because of their success in pre-
dicting post-release faults [88, 115, 73, 85, 60, 93].

4.5.2. RQ4.2: Is there proof that fault prediction accuracy dif-
fers across various software development life cycles?

Static code metrics were found to be reasonably effective in
predicting evolution changes of a system design in the short-
cycled process, but they were largely ineffective in the long-
cycled evolution process [57]. For highly iterative or agile sys-
tems, the metrics will not remain effective forever [128, 136].
Static code metrics are, on the one hand, suitable for observ-
ing a particular state in a software iteration but, on the other
hand, their prediction accuracy decreases with each iteration
[128, 136, 57, 156, 89]. One reason for this might be that there
are generally more faults in pre-release than in post-release
[136]. Post-release faults are also harder to find, because they
are less influenced by design and more by development prop-
erties, which cannot be easily detected by static code metrics
[136].

4.6. RQ5: What is the context in which the metrics were evalu-
ated?

In this section, we present the context of the selected studies
(RQ5). In Sections 4.6.1–4.6.5 the distribution of studies ac-
cording to the properties ‘Researcher’, ‘Organization’, ‘Model-
ing technique’, ‘Dependent variable’ and ‘Dependent variable
granularity’ are presented.

15

30

4

57

4

20

10

R
e
s
e
a
r
c
h
e
r

Metrics

Traditional OO Process

A
ca
d
em
ia

In
d
u
st
ry

Figure 6: The number of studies using metrics by researchers from academia
and the industry.

4.6.1. Researcher (P6)
The research on software metrics used in software fault pre-

diction is driven by researchers from academia. 87% of the
studies were performed by researchers from academia and only
13% by researchers from the industry. It is difficult to assess
the industrial applicability of the research, when very few re-
searchers are actually from the industry. This may also point to
a certain degree of disinterest from the industry’s point of view.

Academic researchers were strongly interested in OO met-
rics, while the majority of researchers in the industry used pro-
cess metrics (Fig. 6). This could mean that process metrics are
more appropriate than other categories for industrial use. We
would advise academic researchers to follow researchers in the
industry and focus on process metrics.

Industry experts may be interested in the following studies
[149, 117, 130, 120, 124, 119, 128, 129, 147, 118, 146, 92,
131, 123]. They were performed by researchers in the indus-
try on large data sets, but unfortunately private ones. Only
[128, 129] used medium and partially available data sets. Ac-
cording to our quality assessment, they are as reliable as the
studies performed by researchers from academia. Their aver-
age quality assessment score is 16.4, while the overall average
is 16.3. The quality assessment score of the studies [128, 129]
is 19.5, hence they are highly reliable. They investigate CK,
MOOD, QMOOD object-oriented metrics and McCabe’s cy-
clomatic complexity. Less reliable studies are [147, 92], with a
score of 13 and 13.5.

4.6.2. Organization (P7)
Although the majority of researchers are from academia,

76% of the studies used industrial software to evaluate metrics
performance. Still, 24% of the studies used academic software,
which was usually small and written by students.

Almost all studies performed on academic data sets used OO
metrics, while industrial data sets were equally represented by
all three metrics’ groups (Fig. 7). This indicates the wide ac-
ceptance of OO metrics within the academic research commu-
nity. The results are in alignment with those of the property
‘Researcher’, where the majority of researchers from academia
used OO metrics.

4

30

21

40

3

27

O
rg
a
n
iz
a
ti
o
n

Metrics

Traditional OO Process

A
ca
d
em
ia

In
d
u
st
ry

Figure 7: The number of studies using metrics by organizations.

A similar pattern regarding OO metrics was observed in Fig-
ure 4, where the use of metrics was analyzed against the data
set size. Half of the studies validating OO metrics used small
data sets. When comparing studies using academic software
and studies using small data sets, a strong correlation was dis-
covered. Out of 25 studies using academic software, 21 stud-
ies used small, 4 studies used medium, and none of them used
large data sets. Therefore, studies using academic software usu-
ally have low external validity. To get the most relevant results,
from the industry’s point of view, metrics’ evaluation should
always be performed on large, industrial software.

4.6.3. Modeling technique (P8)
In this systematic review, we focused on selecting metrics

for software fault prediction and not on selection of model-
ing technique. Nevertheless, we extracted data about modeling
techniques also, just to see which modeling techniques were
the most frequently used. Statistical analyses, like logistic and
linear regression, were used in 68% of the studies, followed
by machine learning algorithms (24%) and correlation analysis
(8%).

4.6.4. Dependent variable (P9)
The most common dependent variable used in fault predic-

tion models is detecting whether the particular module is faulty
or not (70%). Predicting how many faults may be in a module
(24%) and predicting the severity of faults (3%) offers more in-
formation. Modules having more faults or having more severe
faults can be prioritized and, thus, help to allocate and save re-
sources [137]. In spite of some other proposed techniques (3%),
classifying and ranking faults remain the most used dependent
variables.

4.6.5. Dependent variable granularity (P10)
The prediction made for smaller modules, such as classes or

files, is more effective than the prediction made for larger mod-
ules, like packages, because the fault location is more precise
and less work is required to review the module [76].

The granularities reported by the primary studies are class
(55%), method (16%), file (13%), package (11%) and other

16

11

2

1

1

3

48

1

10

4

2

G
ra

n
u

la
ri

ty

Metrics

Traditional OO Process

M
et

h
o

d

C
la

ss

F
il

e
P

ac
k
ag

e
O

th
er

Figure 8: The number of studies using metrics at different dependent variable
granularities.

(5%). From the selected studies, the association between
metrics and dependent variable granularity can be observed
(Fig. 8). Traditional metrics are associated with methods, OO
metrics with classes and process metrics with files.

The above associations must be considered when choosing
metrics for fault prediction model. The selection of metrics is
not only related to metrics performance, but also to granularity
level at which fault prediction is required. At class level, we
would probably use OO metrics. At method level, traditional
size and complexity metrics would be used, because OO met-
rics cannot be used. Process metrics are generally used at file
level, because many are extracted from a version control sys-
tem, which operates at file level.

5. Conclusions

The main objective of this systematic review was to find and
assess primary studies validating software metrics used in soft-
ware fault prediction. An extensive search was performed in
order to find primary studies, which included searching seven
digital libraries, snowball sampling and contacting the authors
directly. Out of 13,126 studies found in digital libraries, 106
primary studies were included and evaluated according to a
number of research questions. For each study, ten properties
were extracted and a quality assessment was performed in or-
der to achieve new insights.

Researchers who are new to the area can find the complete
list of relevant papers in the field. They will also find the most
frequently used metrics in fault prediction, with references to
the studies in which they are used (Table C.7). The metrics’
effectiveness is assessed to provide a clear distinction regard-
ing their usefulness. New insights into how metrics were used
in different environments were obtained through the assessment
of the context. With this SLR, researchers have gained an over-
all overview of the area and an outline for future work. Re-
searchers from the industry will most likely be interested in
Table 5, where the effectiveness of the most frequently used
metrics were assessed in a five-point scale to distinguish be-
tween metrics’ usefulness and to determine the degree of ef-
fectiveness. The quality assessment of selected primary studies

was used as a reliability measure. Studies with a higher quality
assessment score were given greater meaning, when assessing
the metrics’ effectiveness. The effectiveness was assessed over-
all and for different environments, i.e. pre- and post- release
SDLC, small and large data sets, procedural and OO program-
ming languages. This way, researchers can distinguish which
metrics were effective in a particular environment and to what
extent.

For instance, researchers from the industry looking for met-
rics for fault prediction in large, OO, post-release systems
would be advised to use process metrics, like code churn, the
number of changes, the age of a module and the change set
size. They could also try static code metrics (e.g. CBO, RFC
and WMC), but should keep in mind that they have some limi-
tations in highly iterative and agile development environments.
Although this SLR summarizes the metrics’ effectiveness, sev-
eral different metrics should be tested to find the most appropri-
ate set of metrics for each particular domain.

Object-oriented metrics (49%) were used nearly twice as of-
ten as traditional source code metrics (27%) or process metrics
(24%). The most popular OO metrics were the CK metrics,
which were used in almost half of the studies.

According to the selected primary studies, there are consider-
able differences between metrics with respect to software fault
prediction accuracy. OO and process metrics were found to be
more successful at fault prediction than traditional metrics.

Traditional complexity metrics are strongly associated with
size measures like lines of code [84, 88, 112, 154]. Complex-
ity metrics and size measures have been reported to have some
predictive capabilities but are not the best fault predictors in
general [84, 88, 112, 64, 87, 141, 148, 154, 130, 59, 151]

Object-oriented metrics are reported to be better at predicting
faults than complexity and size metrics [62, 66, 67, 81, 149,
89, 153, 128, 132, 136, 53, 137]). Although they also seem
to correlate to size [80, 60], they do capture some additional
properties beyond size [138].

Static code metrics, like complexity, size and OO met-
rics, are useful for observing particular software version, but
their prediction accuracy decreases with each software iteration
[128, 136, 57, 156, 89]. They were found to be inappropriate for
highly iterative, post-release software [57, 128, 136, 60], where
faults are mainly due to the nature of the development process
and not so much to design and size properties [46, 136]. In
this kind of environment, process metrics are reported to per-
form better than static code metrics in terms of fault prediction
accuracy [88, 115, 73, 85, 60, 93].

The majority of the studies used size, complexity and OO
metrics (70%), whereas process metrics, which have great po-
tential, were less frequently used (23%). Researchers from the
industry used mostly process metrics, whereas researchers from
academia preferred OO metrics. This may indicate that process
metrics are more appropriate for industrial use than static code
metrics and that process metrics are what the industry wants.
Therefore, we would like to make an appeal to researchers to
consider including process metrics in their future studies. Other
suggestions for future work are discussed below.

In most cases, one of three programming languages was

17

used, i.e. C++ (35%), Java (34%) and C (15%), while oth-
ers were rarely employed (8%). Future studies should con-
sider other OO languages (e.g. C#) to investigate the perfor-
mance of metrics in different programming languages. The
metrics’ effectiveness across different programming languages
could be further investigated, since it appears to differ between
languages [138].

Collecting software metrics and fault data can be difficult.
Sometimes fault data is not available. This may be the case
when a new project is started. Future studies could try to an-
swer the question as to whether a fault prediction model can
be learned on similar within company or even cross company
projects, and used on the newly started project. Turhan et al.
[143] did not find cross company models to be useful when
compared to internal company models.

Validation should be performed in the most realistic envi-
ronment possible in order to acquire results relevant for the in-
dustry. In realistic environments, faults are fairly random and
data sets are highly unbalanced (few faults, many correct mod-
ules). The number of faults and their distribution between two
releases can differ significantly. Validation techniques, like a
10-fold cross validation, 2/3 for training and 1/3 for testing, do
not take into account all the factors that real environment valida-
tion does, whereas fault prediction models are trained on release
i and tested on release i+1. Some of the environment factors
worth investigating may be raised with the following questions:
What will happen if the model is trained on release i and used to
predict faults on release i+1, which has several times as many
faults as release i? What if there are no or only a few faults in
release i+1? How will the model cope with a large amount of
newly added functionality between two releases? What about
a major refactoring? These may be difficult questions, but an-
swers could be of great importance for practitioners in the in-
dustry. Only validation, where models are trained on release i
and evaluated on release i+1, can determine the impact of all
these, and other unpredictable factors, of the environment.

We noticed that 87% of researchers stem from academia, that
25% of the studies used academic software, that 58% of the
studies used private data and that 33% used small data sets.
Therefore, in the hope of improving industrial relevance, as
well as the quality and validity of research, we would like to
suggest that large, industrial software be used and that data sets
be made publicly available whenever possible.

Acknowledgment

We would like to thank the anonymous reviewers for their
constructive comments and suggestions. This study was partly
financed by the European Union’s European Social Fund.

References

[1] F. B. E. Abreu, R. Carapuca, Object-Oriented Software Engineering:
Measuring and Controlling the Development Process, in: In Proceedings
of the 4th international Conference on Software Quality, p. 0.

[2] A. Avižienis, J. Laprie, B. Randell, Dependability and its threats: a
taxonomy, Building the Information Society (2004) 91–120.

[3] J. Bansiya, C. G. Davis, A hierarchical model for object-oriented de-
sign quality assessment, Ieee Transactions on Software Engineering 28
(2002) 4–17.

[4] H. D. Benington, Production of Large Computer Programs, IEEE An-
nals of the History of Computing 5 (1983) 350–361.

[5] J. M. Bieman, B.-K. Kang, Cohesion and reuse in an object-oriented
system, ACM SIGSOFT Software Engineering Notes 20 (1995) 259–
262.

[6] G. Boetticher, T. Menzies, T. Ostrand, PROMISE Repository of empiri-
cal software engineering data, 2007.

[7] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil,
Lessons from applying the systematic literature review process within
the software engineering domain, Journal of Systems and Software 80
(2007) 571–583.

[8] L. C. Briand, J. Wust, Empirical studies of quality models in object-
oriented systems, in: Advances in Computers, Vol 56, volume 56 of
Advances in Computers, 2002, pp. 97–166.

[9] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,
Information Sciences 179 (2009) 1040–1058.

[10] C. Catal, B. Diri, A systematic review of software fault prediction stud-
ies, Expert Systems with Applications 36 (2009) 7346–7354.

[11] C. Catal, Software fault prediction: A literature review and current
trends, Expert Systems with Applications 38 (2011) 4626–4636.

[12] S. R. Chidamber, C. F. Kemerer, TOWARDS A METRICS SUITE FOR
OBJECT ORIENTED DESIGN, Oopsla 91 Conference Proceedings :
Object-Oriented Programming Systems, Languages, and Applications,
ACM, 1991.

[13] S. R. Chidamber, C. F. Kemerer, A METRICS SUITE FOR OBJECT-
ORIENTED DESIGN, Ieee Transactions on Software Engineering 20
(1994) 476–493.

[14] J. Cohen, A Coefficient of Agreement for Nominal Scales, Educational
and Psychological Measurement 20 (1960) 37–46.

[15] Use of friends in C++ software: an empirical investigation, Journal of
Systems and Software 53 (2000) 15–21.

[16] K. O. Elish, M. O. Elish, Predicting defect-prone software modules
using support vector machines, Journal of Systems and Software 81
(2008) 649–660.

[17] L. Etzkorn, J. Bansiya, C. Davis, Design and code complexity metrics
for OO classes, Journal of Object-Oriented Programming 12 (1999) 35–
40.

[18] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous and Practical Ap-
proach, volume 5, PWS Publishing Company (An International Thom-
son Publishing Company), 1997.

[19] F. Garcia, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini,
M. Genero, Towards a consistent terminology for software measure-
ment, Information and Software Technology 48 (2006) 631–644.

[20] I. Gondra, Applying machine learning to software fault-proneness pre-
diction, Journal of Systems and Software 81 (2008) 186–195.

[21] L. A. Goodman, Snowball Sampling, The Annals of Mathematical
Statistics Vol. 32 (1961) 148–170.

[22] G. a. Hall, J. C. Munson, Software evolution: code delta and code churn,
Journal of Systems and Software 54 (2000) 111–118.

[23] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A Systematic
Literature Review on Fault Prediction Performance in Software Engi-
neering, IEEE Transactions on Software Engineering (2011) 1–31.

[24] M. H. Halstead, Elements of Software Science, Elsevier Science Inc.,
New York, NY, USA, 1977.

[25] B. Henderson-Sellers, Software Metrics, Prentice-Hall, ., Hemel Hemp-
staed, UK, 1996.

[26] M. Hitz, B. Montazeri, Measuring coupling and cohesion in object-
oriented systems, in: Proceedings of the International Symposium on
Applied Corporate Computing, volume 50, pp. 75–76.

[27] ISO/IEC, IEEE, ISO/IEC 12207:2008 Systems and software engineering
Software life cycle processes, 2008.

[28] J. M. Juran, F. M. Gryna, Juran’s Quality Control Handbook, McGraw-
Hill, 1988.

[29] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, P. Thambidurai,
Object-oriented software fault prediction using neural networks, Infor-
mation and Software Technology 49 (2007) 483–492.

[30] T. M. Khoshgoftaar, N. Seliya, Comparative assessment of software

18

quality classification techniques: An empirical case study, Empirical
Software Engineering 9 (2004) 229–257.

[31] H. K. Kim, A study on evaluation of component metric suites, volume
3481 of Lecture Notes in Computer Science, Springer-Verlag Berlin,
Berlin, pp. 62–70.

[32] B. Kitchenham, Procedures for performing systematic reviews, Tech-
nical Report TR/SE-0401 and 0400011T.1, Keele University, UK and
NICTA, AU, 2004.

[33] B. Kitchenham, S. Charters, Guidelines for performing systematic litera-
ture reviews in software engineering, Technical Report EBSE 2007-001,
Keele University, UK, 2007.

[34] B. Kitchenham, Whats up with software metrics? A preliminary map-
ping study, Journal of Systems and Software 83 (2010) 37–51.

[35] A. G. Koru, K. El Emam, D. S. Zhang, H. F. Liu, D. Mathew, Theory
of relative defect proneness, Empirical Software Engineering 13 (2008)
473–498.

[36] J. R. Landis, G. G. Koch, MEASUREMENT OF OBSERVER AGREE-
MENT FOR CATEGORICAL DATA, Biometrics 33 (1977) 159–174.

[37] Y. S. Lee, B. S. Liang, S. F. Wu, F. J. Wang, Measuring the coupling and
cohesion of an object-oriented program based on information flow, in:
Proc. International Conference on Software Quality, Maribor, Slovenia,
pp. 81–90.

[38] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classifica-
tion models for software defect prediction: A proposed framework and
novel findings, Ieee Transactions on Software Engineering 34 (2008)
485–496.

[39] W. Li, S. Henry, Maintenance metrics for the object oriented paradigm,
in: Software Metrics Symposium, 1993. Proceedings., First Interna-
tional, pp. 52–60.

[40] W. Li, S. Henry, Object-oriented metrics that predict maintainability,
Journal of Systems and Software 23 (1993) 111–122.

[41] W. Li, Another metric suite for object-oriented programming, Journal
of Systems and Software 44 (1998) 155–162.

[42] M. Lorenz, J. Kidd, Object-Oriented Software Metrics, Prentice Hall,
Englewood Cliffs, NJ, 1994.

[43] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices, Prentice Hall, 2002.

[44] T. J. McCabe, A Complexity Measure, Software Engineering, IEEE
Transactions on SE-2 (1976) 308–320.

[45] M. Petticrew, H. Roberts, Systematic reviews in the social sciences. A
practical guide, European Psychologist 11 (2006) 244–245.

[46] EQ-Mine: Predicting short-term defects for software evolution, Funda-
mental Approaches to Software Engineering (2007) 12–26.

[47] J. Rosenberg, Some misconceptions about lines of code, METRICS ’97
Proceedings of the 4th International Symposium on Software Metrics
(1997) 137 – 142.

[48] M. Staples, M. Niazi, Experiences using systematic review guidelines,
Journal of Systems and Software 80 (2007) 1425–1437.

[49] D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, A SOFTWARE COM-
PLEXITY MODEL OF OBJECT-ORIENTED SYSTEMS, Decision
Support Systems 13 (1995) 241–262.

[50] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng, R. Per-
madi, R. Feldt, Evaluation and Measurement of Software Process
Improvement-A Systematic Literature Review, IEEE Transactions on
Software Engineering X (2011) 1–29.

Systematic review references

[51] F. B. E. Abreu, W. Melo, F. Brito e Abreu, Evaluating the impact of
Object-Oriented design on software quality, Proceedings of the 3rd In-
ternational Software Metrics Symposium (1996) 90–99 189.

[52] A. Abubakar, J. AlGhamdi, M. Ahmed, Can cohesion predict fault den-
sity?, International Conference on Computer Systems and Applications,
IEEE Computer Society, pp. 889–892.

[53] K. K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, Empirical analysis for
investigating the effect of object-oriented metrics on fault proneness: A
replicated case study, Software Process Improvement and Practice 14
(2009) 39–62.

[54] K. K. Aggarwal, Y. S. And, A. K. And, R. Malhotra, Y. Singh, A. Kaur,
Investigating effect of Design Metrics on Fault Proneness in Object-
Oriented Systems, Journal of Object Technology 6 (2007) 127–141.

[55] J. Al Dallal, Improving the applicability of object-oriented class cohe-
sion metrics, Information and Software Technology 53 (2011) 914–928.

[56] J. Al Dallal, L. C. Briand, An object-oriented high-level design-based
class cohesion metric, Information and Software Technology 52 (2010)
1346–1361.

[57] M. Alshayeb, W. Li, An empirical validation of object-oriented met-
rics in two different iterative software processes, Ieee Transactions on
Software Engineering 29 (2003) 1043–1049.

[58] M. D. Ambros, M. Lanza, R. Robbes, M. D’Ambros, On the relationship
between change coupling and software defects, Working Conference on
Reverse Engineering (2009) 135 – 144.

[59] C. Andersson, P. Runeson, A Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems, IEEE Transactions on Soft-
ware Engineering 33 (2007) 273–286.

[60] E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic and compre-
hensive investigation of methods to build and evaluate fault prediction
models, Journal of Systems and Software 83 (2010) 2–17.

[61] A. Bacchelli, M. D’Ambros, M. Lanza, Are popular classes more defect
prone?, Proceedings of FASE 2010 (13th International Conference on
Fundamental Approaches to Software Engineering) (2010) 59–73.

[62] V. R. Basili, L. C. Briand, W. L. Melo, A validation of object-oriented
design metrics as quality indicators, Ieee Transactions on Software En-
gineering 22 (1996) 751–761.

[63] A. B. Binkley, S. R. Schach, S. O. C. Ieee Comp, Validation of the cou-
pling dependency metric as a predictor of run-time failures and main-
tenance measures, International Conference on Software Engineering,
IEEE Computer Society, pp. 452–455.

[64] A. B. Binkley, S. R. Schach, Prediction of run-time failures using static
product quality metrics, Software Quality Journal 7 (1998) 141–147.

[65] L. C. Briand, J. Daly, V. Porter, J. Wust, Predicting fault-prone classes
with design measures in object-oriented systems, Proceedings of the
International Symposium on Software Reliability Engineering ISSRE
(1998) (1998) 334–343.

[66] L. C. Briand, J. Wust, J. W. Daly, D. V. Porter, Exploring the relation-
ships between design measures and software quality in object-oriented
systems, Journal of Systems and Software 51 (2000) 245–273.

[67] L. L. C. Briand, J. Wüst, H. Lounis, W. Jurgen, Replicated Case Studies
for Investigating Quality Factors in Object-Oriented Designs, Empirical
Software Engineering 6 (2001) 11–58.

[68] L. Briand, W. Melo, J. Wust, Assessing the applicability of fault-
proneness models across object-oriented software projects, IEEE Trans-
actions on Software Engineering 28 (2002) 706–720.

[69] L. Briand, J. Wüst, S. Ikonomovski, H. Lounis, Investigating quality
factors in object-oriented designs: an industrial case study, International
Conference on Software Engineering (1999).

[70] L. Briand, P. Devanbu, W. Melo, An investigation into coupling mea-
sures for C++, International Conference on Software Engineering, As-
soc Computing Machinery, New York, pp. 412–421.

[71] L. C. Briand, J. Daly, V. Porter, J. Wuest, Comprehensive empirical val-
idation of design measures for object-oriented systems, METRICS ’98
Proceedings of the 5th International Symposium on Software Metrics
(1998) 246 – 257.

[72] R. Burrows, F. C. Ferrari, A. Garcia, F. Taiani, An empirical evaluation
of coupling metrics on aspect-oriented programs, Proceedings Interna-
tional Conference on Software Engineering (2010) 53 – 58.

[73] B. Caglayan, A. Bener, S. Koch, Ieee, Merits of Using Repository Met-
rics in Defect Prediction for Open Source Projects, 2009 ICSE Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research
and Development (2009) 31–36.

[74] M. Cartwright, M. Shepperd, An empirical investigation of an object-
oriented software system, Ieee Transactions on Software Engineering
26 (2000) 786–796.

[75] I. Chowdhury, M. Zulkernine, Using complexity, coupling, and cohe-
sion metrics as early indicators of vulnerabilities, Journal of Systems
Architecture 57 (2011) 294–313.

[76] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction ap-
proaches: a benchmark and an extensive comparison, Empirical Soft-
ware Engineering (2011) 1–47.

[77] M. D’Ambros, M. Lanza, An extensive comparison of bug prediction
approaches, IEEE Working Conference on Mining Software Reposito-
ries MSR 2010 (2010) 31–41.

19

[78] G. Denaro, L. Lavazza, M. Pezze, An empirical evaluation of object ori-
ented metrics in industrial setting, The 5th CaberNet Plenary Workshop
(2003).

[79] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, A. V. Aho, Do crosscutting concerns cause defects?, Ieee
Transactions on Software Engineering 34 (2008) 497–515.

[80] K. E. El Emam, S. Benlarbi, N. Goel, S. N. Rai, The confounding effect
of class size on the validity of object-oriented metrics, Ieee Transactions
on Software Engineering 27 (2001) 630–650.

[81] K. El Emam, W. Melo, J. C. Machado, K. El, The prediction of faulty
classes using object-oriented design metrics, Journal of Systems and
Software 56 (2001) 63–75.

[82] M. O. Elish, A. H. Al-Yafei, M. Al-Mulhem, Empirical comparison of
three metrics suites for fault prediction in packages of object-oriented
systems: A case study of Eclipse, Advances in Engineering Software 42
(2011) 852–859.

[83] M. English, C. Exton, I. Rigon, B. Cleary, Fault detection and prediction
in an open-source software project, Proceedings of the 5th International
Conference on Predictor Models in Software Engineering PROMISE 09
(2009) (2009) 17:1–17:11.

[84] N. E. Fenton, N. Ohlsson, Quantitative analysis of faults and failures in
a complex software system, Ieee Transactions on Software Engineering
26 (2000) 797–814.

[85] J. Ferzund, S. N. Ahsan, F. Wotawa, Empirical Evaluation of Hunk Met-
rics as Bug Predictors, volume 5891 of Lecture Notes in Computer Sci-
ence, Springer, pp. 242–254.

[86] F. Fioravanti, P. Nesi, A study on fault-proneness detection of object-
oriented systems, Proceedings Fifth European Conference on Software
Maintenance and Reengineering (2001) 121–130.

[87] B. Goel, Y. Singh, Empirical Investigation of Metrics for Fault Predic-
tion on Object-Oriented Software, volume 131 of Studies in Computa-
tional Intelligence, Canadian Center of Science and Education, pp. 255–
265.

[88] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, Predicting fault incidence
using software change history, Ieee Transactions on Software Engineer-
ing 26 (2000) 653–661.

[89] T. Gyimothy, R. Ferenc, I. Siket, Empirical validation of object-oriented
metrics on open source software for fault prediction, Ieee Transactions
on Software Engineering 31 (2005) 897–910.

[90] R. Harrison, S. Counsell, R. Nithi, Coupling metrics for object-oriented
design, Software Metrics Symposium, 1998. Metrics 1998. Proceedings.
Fifth International (1998) 150–157.

[91] A. E. Hassan, Predicting Faults Using the Complexity of Code Changes,
International Conference on Software Engineering, IEEE Computer So-
ciety, pp. 78–88.

[92] T. Holschuh, T. Zimmermann, M. Pauser, R. Premraj, K. Herzig,
A. Zeller, S. Q. S. Ag, P. Markus, Predicting defects in SAP java code:
An experience report, International Conference on Software Engineer-
ing Companion Volume (2009) 172–181.

[93] T. Illes-Seifert, B. Paech, Exploring the relationship of a file’s history
and its fault-proneness: An empirical method and its application to open
source programs, Information and Software Technology 52 (2010) 539–
558.

[94] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, G. Succi,
Identification of defect-prone classes in telecommunication software
systems using design metrics, Information Sciences 176 (2006) 3711–
3734.

[95] Y. Jiang, B. Cukic, T. Menzies, Fault Prediction using Early Lifecycle
Data, The 18th IEEE International Symposium on Software Reliability
(ISSRE ’07) (2007) 237–246.

[96] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow, B. Cuki, Comparing design
and code metrics for software quality prediction, Proceedings of the
4th international workshop on Predictor models in software engineering
PROMISE 08 (2008) 11 – 18.

[97] T. Kamiya, S. Kusumoto, K. Inoue, Prediction of fault-proneness at early
phase in object-oriented development, Proceedings 2nd IEEE Interna-
tional Symposium on ObjectOriented RealTime Distributed Computing
ISORC99 (1999) 253–258.

[98] T. Kamiya, S. Kusumoto, K. Inoue, Y. Mohri, Empirical evaluation of
reuse sensitiveness of complexity metrics, Information and Software
Technology 41 (1999) 297–305.

[99] A. Kaur, A. S. Brar, P. S. Sandhu, An empirical approach for software
fault prediction, International Conference on Industrial and Information
Systems (ICIIS) (2010) 261–265.

[100] T. M. Khoshgoftaar, R. Q. Shan, E. B. Allen, I. C. S. Ieee Computer
Society, Using product, process, and execution metrics to predict fault-
prone software modules with classification trees, Fifth Ieee Interna-
tional Symposium on High Assurance Systems Engineering, Proceed-
ings, IEEE Computer Society, 2000.

[101] T. M. Khoshgoftaar, E. B. Allen, Empirical assessment of a software
metric: The information content of operators, Software Quality Journal
9 (2001) 99–112.

[102] B. A. Kitchenham, L. M. Pickard, S. J. Linkman, Evaluation of some
design metrics, Software engineering journal 5 (1990) 50 – 58.

[103] a. G. Koru, H. Liu, An investigation of the effect of module size on defect
prediction using static measures, Proceedings of the 2005 workshop on
Predictor models in software engineering - PROMISE ’05 (2005) 1–5.

[104] A. G. Koru, D. S. Zhang, K. El Emam, H. F. Liu, An Investigation
into the Functional Form of the Size-Defect Relationship for Software
Modules, Ieee Transactions on Software Engineering 35 (2009) 293–
304.

[105] S. Kpodjedo, F. Ricca, P. Galinier, Y. G. Gueheneuc, G. Antoniol, De-
sign evolution metrics for defect prediction in object oriented systems,
Empirical Software Engineering 16 (2011) 141–175.

[106] S. Kpodjedo, F. Ricca, G. Antoniol, P. Galinier, Evolution and search
based metrics to improve defects prediction, Proceedings of the 2009 1st
International Symposium on Search Based Software Engineering (2009)
23–32.

[107] L. Layman, G. Kudrjavets, N. Nagappan, Iterative identification of fault-
prone binaries using in-process metrics, in: Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement - ESEM ’08, ACM Press, New York, New York, USA,
2008, p. 206.

[108] P. Li, J. Herbsleb, M. Shaw, Finding predictors of field defects for open
source software systems in commonly available data sources: A case
study of openbsd, in: Software Metrics, 2005. 11th IEEE International
Symposium, IEEE, 2005, pp. 10–pp.

[109] A. Marcus, D. Poshyvanyk, R. Ferenc, Using the conceptual cohesion
of classes for fault prediction in Object-Oriented systems, Ieee Transac-
tions on Software Engineering 34 (2008) 287–300.

[110] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, M. Nakamura,
An analysis of developer metrics for fault prediction, PROMISE ’10
Proceedings of the 6th International Conference on Predictive Models
in Software Engineering (2010) 1.

[111] T. Menzies, J. Di Stefano, How good is your blind spot sampling pol-
icy?, Eighth IEEE International Symposium on High Assurance Systems
Engineering, 2004. Proceedings. (2004) 129–138.

[112] T. Menzies, J. S. Di Stefano, M. Chapman, K. McGill, Metrics that mat-
ter, 27th Annual Nasa Goddard/Ieee Software Engineering Workshop -
Proceedings, IEEE Computer Society, 2003.

[113] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
33 (2007) 2–13.

[114] R. Moser, W. Pedrycz, G. Succi, Analysis of the Reliability of a Subset
of Change Metrics for Defect Prediction, Esem’08: Proceedings of the
2008 Acm-Ieee International Symposium on Empirical Software Engi-
neering and Measurement, ACM, 2008.

[115] R. Moser, W. Pedrycz, G. Succi, Acm, A Comparative Analysis of the
Efficiency of Change Metrics and Static Code Attributes for Defect Pre-
diction, Icse’08 Proceedings of the Thirtieth International Conference
on Software Engineering, ACM, 2008.

[116] J. C. Munson, S. G. Elbaum, Code churn: A measure for estimating the
impact of code change, Proceedings - Ieee International Conference on
Software Maintenance, Ieee Computer Soc, Los Alamitos, pp. 24–31.

[117] N. Nagappan, T. Ball, Acm, Use of relative code churn measures to pre-
dict system defect density, International Conference on Software Engi-
neering, IEEE Computer Society, pp. 284–292.

[118] N. Nagappan, B. Murphy, V. R. Basili, Acm, The Influence of Organiza-
tional Structure on Software Quality: An Empirical Case Study, Icse’08
Proceedings of the Thirtieth International Conference on Software En-
gineering, ACM, 2008.

[119] N. Nagappan, T. Ball, Using Software Dependencies and Churn Met-

20

rics to Predict Field Failures: An Empirical Case Study, First Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM 2007) (2007) 364–373.

[120] N. Nagappan, T. Ball, B. Murphy, Using Historical In-Process and Prod-
uct Metrics for Early Estimation of Software Failures, 2006 17th Inter-
national Symposium on Software Reliability Engineering (2006) 62–74.

[121] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component
failures, Proceeding of the 28th international conference on Software
engineering - ICSE ’06 (2006) 452.

[122] N. Nagappan, L. Williams, M. Vouk, J. Osborne, Early estimation
of software quality using in-process testing metrics: a controlled case
study, in: Proceedings of the third workshop on Software Quality, ACM,
2005, pp. 1–7.

[123] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, B. Murphy, Change
Bursts as Defect Predictors, Proceedings of the 21st IEEE International
Symposium on Software Reliability Engineering (ISSRE) (2010) 309–
318.

[124] A. Nikora, J. Munson, Building high-quality software fault predictors,
Software: Practice and Experience 36 (2006) 949–969.

[125] A. Nugroho, M. R. V. Chaudron, E. Arisholm, Assessing UML design
metrics for predicting fault-prone classes in a Java system, IEEE Work-
ing Conference on Mining Software Repositories (2010) 21–30.

[126] A. Nugroho, B. Flaton, M. Chaudron, Empirical analysis of the relation
between level of detail in UML models and defect density, Proceed-
ings of the 11th International Conference on Model Driven Engineering
Languages and Systems MODELS LNCS (2008) 600–614.

[127] N. Ohlsson, H. Alberg, Predicting fault-prone software modules in tele-
phone switches, Ieee Transactions on Software Engineering 22 (1996)
886–894.

[128] H. M. Olague, L. H. Etzkorn, S. Gholston, S. Quattlebaum, Empirical
validation of three software metrics suites to predict fault-proneness of
object-oriented classes developed using highly iterative or agile software
development processes, Ieee Transactions on Software Engineering 33
(2007) 402–419.

[129] H. M. Olague, L. H. Etzkorn, S. L. Messimer, H. S. Delugach, An empir-
ical validation of object-oriented class complexity metrics and their abil-
ity to predict error-prone classes in highly iterative, or agile, software:
a case study, Journal of Software Maintenance and Evolution-Research
and Practice 20 (2008) 171–197.

[130] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Predicting the location and
number of faults in large software systems, Ieee Transactions on Soft-
ware Engineering 31 (2005) 340–355.

[131] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Programmer-based fault pre-
diction, PROMISE ’10 Proceedings of the 6th International Conference
on Predictive Models in Software Engineering (2010) 1.

[132] G. Pai, B. Dugan, Empirical analysis of software fault content and fault
proneness using Bayesian methods, IEEE Transactions on software En-
gineering 33 (2007) 675–686.

[133] T.-S. Quah, Estimating software readiness using predictive models, In-
formation Sciences 179 (2009) 430 – 445.

[134] Z. A. Rana, S. Shamail, M. M. Awais, Ineffectiveness of Use of Software
Science Metrics as Predictors of Defects in Object Oriented Software,
2009 Wri World Congress on Software Engineering, Vol 4, Proceedings,
IEEE Computer Society, 2009.

[135] A. Schröter, T. Zimmermann, R. Premraj, A. Zeller, If your bug database
could talk, in: Proceedings of the 5th international symposium on em-
pirical software engineering, volume 2, Citeseer, 2006, pp. 18–20.

[136] R. Shatnawi, W. Li, The effectiveness of software metrics in identifying
error-prone classes in post-release software evolution process, Journal
of Systems and Software 81 (2008) 1868–1882.

[137] Y. Singh, A. Kaur, R. Malhotra, Empirical validation of object-oriented
metrics for predicting fault proneness models, Software Quality Journal
18 (2010) 3–35.

[138] R. Subramanyam, M. S. Krishnan, Empirical analysis of CK metrics for
object-oriented design complexity: Implications for software defects,
Ieee Transactions on Software Engineering 29 (2003) 297–310.

[139] M. H. Tang, M. H. Kao, M. H. Chen, An empirical study on object-
oriented metrics, in: Software Metrics Symposium, 1999. Proceedings.
Sixth International, IEEE, pp. 242–249.

[140] M. Thongmak, P. Muenchaisri, Predicting faulty classes using design
metrics with discriminant analysis, Serp’03: Proceedings of the Interna-

tional Conference on Software Engineering Research and Practice, Vols
1 and 2, ., 2003.

[141] P. Tomaszewski, L. Lundberg, H. k. Grahn, The accuracy of early fault
prediction in modified code, in: Fifth Conference on Software Engineer-
ing Research and Practice in Sweden (SERPS), p. 0.

[142] A. Tosun, B. Turhan, A. Bener, Validation of network measures as indi-
cators of defective modules in software systems, Proceedings of the 5th
International Conference on Predictor Models in Software Engineering
- PROMISE ’09 (2009) 1.

[143] B. Turhan, T. Menzies, A. B. Bener, J. Di Stefano, On the relative value
of cross-company and within-company data for defect prediction, Em-
pirical Software Engineering 14 (2009) 540–578.

[144] B. Újházi, R. Ferenc, D. Poshyvanyk, T. Gyimóthy, B. Ujhazi, T. Gy-
imothy, New Conceptual Coupling and cohesion metrics for object-
oriented systems, Source Code Analysis and Manipulation SCAM 2010
10th IEEE Working Conference (2010) 33 – 42.

[145] D. Wahyudin, A. Schatten, D. Winkler, A. M. Tjoa, S. Biffl, Defect Pre-
diction using Combined Product and Project Metrics A Case Study from
the Open Source ”Apache” MyFaces Project Family, Proceedings of the
34th Euromicro Conference on Software Engineering and Advanced Ap-
plications, IEEE Computer Society, 2008.

[146] E. J. Weyuker, T. J. Ostrand, R. M. Bell, Do too many cooks spoil the
broth? Using the number of developers to enhance defect prediction
models, Empirical Software Engineering 13 (2008) 539–559.

[147] E. J. Weyuker, T. J. Ostrand, R. M. Bell, Using Developer Information as
a Factor for Fault Prediction, Third International Workshop on Predic-
tor Models in Software Engineering (PROMISE’07: ICSE Workshops
2007) (2007) 8–8.

[148] Z. Xu, X. Zheng, P. Guo, Empirically validating software metrics for risk
prediction based on intelligent methods, Journal of Digital Information
Management 5 (2007) 99 – 106.

[149] P. Yu, H. Muller, T. Systa, Predicting fault-proneness using OO metrics.
An industrial case study, Proceedings of the Sixth European Conference
on Software Maintenance and Reengineering (2002) 99–107.

[150] X. Yuan, T. Khoshgoftaar, E. Allen, K. Ganesan, An application of
fuzzy clustering to software quality prediction, Proceedings 3rd IEEE
Symposium on Application-Specific Systems and Software Engineering
Technology (2000) 85–90.

[151] H. Y. Zhang, An Investigation of the Relationships between Lines of
Code and Defects, Proceedings - Ieee International Conference on Soft-
ware Maintenance, IEEE Computer Society, pp. 274–283.

[152] M. Zhao, C. Wohlin, N. Ohlsson, M. Xie, A comparison between soft-
ware design and code metrics for the prediction of software fault content,
Information and Software Technology 40 (1998) 801–809.

[153] Y. M. Zhou, H. T. Leung, Empirical analysis of object-oriented design
metrics for predicting high and low severity faults, Ieee Transactions on
Software Engineering 32 (2006) 771–789.

[154] Y. M. Zhou, B. Xu, H. Leung, B. W. Xua, On the ability of complexity
metrics to predict fault-prone classes in object-oriented systems, Journal
of Systems and Software 83 (2010) 660–674.

[155] T. Zimmermann, N. Nagappan, Predicting defects using network analy-
sis on dependency graphs, Proceedings of the 13th international confer-
ence on Software engineering - ICSE ’08 (2008) 531.

[156] T. Zimmermann, R. Premraj, A. Zeller, Predicting Defects for Eclipse,
Third International Workshop on Predictor Models in Software Engi-
neering PROMISE07 ICSE Workshops 2007 (2007) 9.

Appendix A. Supplementary material

Extracted data from 106 primary studies and the final score
of the quality assessment can be found in the online version of
the article. The data is presented in tabular form and includes
properties describing the study (‘Title’, ‘Authors’, and ‘Year
of publication’), ten extracted properties (‘Metrics’, ‘Data set
availability’, ‘Data set size’, ‘Programming language’, ‘SDLC’,
‘Researcher’, ‘Organization’, ‘Modeling technique’, ‘Depen-
dent variable’ and ‘Dependent variable granularity’) and quality
assessment score (‘Quality’).

21

Appendix B. Quality checklist

Table B.6 shows the quality checklist used for the quality
assessment of primary studies and results for each question. A
detailed description of the quality checklist and analysis of the
results are presented in Section 3.5.

22

Table B.6: Quality checklist.
ID Question Yes Partially No

Design
1 Are the aims (research questions) clearly stated? 106 (100.0%) 0 (0.0%) 0 (0.0%)
2 Was the sample size justified? 67 (63.2%) 12 (11.3%) 27 (25.5%)
3 If the study involves assessment of prediction model/technique, is

model/technique clearly defined?
75 (70.8%) 23 (21.7%) 8 (7.5%)

4 Are the metrics used in the study adequately measured (i.e. are the
metrics likely to be valid and reliable)?

102 (96.2%) 4 (3.8%) 0 (0.0%)

5 Are the metrics used in the study fully defined? 91 (85.8%) 6 (5.7%) 9 (8.5%)
6 Are the metrics used in the study the most relevant ones for answering

the research questions?
102 (96.2%) 3 (2.8%) 1 (0.9%)

Conduct
7 Are the data collection methods adequately described? 76 (71.7%) 25 (23.6%) 5 (4.7%)

Analysis
8 Were the data sets adequately described? 56 (52.8%) 40 (37.7%) 10 (9.4%)
9 Are the statistical methods described? 55 (51.9%) 46 (43.4%) 5 (4.7%)
10 Are the statistical methods justified? 98 (92.5%) 7 (6.6%) 1 (0.9%)
11 Is the purpose of the analysis clear? 102 (96.2%) 4 (3.8%) 0 (0.0%)
12 Are scoring systems (performance evaluation metrics/techniques) de-

scribed?
65 (61.3%) 39 (36.8%) 2 (1.9%)

13 Were side effects reported? 55 (51.9%) 46 (43.4%) 5 (4.7%)
Conclusion

14 Are all study questions answered? 100 (94.3%) 6 (5.7%) 0 (0.0%)
15 Are negative findings presented? 45 (42.5%) 59 (55.7%) 2 (1.9%)
16 Are null findings interpreted? (I.e. has the possibility that sample size

is too small been considered?)
46 (43.4%) 53 (50.0%) 7 (6.6%)

17 Does the study discuss how the results add to the literature? 75 (70.8%) 28 (26.4%) 3 (2.8%)
18 Does the report have implications for practice? 93 (87.7%) 13 (12.3%) 0 (0.0%)
19 Do the researchers explain the consequences of any problems with the

validity/reliability of their measures?
52 (49.1%) 52(49.1%) 2 (1.9%)

20 Is the study repeatable? Are public data sets used? 22 (20.8%) 22 (20.8%) 62 (58.5%)

Appendix C. Metrics

The most commonly used metrics in the selected studies are presented in Table C.7. The metrics were selected on the basis
of the number of appearances in the studies. We excluded metrics that were only validated in the studies in which they were
presented. Some metrics made it to the list in order to make a complete list of metrics belonging to the same suite and to make a
clear distinction between used and unused metrics.

Table C.7: Metrics.

Author Metric Description Used in
Abreu and Carapuca [1], Abreu
et al. [51]

AHF Attribute Hiding Factor [51, 128, 82]

Abreu and Carapuca [1], Abreu
et al. [51]

AIF Attribute Inheritance Factor [51, 128, 82]

Abreu and Carapuca [1], Abreu
et al. [51]

COF Coupling Factor [51]

Abreu and Carapuca [1], Abreu
et al. [51]

MHF Method Hiding Factor [51, 128, 82]

Abreu and Carapuca [1], Abreu
et al. [51]

MIF Method Interface Factor [51, 128, 82]

Abreu and Carapuca [1], Abreu
et al. [51]

POF Polymorphism Factor [51]

Al Dallal and Briand [56] SCC Similarity-based Class Cohesion [56, 55]
Bansiya and Davis [3] ANA Avgrage Number of Ancestors [128]
Bansiya and Davis [3] CAM Cohesion Among Methods [128, 56, 55]
Bansiya and Davis [3] CIS Class Interface Size [128]

23

Table C.7: Metrics.

Author Metric Description Used in
Bansiya and Davis [3] DAM Data Accesss Metric [128]
Bansiya and Davis [3] DCC Direct Class Coupling [128]
Bansiya and Davis [3] DSC Design size in classes /

Bansiya and Davis [3] MFA Measure of Functional Abstraction [128]
Bansiya and Davis [3] MOA Measure of Aggregation [128]
Bansiya and Davis [3] NOH Number of hierarchies /

Bansiya and Davis [3] NOM Number of Methods [128, 94, 156, 58, 110, 61, 153, 77, 76, 136]
Bansiya and Davis [3] NOP Number of polymorphic methods /

Bieman and Kang [5] LCC Loose class cohesion [71, 65, 69, 66, 67, 52, 109, 53, 56, 55]
Bieman and Kang [5] TCC Tight class cohesion [71, 65, 69, 66, 67, 52, 109, 53, 56, 55]
Briand et al. [70] ACAIC [70, 71, 65, 69, 66, 67, 8, 80, 81, 54, 53]
Briand et al. [70] ACMIC [70, 71, 65, 69, 66, 67, 8, 80, 81, 54, 53]
Briand et al. [70] AMMIC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] Coh A variation on LCOM5 [71, 65, 69, 66, 67, 109, 56]
Briand et al. [70] DCAEC [70, 71, 65, 69, 66, 67, 8, 80, 81, 54, 53]
Briand et al. [70] DCMEC [70, 71, 65, 69, 66, 67, 8, 80, 81, 54, 53]
Briand et al. [70] DMMEC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] FCAEC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] FCMEC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] FMMEC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] IFCAIC [70, 71, 65, 69, 66, 67, 54]
Briand et al. [70] IFCMIC [70, 71, 65, 69, 66, 67, 80, 54]
Briand et al. [70] IFMMIC [70, 71, 65, 69, 66, 67, 54]
Briand et al. [70] OCAEC [70, 71, 65, 69, 66, 67, 81, 54, 53]
Briand et al. [70] OCAIC [70, 71, 65, 69, 66, 67, 8, 81, 54, 53]
Briand et al. [70] OCMEC [70, 71, 65, 69, 66, 67, 8, 81, 54, 53, 83]
Briand et al. [70] OCMIC [70, 71, 65, 69, 66, 67, 8, 81, 54, 53]
Briand et al. [70] OMMEC [70, 71, 65, 69, 66, 67, 54, 53]
Briand et al. [70] OMMIC [70, 71, 65, 69, 66, 67, 54, 53]
Cartwright and Shepperd [74] ATTRIB Attributes [74, 8]
Cartwright and Shepperd [74] DELS Deletes [74, 8]
Cartwright and Shepperd [74] EVNT Events [74, 8]
Cartwright and Shepperd [74] READS Reads [74, 8]
Cartwright and Shepperd [74] RWD Read/write/deletes [74, 8]
Cartwright and Shepperd [74] STATES States [74, 8]
Cartwright and Shepperd [74] WRITES Writes [74, 8]
Chidamber and Kemerer [12, 13] CBO Coupling between object classes 48 studies
Chidamber and Kemerer [12, 13] DIT Depth of inheritance tree 52 studies
Chidamber and Kemerer [12, 13] LCOM Lack of cohesion in methods 50 studies
Chidamber and Kemerer
[13], Briand et al. [66, 67]

LCOM2 Lack of cohesion in methods [69, 55, 109, 105, 71, 54, 53, 86, 56, 67, 66, 52, 65,
144]

Chidamber and Kemerer [12, 13] NOC Number of children 53 studies
Chidamber and Kemerer [13] NTM Number of trivial methods [129, 154]
Chidamber and Kemerer [12, 13] RFC Response for a class 51 studies
Chidamber and Kemerer [12, 13] WMC Weighted methods per class 44 studies
Etzkorn et al. [17], Tang et al. [139] AMC Average method complexity [129, 139, 154, 133]
Graves et al. [88] Past faults Number of past faults [88, 100, 150, 108, 130, 114, 115, 146, 60, 110]
Graves et al. [88] Changes Number of times a module has been changed [88, 100, 108, 120, 135, 119, 114, 115, 58, 73, 60, 61,

77, 93, 110, 76]
Graves et al. [88] Age Age of a module [88, 117, 130, 114, 115, 146, 61, 77, 110, 76]
Graves et al. [88] Organization Organization [88, 118]
Graves et al. [88] Change set Number of modules changed together with

the module
[88, 114, 115, 60, 61, 77, 93, 76]

Halstead [24] N1 Total number of operators [116, 88, 101, 112, 111, 108, 113, 148, 96, 134, 142,
124]

Halstead [24] N2 Total number of operands [116, 88, 101, 112, 111, 108, 113, 148, 96, 134, 142,
124]

Halstead [24] η1 Number of unique operators [116, 88, 101, 112, 111, 108, 113, 148, 96, 134, 142,
124]

Halstead [24] η2 Number of unique operands [116, 88, 101, 112, 111, 108, 113, 148, 96, 134, 142,
124]

Henderson-Sellers [25] AID Average inheritance depth of a class [71, 65, 66, 67, 53, 144]
Henderson-Sellers [25] LCOM1 Lack of cohesion in methods [55, 105, 54, 53, 109, 56, 67, 71, 66, 52, 69, 65, 86,

144]
Henderson-Sellers [25] LCOM5 Lack of cohesion in methods [144, 55, 71, 65, 66, 67, 52, 69, 109, 105]
Hitz and Montazeri [26] Co Connectivity [69, 71, 65, 109, 66, 67, 53, 56]

24

Table C.7: Metrics.

Author Metric Description Used in
Hitz and Montazeri [26] LCOM3 Lack of cohesion in methods [55, 69, 53, 71, 109, 65, 67, 56, 66, 52, 144]
Hitz and Montazeri [26] LCOM4 Lack of cohesion in methods [55, 71, 69, 53, 66, 67, 109, 52, 65]
Lee et al. [37] ICH Information-flow-based cohesion [71, 65, 66, 69, 67, 86, 53, 144]
Lee et al. [37] ICP Information-flow-based coupling [71, 65, 66, 69, 67, 86, 53, 144]
Lee et al. [37] IH-ICP Information-flow-based inheritance cou-

pling
[71, 65, 66, 53, 69, 67]

Lee et al. [37] NIH-ICP Information-flow-based non-inheritance
coupling

[66, 71, 65, 67, 69, 53]

Li [41] CMC Class method complexity [94]
Li [41] CTA Coupling through abstract data type [136, 57, 94, 129]
Li [41] CTM Coupling through message passing [136, 57, 94, 129, 108]
Li [41] NAC Number of ancestor [94]
Li [41] NDC Number of descendent [94]
Li [41] NLM Number of local methods [154, 57, 94, 129, 136]
Li and Henry [40, 39] DAC Data abstraction coupling [71, 67, 53, 69, 65, 66, 90, 138]
Li and Henry [40, 39] DAC1 Data abstraction coupling [53]
Li and Henry [40, 39] MPC Message passing coupling [71, 69, 53, 67, 65, 66, 92, 138, 60]
Lorenz and Kidd [42] NCM Number of class methods [129, 154]
Lorenz and Kidd [42] NIM Number of instance methods [97, 129, 154]
Lorenz and Kidd [42] NMA Number of methods added [67, 133, 53, 66, 71, 65, 80, 128]
Lorenz and Kidd [42] NMI Number of methods inherited [71, 53, 65, 66, 144, 67]
Lorenz and Kidd [42] NMO Number of methods overridden [53, 67, 71, 66, 65, 80, 128]
Lorenz and Kidd [42] NOA Number of attributes [140, 136, 85, 53, 61, 71, 65, 66, 67, 144, 58, 77, 76]
Lorenz and Kidd [42] NOAM Number of added methods [136]
Lorenz and Kidd [42] NOO Number of operations [136]
Lorenz and Kidd [42] NOOM Number of overridden methods [136]
Lorenz and Kidd [42] NOP Number of parents [133, 71, 53, 65, 66, 67]
Lorenz and Kidd [42] NPAVG Average number of parameters per method [80, 128]
Lorenz and Kidd [42] SIX Specialization index [71, 65, 53, 67, 66, 53, 80]
Marcus et al. [109] C3 Conceptual cohesion of Classes [109, 144]
McCabe [44] CC McCabe’s Cyclomatic Complexity [127, 152, 64, 84, 112, 111, 141, 120, 121, 113, 156,

87, 128, 129, 145, 155, 92, 133, 142, 110, 75, 154, 88,
148]

Munson and Elbaum [116] Delta Code delta [116, 117, 120, 119, 107, 114, 115, 60, 77, 110, 76]
Munson and Elbaum [116] Churn Code churn [116, 100, 150, 108, 117, 124, 119, 107, 114, 115, 73,

77, 110, 123, 76]
Munson and Elbaum [116] Change

request
Change request [116, 100, 60]

Munson and Elbaum [116] Developer Number of developers [116, 88, 100, 150, 108, 120, 135, 147, 114, 115, 118,
146, 73, 60, 61, 77, 93, 110, 131, 123, 76]

Tegarden et al. [49] [66, 67] CLD Class-to-leaf depth [71, 53, 66, 67, 65]
Tegarden et al. [49] [66, 67] NOA Number of ancestors [53, 71, 67, 66, 65]
Tegarden et al. [49] [66, 67] NOD Number of descendants [63, 53, 71, 67, 66, 65]

LOC Lines of Code 59 studies

25

	fbtorkar
	torkar.pdf

