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ABSTRACT

The Stokes drift in long internal equatorial Kelvin waves is investigated theoretically for an inviscid fluid

of constant depth. While the Stokes drift in irrotational waves is positive everywhere in the fluid, that is,

directed along the phase velocity, this is not always the case for internal Kelvin waves, which possess vorticity.

For constant Brunt–V€ais€al€a frequency, the Stokes drift in such waves is sinusoidal in the vertical with

a negative value in the middle of the layer for the first baroclinic mode. For a pycnocline that is typical of the

equatorial Pacific, this study finds for the first mode that the largest negative Stokes drift velocity occurs near

the depth where the Brunt–V€ais€al€a frequency has its maximum. Here, estimated drift values are found to be

on the same order of magnitude as those observed in the Pacific Equatorial Undercurrent at the same level. In

contrast, a two-layermodel with constant density in each layer yields a positive Stokes drift in both layers. This

contradicts the fact that, as shown in this paper, the vertically integrated Stokes drift (the Stokes flux) must be

zero for arbitrary Brunt–V€ais€al€a frequency.

1. Introduction

The mass transport induced by periodic irrotational

surface waves in an inviscid fluid was first investigated by

Stokes (1847). For irrotational waves the Stokes drift is

positive everywhere, that is, it is in the same direction as

the phase velocity (Longuet-Higgins and Stewart 1962;

Eames and McIntyre 1999). The presence of vorticity in

the wave field changes this, and may cause the Stokes

drift to be negative (oppositely directed to the phase

velocity) in some parts of the fluid. The vorticity related

to the presence of viscosity is not important in this

connection. Although the effect of viscosity induces

a mean Eulerian drift velocity in the fluid, it only causes

a slow attenuation of the Stokes drift through temporal

or spatial amplitude decay (Weber 1983; Jenkins 1986).

Thus, inclusion of viscosity does not cause any change of

sign in the Stokes drift. Other sources of vorticity, for

example, baroclinicity and the earth’s rotation, have

a much more profound influence. The effect of rotation

on the Stokes drift has been investigated for two-

dimensional horizontal flow by Longuet-Higgins (1969a)

for double Kelvin waves, and by Weber and Drivdal

(2012) for continental shelf waves (as part of a more

comprehensive study), yielding positive Stokes drift

where the bottom gradients are small, and negative drift

over the steeper parts of the bottom topography. Nega-

tive Stokes drift has also been reported by Flierl (1981).

In this paper, we consider the effect of baroclinicity.

The main purpose of the study is to investigate the ap-

parent contradiction between the results from continu-

ous stratification, which yields negative Stokes drift in

parts of the fluid, and a two-layer model with constant
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density in each layer. In the latter case, the Stokes drift is

positive in both layers. The theory applies to internal

plane waves in general, but we focus here on internal

equatorial Kelvin waves because the equatorial regions

display some of the strongest baroclinic signals in the

ocean. The rest of this paper is organized as follows. In

section 2, we present a short review of the Stokes drift

for two-dimensional wave motion. In Section 3 we de-

rive the Stokes drift in internal equatorial Kelvin waves,

while in section 4 we specifically consider the equatorial

Pacific. In Section 5, we investigate the (common) use of

a two-layer structure for obtaining the baroclinic re-

sponse. In Section 6 we discuss our results, and estimate

a realistic value for the negative Stokes drift in the Pa-

cific thermocline. Finally, section 7 contains some con-

cluding remarks.

2. The Stokes drift in plane waves with vorticity

a. Particle motion in fluids

For didactic reasons, we give a short outline of the

mathematical steps yielding the Stokes drift. A more

comprehensive treatment is found in the pioneering

study by Longuet-Higgins (1953). A Cartesian right-

handed coordinate system (x, y, z) is chosen such that

the z axis is vertical and directed upward. The corre-

sponding unit vectors are (i, j, k). The Stokes drift can be

obtained by considering the Lagrangian velocity, which

is the velocity of an individual fluid particle. We denote

it by vL. Then, vL(r0, t) is the velocity of a fluid particle

whose position at time t5 t0 is r0 5 (x0, y0, z0). At a later

time t, the particle has moved to a new position

rL5 r01Dr5 r01

ðt
t
0

vL(r0, t
0) dt0 . (1)

In an Eulerian description, where (x, y, z, t) are in-

dependent coordinates, the fluid velocity at time t is

v(rL, t). Hence, consistency requires

vL(r0, t)5 v(rL, t) . (2)

By inserting for rL from (1), and assuming that the dis-

tance Dr5 rL 2 r0 traveled by the particle in the time

interval t2 t0 is small, the two first terms of a Taylor

expansion yields

vL(r0, t)5 v(r0, t)1

" ðt
t
0

vL(r0, t
0) dt0

#
� $Lv(r0, t) , (3)

where $L [ i›/›x01 j›/›y0 1k›/›z0. The last part of the

velocity on the right-hand side of (3) is often called the

Stokes velocity vS, while the first term is the traditional

Eulerian velocity at a fixed position. Hence, in general,

vL 5 v1 vS. For waves with small wave steepness the

difference between vL and v is small, so to second order

we can substitute the Lagrangian velocity by the Eulerian

velocity in the integral in (3), that is,

vS 5

"ðt
t
0

~v(r0, t
0) dt0

#
� $L

~v(r0, t) , (4)

where the tilde denotes the linear periodic wave solu-

tion. In the same approximation, we can use r0 5 r and

$L [ i›/›x1 j›/›y1 k›/›z. We thus see that the Stokes

velocity to second order in wave steepness is determined

completely by the linear Eulerian wave solution. For

periodic waves, the drift (or net transport) is found by

averaging over the wave cycle (denoted by an overbar).

Then

vL 5 v1 vS , (5)

where vS is the Stokes drift, and v is the mean Eulerian

velocity.

The effect of friction is crucial in determining the

mean Eulerian flow. For example, for temporally at-

tenuated deep water surface gravity waves, the wave

momentum is transferred to the mean Eulerian current

through the action of a virtual wave stress at the surface

(Longuet-Higgins 1969b; Weber and Førland 1990). For

spatially damped waves, it is the wave-induced radiation

stresses (see, e.g., Longuet-Higgins and Stewart 1962)

that act to transfer wave momentum to the vertically

averaged mean Lagrangian flow. A recent example here

for long continental shelf waves is given in Weber and

Drivdal (2012). This is very much in contrast to waves in

an inviscid rotating ocean where the mean Lagrangian

velocity may vanish identically—see Hasselmann (1970)

for short surface waves andMoore (1970) for long waves

in the shallow-water approximation. In these latter cases,

the Stokes drift and the mean Eulerian current cancels

exactly.

By using a Lagrangian formulation ab initio there are

exact solutions in Lagrangian coordinates for inviscid

plane waves where the individual fluid particles move in

closed orbits, so the net Lagrangian current is zero—see

Constantin (2001) andWeber (2012) for the Stokes edge

wave and Constantin (2013) for short equatorial in-

terfacial waves. These solutions are all variations of the

classical Gerstner wave (Gerstner 1809). The Gerstner

wave possesses vorticity in a homogenous inviscid ocean.

For this reason such waves have received less attention in

the literature.

592 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44



In a turbulent ocean where the effect of friction is

modeled by an eddy viscosity, the wave-induced mean

Eulerian flow is difficult to assess, because it depends on

the frictional decay of the wave field, as well as the effect

of friction on the mean flow itself (particularly bottom

friction in shallow water). The Stokes drift, on the other

hand, is relatively easy to calculate as long as we can

determine the linear wave field. Any effects of friction

only appear through a slow change in wave amplitude.

In the remainder of this paper, we focus on the Stokes

drift. Further comments on the Stokes drift versus the

mean Eulerian current are found in section 7 at the end

of the paper.

b. The Stokes drift in plane waves

In this specific study of the Stokes drift we consider

free (unforced) plane waves in a horizontally unlimited,

incompressible inviscid ocean of constant depth H.

The horizontal coordinate axes are situated at the un-

disturbed ocean surface, and the bottom is given by

z52H. The waves in our study are periodic, and

propagate in the x direction with constant phase speed

c without changing shape. There is no motion in the

y direction, that is, y5 0. For such waves we must have

that

›

›x
52

1

c

›

›t
. (6)

The horizontal Stokes drift uS to second order in wave

steepness becomes from (4):

uS 5

�ð
~u dt

�
›~u

›x
1

�ð
~wdt

�
›~u

›z
, (7)

because the lower limit in the integral is irrelevant here.

For irrotational two-dimensional wave motion, the

velocity can be derived from a potential. In this case,

›u/›z5 ›w/›x. Then, by applying (6):

uS52
1

c

(
›

›t

" ð
~u dt

� �
~u1

ð
~wdt

� �
~w

#
2 ~u22 ~w2

)

5
1

c
(~u21 ~w2). 0, (8)

which originally was derived by Longuet-Higgins and

Stewart (1962). This result for the Stokes drift in ir-

rotational waves was in fact proved by Eames and

McIntyre (1999) to be exact, that is, not limited to

second order in wave steepness. The forward drift in

such waves has also been analyzed by Constantin

(2006), and demonstrated experimentally by Umeyama

(2012).

Along the lines of Eames and McIntyre (1999), it is

easy to prove that the Stokes drift in the direction nor-

mal to the wave propagation direction is zero. For plane

waves, the continuity equation reduces to

›u

›x
1

›w

›z
5 0, (9)

which allows us to introduce the streamfunction c, such

that

u52
›c

›z
and w5

›c

›x
. (10)

Using (6), we have by definition

w5
Dz

dt
5
›c

›x
52

1

c

›c

›t
5

1

c

�
2
Dc

dt
1 u

›c

›x
1w

›c

›z

�
,

(11)

where D/dt is the individual derivative following a fluid

particle. From (10), the advective terms cancel. We in-

tegrate over the wave period T, and introduce the ver-

tical particle displacement Z. Then, the vertical mean

drift becomes:

wS5
Z(T)2Z(0)

T
52

1

cT
[c(T)2c(0)]5 0, (12)

because the Eulerian streamfunction c is periodic in

time. This is an exact result, and is valid for waves with or

without vorticity. Furthermore, the result does not de-

pend on the boundary conditions for the streamfunction.

To obtain an expression for the horizontal Stokes drift

that also includes cases with vorticity, we introduce the

streamfunction into (7). Then

uS 5
1

c

›~c

›z

� �2
1 ~c

›2~c

›z2

2
4

3
5. (13)

For baroclinic motion in an ocean with constant depth

H, we make the rigid-lid assumption, and take that

~c5 0 and z5 0,2H . (14)

This boundary condition is discussed in more detail in

the next section where we specifically consider internal

Kelvin waves in a stratified ocean. By integrating (13) in

the vertical from the bottom to the surface, and utilizing

the boundary conditions (14), we find for the Stokes flux

that
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US 5

ð0
2H

uS dz5
1

c

ð0
2H

 
›~c

›z

!2
dz1

 
~c
›~c

›z

!0
2H

2

ð0
2H

 
›~c

›z

!2
dz

2
64

3
755 0: (15)

In the case of a rigid lid at the surface, a similar result is

found in Longuet-Higgins (1969a) for the total mean

volume flux in double Kelvin waves. From (13) we note

that at the upper and lower boundaries, where ~c5 0, we

have uS . 0. Accordingly, uS must be negative in some

parts of the interior in order to fulfill (15). To locate

regions of negative Stokes drift, we must consider spe-

cific solutions for ~c.

The derivation of the Stokes drift (7) presupposes that

the linear wave velocity is much larger than the Stokes

drift velocity, that is, juSj � j~u2j1/2 ; ~q0. Using values at

z5 0, where uS is largest, we obtain from (13) that

juSj/~q0 ; ~q0/c � 1.

3. Internal equatorial Kelvin waves

There are few places in the world’s oceans where the

vertical stratification is greater than in the tropics (see,

e.g., Levitus and Boyer 1994). The combination of a

pronounced thermocline and the changing sign of the

Coriolis parameter make the equatorial region a guide

for various types of waves. These waves appear to be

generated by temporal/spatial variations of the trade

wind system. The eastward-propagating Kelvin wave is

special in that the meridional wave velocity vanishes

identically (see, e.g., Gill 1982) For nonzero meridional

velocity, there exist an infinite number of equatorial

waves with trapping scales on the same order as that

for the Kelvin wave, that is, the Rossby radius of defor-

mation (Matsuno 1966; Blandford 1966; Munk andMoore

1968).

Here, we consider the drift in free internal equatorial

Kelvin waves, and direct the x axis along the equator

toward the east, while the y axis points northward.

For Kelvin waves, the corresponding velocity vector is

v5 (u, 0,w). We apply the beta-plane approximation

for the Coriolis parameter, that is, f 5by, where b5
2:3310211m21 s21. Furthermore, we apply the Boussinesq

approximation, assume incompressible flow, and take that

the wavelength is much larger than the fluid depth, so we

can make the hydrostatic assumption. Because we focus on

the Stokes drift in this study, we neglect the effects of dif-

fusive processes altogether.

The waves result from small perturbations from a

state of rest characterized by a horizontally uniform

stable stratification r0(z) in the gravity field. Details of

this problem can be found in textbooks like LeBlond

and Mysak (1978) or Gill (1982). Here, we give a very

brief account. In principle, we expand our solutions in

series after the wave steepness as a small parameter

(but we retain our dimensional variables). The first-order

(linear) equations for the conservation of momentum

and density for an incompressible fluid are as follows:

›~u

›t
52

1

rr

›~p

›x
,

by~u52
1

rr

›~p

›y
,

052
1

rr

›~p

›z
2

~r

rr
g, and

›~r

›t
1w

dr0
dz

5 0, (16)

where rr is a constant reference density, and g is the ac-

celeration due to gravity. Assuming separation of vari-

ables, we can write for the linear streamfunction ~c:

~c52cAF(y)f(z) cos(kx2vt) , (17)

whereA is the amplitude of the vertical displacement of

the isopycnals, k is the wavenumber, and v is the fre-

quency. The corresponding phase speed is c5v/k. For

equatorial Kelvin waves, one finds from (16)

F5 exp(2y2/a2) . (18)

Here,

a25 2c/b , (19)

where c must be positive (eastward wave propagation)

for equatorial trapping to occur. The parameter a5
(2c/b)1/2 is referred to as the internal (or baroclinic)

equatorial Rossby radius.

The z dependence in (17) can be written in terms of

eigenfunctions in a numbered sequence (n5 0, 1, 2, 3, . . . )

—see, for example, Gill and Clarke (1974). Because the

density difference across the sea surface is so much

greater than the density differences within the ocean,

one mode has quite a different character from the others.

This is the barotropic mode (n5 0). It satisfies the con-

dition of constant pressure along the sea surface, and the

vertical velocity increases linearly from the bottom to

the top. The speed of propagation is c0 5 (gH)1/2. For the
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remaining baroclinic modes (n5 1, 2, 3, . . .), separation

of variables leads to

f00
n1

N2

c2n
fn5 0, (20)

where primes denote differentiation with respect to z. In

(20), N is the Brunt–V€ais€al€a frequency defined by

N252
g

rr

dr0(z)

dz
. (21)

The eigenfunctions for the baroclinic modes are subject

to vanishing vertical velocity at the top and bottom (see

Gill and Clarke 1974):

fn 5 0 for z5 0,2H . (22)

For a given N(z), the solution yields separate constant

eigenvalues c1, c2, c3, etc., which represent the phase

speed of the various baroclinic modes.

Inserting from (17) and (20) into (13), we obtain for

the Stokes drift in internal equatorial Kelvin waves for

mode n:

uSn 5
cnA

2
n

2

�
f02

n 2
N2

c2
f2
n

�
exp(22y2/a2n) . (23)

Because fn is zero at the bottom and at the surface, and

the Stokes flux must be zero, see (15), we realize from

(23) that uSn must be negative in some parts of the in-

terior fluid domain. More specifically, the z levels where

uSn has extreme values (›uSn/›z5 0) is given by

fn(N
0fn 1 2Nf0

n)5 0, (24)

where we have utilized (20). Obviously, we have local

maxima for fn(z)5 0.

This kind of structure is most readily demonstrated if

N is constant. We now obtain from (20) and (22):

fn5 sin

�
Nz

cn

�
and cn 5

HN

np
, for n5 1, 2, 3, . . .

(25)

By inserting into (23):

uS 5
pN

2H
�
‘

n51

nA2
n cos

�
2np

H
z

�
exp(22y2/a2n) . (26)

We notice that the drift due to the first mode (n5 1) has

its largest negative value in the middle of the layer. In

Fig. 1 we have plotted the nondimensional Stokes drift

for the first two modes, scaling by the factor u0 5
pNnA2

n/(2H).

For a more realistic distribution of the density field,

the eigenvalue problemmust be solved numerically. We

return to this problem in the next section.

We close this section with a comment on the Stokes

drift for the barotropic mode. For shallow-water surface

waves with amplitude A0 and phase speed c0 5 (gH)1/2,

it can be written (see, e.g., Phillips 1977):

uS
0
5

c0A
2
0

2H2
. (27)

Inserting for the first mode n5 1 in (26) at the surface

along the equator, we find the ratio

�����
uS

0

uS
1

�����5 c0A
2
0

p2c1A
2
1

. (28)

Typical orders of magnitude here are c0 ; 100m s21,

A0 ; 1m, and c1 ; 2m s21, A1 ; 50m. We realize im-

mediately that the ratio (28) is much less than unity,

justifying the neglect of the barotropic mode in this

connection.

4. Application to the equatorial Pacific

As far as equatorial dynamics are concerned, it is the

Pacific Ocean that has attracted most interest among

researchers, and where most data have been collected.

FIG. 1. The first (solid line) and second mode (broken line) for the

nondimensional Stokes drift for constant N at y5 0.
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Evidently, the Brunt–V€ais€al€a frequency is far from

constant in the Pacific equatorial thermocline (see, e.g.,

Colin et al. 1971). We simplify, and approximate the

shape of N2(z) by a Gaussian function:

N2(z)5N2
0 exp[2b(z/H0 1 1)2] . (29)

From Philander (1981), we take that N2
0 5 53 1024 s22.

The depth H0, where N2(z) attains a maximum, is ap-

proximately 150m (Kessler 2005). Furthermore, b is

a dimensionless coefficient. In Fig. 2, we have depicted

(29) for b5 5.

With N2(z) given by (29), (20) and (22) are easily

solved by a simple shooting method. For the first mode

we find c1 5 2:6m s21, which fits well with previously

reported values (Wunsch and Gill 1976; Kessler and

McPhaden 1995). Calculations for the next two modes

yield c2 5 0:77m s21, and c3 5 0:46m s21, respectively.

These latter values are somewhat smaller than those

reported by Kessler and McPhaden (1995) from the

Hawaii–Tahiti Shuttle Experiment (c1 5 2:73, c2 5 1:74,

and c3 5 1:06m s21, respectively). However, we do not

intend to model the equatorial thermocline precisely

at any specific longitude. Our main aim is to investigate

theoretically the principle differences between the

Stokes drift for the first baroclinic mode for a constant

N, a peakedN, and a discontinuous density distribution.

Hence, we are content by using an idealized Brunt–

V€ais€al€a frequency distribution, which yields satisfactory

results for the lowest mode.

At the equator (y5 0), the numerical values of the

eigenfunctions f1(z) and f2(z) are inserted into (23).

The resulting nondimensional Stokes drift for these two

modes is plotted in Fig. 3. In this case, the scaling factor

is u0 5 cnA
2
n/(2H

2
0).

For constantN, the Stokes drift is symmetric about the

midlayer depth, as seen in Fig. 1, where the first mode

has its largest negative value. For a peaked N, the neg-

ative Stokes drift for the first mode typically occurs in

the region whereN2(z) has its maximum. Obviously, the

region of negative drift will be more narrow whenN2(z)

becomes more peaked. This will be discussed further in

section 6. The Stokes drift for the second mode when we

have N2(z) shows the same qualitative behavior as for

constantN, but themaximum positive value in the interior

now occurs in the region where N2(z) has its maximum,

with negative values above and below this level.

5. The two-layer model

Kessler and McPhaden (1995) report that both the

first and second mode of the Kelvin wave are important

for explaining the displacement of the equatorial ther-

mocline, while the third and fourth modes could be

discarded. Here we concentrate on the first baroclinic

mode, because this is directly relevant for the compari-

son with results from a two-layer model in which all

baroclinic modes, except the first (interfacial mode), are

suppressed.

FIG. 2. Idealized distribution of N2(z) for the equatorial Pacific

from (29) with b5 5.

FIG. 3. The nondimensional Stokes drift at the equator vs z/H0

for the first (solid line) and second mode (broken line) when N is

given by (29).
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In discussing the dynamics of the equatorial region, a

reduced-gravity model is often applied (McCreary 1976;

Busalacchi and O’Brien 1980; Boyd 1980). In this ap-

proach there are two layers of constant density, where

the upper is thin and active, and the lower is deep and

with negligible velocity (i.e., a so-called 1.5-layer model).

Then, by replacing the acceleration due to gravity by the

reduced gravity, the various trapped baroclinic equatorial

waves follow directly from the discussion in Gill’s book

(Gill 1982).

We consider a two-layermodel with constant densities

r1 and r2 in the upper and lower layer, respectively. The

interface is placed at depth H0, where we, in the con-

tinuous case, have a peak in N2. For long Kelvin waves,

using the hydrostatic approximation, one finds for the

baroclinic response in the upper layer (see, e.g., Gill

1982):

› ~U1

›t
5 c21

›~j1
›x

,

by ~U15 c21
›~j1
›y

, and

›~j1
›t

5
› ~U1

›x
. (30)

Here, ~j1 is the displacement of the interface from its

original position z52H0, and ~U1 is the volume flux.

Furthermore, we have defined

c15

�
gDr

r

(H2H0)H0

H

�1/2
. (31)

We have here taken that Dr5 r2 2 r2 and r5 r1 ’ r2.

For baroclinic motion, the volume flux ~U2 in the lower

layer is given by ~U2 52 ~U1.

The solution to this problem is readily obtained. For

periodic waves with phase speed c1 5v/k, we find for the

interfacial Kelvin wave

~j15A exp(2y2/a21) cos(kx2vt) , (32)

where a1 is the interfacial equatorial Rossby radius

given by a1 5 (2c1/b)
1/2. The velocities in the upper and

lower layer become

~u15
~U1

H0

52
c1A

H0

exp(2y2/a21) cos(kx2vt) and

~u25
~U2

H2H0

5
c1A

H2H0

exp(2y2/a21) cos(kx2vt) . (33)

For the two-layer approach in the nonrotating case

one can use potential theory in both layers (Phillips 1977),

and hence, according to (8), the Stokes drift becomes

positive everywhere. The same applies to equatorial

Kelvin waves. In each layer of constant density, we

find ›~u/›z2 › ~w/›x5 0, so the x and z dependence

can be derived from a potential. By inserting from

(33) for long waves into (7), we obtain for the Stokes

drift:

uS
1
5

c1A
2

2H2
0

exp(2y2/a21) for 0$ z.2H0 and

uS
2
5

c1A
2

2(H2H0)
2
exp(2y2/a21) for 2H0. z$2H .

(34)

Scaling the two-layer result such that the drift equals

one in the upper layer at y5 0, it becomesH2
0 /(H2H0)

2

in the lower layer. The result (34) is plotted in Fig. 4,

together with uS for the more realistic equatorial

stratification (29).

We note from Fig. 4 that the Stokes drift in the two

cases is very different. In particular, the two-layer

model fails to produce a region of negative Stokes

drift. This is a matter of concern, because reduced

gravity models in the ocean, with negligible motion in

the lower deep layer, often are used to represent the

first baroclinic internal mode. This obviously introduces

a serious error as far as the nonlinear wave drift is

concerned.

FIG. 4. The nondimensional Stokes drift vs z/H0 for the first

mode when N is given by (29) (solid line), and for the interfacial

wave in a two-layer model (dashed line).
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6. Discussion

If we introduce the vertical displacement ~j of the

isopycnals, we have from linearized theory that ›~j/›t5
~w5 ›~c/›x. By utilizing (6), we obtain ~j52~c/c. Inserting

into (13), we find for the Stokes drift

uS 5
1

c
~u21~j

›~u

›z
. (35)

In general, we have that ›~u/›z, 0 when ~j. 0, so the last

term is negative [in a two-layer model we have ~u2 . 0

below an interfacial crest ~j1 . 0, and ~u1 , 0 above it—

see (32) and (33)]. Because the vorticity component ~z in

the y direction is given by ~z5 ›~u/›z2 › ~w/›x, and › ~w/›x

is very small for long waves, it is actually the vorticity

that appears in the last term of (35). In this case the

vertical displacement is continuous, and the horizontal

velocity components are finite at both sides of the in-

terface. A two-layer structure for the density then im-

plies an infinite vorticity at the interface. From (35) we

note that the Stokes drift then would become negative,

and infinitely large, in an infinitely thin layer. However,

the negative Stokes flux must be finite, and cancel the

sum of the positive Stokes fluxes in the upper and lower

layer, as required by (15). Hence, the negative Stokes

drift necessarily must exhibit a delta-function behavior

at the interface in the two-layer limit.

Obviously, an infinitely large negative Stokes drift is

an unphysical result, and will not be observed in nature.

In laboratory experiments with a two-layer structure,

the molecular viscosity cannot be neglected, and will

probably prevent large horizontal drift velocities near

the interface. In the ocean, a too-steep pycnocline may

promote instability. Denoting the magnitude of the

shear of the linear wave field by dU/dz at the depth H0,

where Nmax 5N0, we obtain from Phillips (1977) in the

long-wave approximation

dU

dz
5

N2
0

v
kA . (36)

Hence, the local gradient Richardson number becomes

Ri5
N2

0

(dU/dz)2
5

�
c

N0A

�2

. (37)

We note that for a sufficiently large amplitude of the

interfacial disturbance, a narrow-peaked N may lead to

such small values of Ri that shear instability could result.

Classic theory states that instability of inviscid stratified

shear flowmay occur whenRi, 1/4 (Miles 1961;Howard

1961), while for symmetric instability of nondiffusive

stratified geostrophic flow one must require Ri, 1

(Stone 1966). From Colin et al. (1971), a maximum dis-

placement A of the isotherms of more than 50m from

a mean horizontal position does not seem unrealistic.

In fact, Kessler and McPhaden (1995) report that the

observed depth of the 208C thermocline varied be-

tween 80 and 180m. For the example in section 4 with

c5 2:6m s21 and N2
0 5 53 1024 s22, a middle-of-the-

road value A5 65m leads to Ri5 1:8. Hence, it is not

likely that the shear in these long waves may lead to

instability and subsequent turbulent mixing.

In dimensional terms, the values of the depicted Stokes

drift (first mode) for variable N in Figs. 3 and 4 must

be multiplied by the factor u0 5 c1A
2
1/(2H

2
0). Then, with

our previously applied values H0 5 150m, A1 5 65m,

and c1 5 2:6ms21, we find for the scaling factor: u0 5
0:24ms21. Hence, from Fig. 4 we obtain that

uS(y5 0, z52H0)521:34u0’20:32m s21. (38)

This order of magnitude is comparable to observed

values of the Equatorial Undercurrent at the level of the

thermocline (Taft et al. 1974).

The basic problemwith layeredmodels is that the flow

is irrotational in each layer, yielding a positive Stokes

drift everywhere. It would not help to add infinitely

many homogeneous layers. However, if we added an

intermediate layer with a linear density decrease, we

would find a backward Stokes drift in this layer. But in

this case the density distribution would just be a piece-

wise approximation to the continuous profile leading

to (29).

7. Concluding remarks

In recent years, a considerable number of papers have

been devoted to a direct computation of the Lagrangian

or quasi-Lagrangian mean velocity in waves (e.g.,

Andrews andMcIntyre 1978; Weber 1983; Jenkins 1986;

Weber et al. 2006; Brostr€omet al. 2008). In such analyses

the Stokes drift turns out to be an inherent part of the

full Lagrangian wave-induced mean drift. The remain-

ing part can be interpreted as a quasi-Eulerian mean

flow, confirming Longuet-Higgins’ earlier result (Longuet-

Higgins 1953). However, the mean Eulerian current de-

pends on turbulent eddy viscosity, which in turn depends

on the sea state, and the results are ridden by the un-

certainty of assessing the eddy viscosity magnitude and

spatial distribution. This is not so for the Stokes drift,

which is inherent in the waves, and can be determined in

reliable way. Also, in many cases, the Stokes drift is of

the same order of magnitude as the mean Eulerian

current, which makes it an important contributor to the
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mean oceanic circulation. In addition, one extremely sim-

plifying aspect is that the Stokes drift to a good approxi-

mation can be obtained from the inviscid fluid motion.

From the present study of internal equatorial Kelvin

waves, the drift results for the Pacific Ocean are particu-

larly interesting. Here, the Equatorial Undercurrent ex-

tends down into the upper part of the thermocline

(Cromwell et al. 1954). Observed values of the under-

current in the thermocline (Taft et al. 1974) are of the same

order of magnitude as the negative Stokes drift derived in

this paper. Obviously, Lagrangian measurements that can

resolve the Stokes drift contribution to the mass transport

velocity in the equatorial thermocline are needed.
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