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Abstract. In this paper we introduce a new family of refined Watanabe-

Sobolev spaces that capture in a fine way integrability in time of the Malliavin

derivative. We consider duality in these spaces and derive a Burkholder type

inequality in a dual norm.

The theory we develop allows us to prove weak convergence with essen-

tially optimal rate for numerical approximations in space and time of semilin-

ear parabolic stochastic evolution equations driven by Gaussian additive noise.

In particular, we combine Galerkin finite element methods with a backward

Euler scheme in time. The method of proof does not rely on the use of the Kol-

mogorov equation or the Itō formula and is therefore in nature non-Markovian.

With this method polynomial growth test functions with mild smoothness as-

sumptions are allowed, meaning in particular that we prove convergence of

arbitrary moments with essentially optimal rate. Our Gronwall argument also

yields weak error estimates which are uniform in time without any additional

effort.

1. Introduction

The classical Watanabe-Sobolev spaces capture the integrability in the chance

parameter of the random variable and its Malliavin derivatives. In the Malliavin

calculus for stochastic evolution equations the Malliavin derivative is a stochastic

process. One purpose of this paper is to introduce a refined family of Watanabe-

Sobolev spaces that have the ability to capture the precise integrability properties

of the Malliavin derivative with respect to its time parameter. It turns out that

the Malliavin derivative of the solution to a parabolic stochastic evolution equation

has, depending on the regularity of the noise, good integrability properties in time

and, in the case of trace class noise, it is even bounded. The main benefit with

narrower spaces is that the corresponding dual spaces have good properties.

Let (H, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space and Q ∈ L(H) be a selfadjoint

positive semidefinite linear operator on H. We define the space H0 = Q
1
2 (H)

and let L0
2 = L2(H,H0) be the space of Hilbert-Schmidt operators H0 → H. We

consider a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) on which an L2([0, T ], H0)-

isonormal process is defined. For a differentiable random variable X the Malliavin

derivative DX = (DtX)t∈[0,T ] with respect to the isonormal process, is an L0
2-

valued stochastic process. We introduce for p, q ≥ 2, the refined Watanabe-Sobolev
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spaces M1,p,q(H) of random variables X ∈ L2(Ω, H) defined by the norms

‖X‖M1,p,q(H) =
(
‖X‖pLp(Ω,H) + ‖DX‖p

Lp(Ω,Lq([0,T ],L0
2))

) 1
p

.

The classical Watanabe-Sobolev spaces are obtained for q = 2. We use the refined

spaces in a duality argument based on the Gelfand triple

M1,p,q(H) ⊂ L2(Ω, H) ⊂M1,p,q(H)∗.

A key ingredient is the following inequality for the H-valued stochastic Itō-integral∫ T
0

Φ dW in the dual norm of M1,p,q(H), where W is a cylindrical Q-Wiener process

and Φ ∈ Lp(Ω, L2([0, T ],L0
2)) is a predictable stochastic process. In Theorem 3.5

we show ∥∥∥∫ T

0

Φ(t) dW (t)
∥∥∥
M1,p,q(H)∗

≤
∥∥Φ
∥∥
Lp′ (Ω,Lq′ ([0,T ],L0

2))
,(1.1)

where p′, q′ are the conjugate exponents to p, q ≥ 2. This inequality is applied in

situations, where one usually relies on the Burkholder-Davis-Gundy inequality, see

Lemma 2.2. In this case the L2(Ω, H)-norm of the stochastic integral is bounded

in terms of the Lp(Ω, L2([0, T ],L0
2))-norm of Φ. Here, the dual norm of the integral

is bounded by the Lp
′
(Ω, Lq

′
([0, T ],L0

2))-norm of Φ and, as p′, q′ ≤ 2, this admits

stronger singularities.

In defining the M1,p,q(H)-spaces care needs to be taken. For q ≥ 2 the Malliavin

derivative is defined on a non-standard core Sq(H) of smooth and cylindrical ran-

dom variables, more regular than in the classical theory in which q = 2. By proving

that the operator D : Sq(H) → Lp(Ω, Lq([0, T ],L0
2)) is well defined and closable

we show that M1,p,q(H) are Banach spaces. The proofs are rather elementary and

rely to a large extent on existing results for the case q = 2. The spaces are new

to the best of our knowledge, although there are similarities with the Hida and

Kondratiev spaces, see, e.g., [20] or [4].

The motivation for introducing the spaces described above is found in our aim

to develop new methods for the analysis of the weak error of the numerical approx-

imation of semilinear stochastic partial differential equations of the form

dX(t) +AX(t) dt = F (X(t)) dt+ dW (t), t ∈ (0, T ]; X(0) = X0.(1.2)

See Assumption 2.3 below for precise conditions on A, F , W , X0. We treat dis-

cretizations in space and time, allowing for any spatial discretization scheme that

satisfies the abstract Assumption 2.4 below. We verify this assumption for piecewise

linear finite element approximations and spectral Galerkin approximations of the

heat equation. Discretization in time is performed by the backward Euler method.

Weak convergence for linear stochastic evolution equations has been studied

in the papers [16], [25], [26], [13], [11], [28], [32] and the works [40], [18], [19],

[12], [5], [6], [7] [2] treat semilinear equations. Most of these works are based on

Itō’s formula and Kolmogorov’s equation. It becomes apparent while reading the

literature that proving weak convergence with optimal order is a challenging task.

Various restrictive assumptions are imposed on the noise in all these works. In

particular, multiplicative noise more general than linear has rarely been treated
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due to severe difficulties, and in this case only for space time white noise, see [12],

[2].

Let X,Y ∈ L2(Ω, H) and ϕ : H → R have two continuous Fréchet derivatives of

polynomial growth. Our technique relies on the following linearization of the weak

error

E
[
ϕ(X)− ϕ(Y )

]
= E

[〈
ϕ̃,X − Y

〉]
, where ϕ̃ =

∫ 1

0

ϕ′(%X + (1− %)Y ) d%,

introduced in [8] and [28] independently. The paper [8] then proceeds by using an

adjoint problem. Our method is the following: If V ⊂ L2(Ω, H) ⊂ V ∗ is a Gelfand

triple such that ϕ̃ ∈ V , then we obtain by duality∣∣E[ϕ(X)− ϕ(Y )
]∣∣ ≤ ∥∥ϕ̃∥∥

V

∥∥X − Y ∥∥
V ∗
.

With a good choice of V , the error converges in the V ∗-norm with twice the rate of

convergence in the L2(Ω, H)-norm and this is the desired rate of weak convergence.

For linear equations we prove that V = M1,p,p(H) is a good choice for some p > 2.

The main part of the error X−Y is then a stochastic convolution
∫ T

0
E(T−t) dW (t).

Bounding the error operator E in the right norm yields convergence to the price of

a singularity at t = 0. By using the inequality (1.1) on this integral with sufficiently

large p = q > 2, we may integrate a stronger singularity and obtain a higher rate of

convergence. For semilinear equations the main difference is that a term involving

F (X) − F (Y ) appears. We then use V = G1,p(H) = M1,p,p(H) ∩ L2p(Ω, H). In

Lemma 3.8 we show that F : V ∗ → V ∗ is locally Lipschitz with a constant depending

on ‖X‖M1,2p,p(H), ‖Y ‖M1,2p,p(H). The choice of a stronger V -norm is necessary in

order to control the nonlinearity in this way. After bounding these norms, we may

use a standard Gronwall argument to bound ‖X − Y ‖V ∗ .
As our method does not rely on the use of Kolmogorov’s equation or Itō’s formula,

it extends to non-Markovian equations. In the work [1] our method is used to prove

weak convergence for semilinear stochastic Volterra equations driven by additive

noise. Such equations suffer from the lack of a Kolmogorov equation and therefore

the classical proof is not feasible. We hope that our method will enable weak error

analysis for other non-Markovian equations such as for instance random evolution

PDEs. For a discussion of the differences that arise in connection with a possible

extension to multiplicative noise, see Subsection 4.3 below.

An additional advantage of the present work is that we only require the test

function ϕ to have two continuous Fréchet derivatives of polynomial growth. This

means, in particular, that we prove convergence of arbitrary moments with the

higher rate. Except in [28] for the case of linear equations, the test functions in

the weak error analysis are assumed to have bounded derivatives and convergence

of moments is treated separately, for example, in [9]. In [1] it is shown that with

little extra effort the method works for weak convergence of integrals with respect

to general Borel-measures of the entire path of the solution, including for instance

weighted sums
∑M
m=1 amX(tm), where a1, . . . , aM are real numbers and 0 ≤ t1 <

· · · < tM ≤ T . As far as we can see this appears to be impossible to obtain by the
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classical method. In addition, our weak error estimate in Theorem 4.4 is uniform

with respect to the time partition unlike earlier results in the literature.

The paper is organized as follows. In Section 2 we present preliminary material

and our basic assumptions on the stochastic partial differential equation and the

numerical scheme. The core of the paper is Section 3 which contains our extensions

of the Malliavin calculus. In 3.1 we introduce the refined Watanabe-Sobolev spaces

and prove that they are well defined. Duality of our new spaces is treated in 3.2,

with the inequality (1.1) and a local Lipschitz result as the main results. In 3.3

and 3.4 regularity results in terms of our new spaces are proved for the solution to

our stochastic evolution equation and its approximations, respectively. Section 4

contains the weak convergence. In 4.1 we restrict the discussion to approximations

of the stochastic convolution and in 4.2 we treat semilinear equations. Finally, in

Section 5 we verify our assumption on the numerical method for Galerkin finite

element approximations.

2. Setting and preliminaries

2.1. Analytic preliminaries. Let (U, ‖ · ‖U , 〈·, ·〉U ) and (V, ‖ · ‖V , 〈·, ·〉V ) be sep-

arable Hilbert spaces and let L(U, V ) be the Banach space of all bounded linear

operators U → V . If U = V , then we write L(U) = L(U,U) and if U = H,

we abbreviate L = L(H). We denote by L2(U, V ) ⊂ L(U, V ) the subspace of all

Hilbert-Schmidt operators endowed with the standard norm and inner product

‖T‖L2(U,V ) =
(∑
j∈N

‖Tuj‖2V
) 1

2

, 〈S, T 〉L2(U,V ) =
∑
j∈N

〈Suj , Tuj〉V ,(2.1)

where both are independent of the particular choice of ON-basis (uj)j∈N ⊂ U .

We let L[m](U, V ) denote the space of multi-linear operators b : Um → V for

m ≥ 1. We use the notation b · (u1, . . . , um) = b(u1, . . . , um) for u1, . . . , um ∈ U
to emphasize that b is multi-linear and we abbreviate b · (u, . . . , u) = b · (u)m. The

norm ‖b‖L[m](U,V ) is the smallest constant C > 0 such that

‖b · (u1, . . . , um)‖V ≤ C‖u1‖U · · · ‖um‖U , ∀u1, . . . , um ∈ U.(2.2)

By Cm(U, V ) we denote the space of all mappings φ : U → V with continuous

Fréchet derivatives of order m, Cmb (U, V ) is the subspace with m ≥ 1 bounded

derivatives φ′, . . . , φ(m), and Cmp (U, V ) denotes the analogous space with deriva-

tives of polynomial growth. On Cmb (U, V ) we use the natural seminorm |φ|Cmb =

supx∈U ‖φ(m)(x)‖L[m](U,V ). We define C0
b(U, V ) to be all bounded continuous map-

pings U → V , endowed with the uniform norm. The first derivative of φ ∈ C1(U, V )

is an operator φ′(x) ∈ L(U, V ) = L[1](U, V ) for every x ∈ U . When V = R we may

identify φ′(x) ∈ L(U,R) = U∗ with its gradient φ′(x) ∈ U via φ′(x)·u = 〈φ′(x), u〉U
by the Riesz representation theorem. Similarly, for φ ∈ C2(U,R) we will sometimes

identify φ′′(x) ∈ L[2](U,R) with an operator φ′′(x) ∈ L(U) via φ′′(x) · (u1, u2) =

〈φ′′(x)u1, u2〉U . By the mean value theorem we have, for φ ∈ C1(U, V ),

φ(x) = φ(y) +

∫ 1

0

φ′(y + ρ(x− y)) · (x− y) dρ, x, y ∈ U.(2.3)
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We will use the following version of Gronwall’s Lemma, for a proof see [14,

Lemma 7.1].

Lemma 2.1. Let T > 0, N ∈ N, k = T
N , and tn = nk for 0 ≤ n ≤ N . If (ϕj)

N
j=1

are nonnegative real numbers with

ϕn ≤ C1 (1 + t−1+µ
n ) + C2 k

n−1∑
j=0

t−1+ν
n−j ϕj , 1 ≤ n ≤ N,

for some constants C1, C2 ≥ 0 and µ, ν > 0, then there exists a constant C =

C(µ, ν, C2, T ) such that

ϕn ≤ C C1 (1 + t−1+µ
n ), 1 ≤ n ≤ N.

We sometimes write a . b to denote a ≤ Cb for some constant C > 0. Constants

arising from the estimates (2.4), (2.5), (2.12) and (2.14) as well as trivial numerical

constants will be suppressed with this symbol.

2.2. Stochastic preliminaries. Let (H, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space

and let Q ∈ L = L(H) be a selfadjoint, positive semidefinite operator on H and

Q
1
2 its unique positive square root. The space H0 = Q

1
2 (H) is a Hilbert space

with scalar product 〈u, v〉H0
= 〈Q− 1

2u,Q−
1
2 v〉. We denote by L0

2 = L2(H0, H)

the space of Hilbert-Schmidt operators H0 → H. We consider a filtered probabil-

ity space (Ω,F , (Ft)t∈[0,T ],P) and the corresponding Bochner spaces Lp(Ω, V ) =

Lp((Ω,F ,P), V ), p ∈ [1,∞], V a Banach space. We abbreviate L2(Ω) = L2(Ω,R).

We assume that (W (t))t∈[0,T ] is a cylindrical Q-Wiener process, meaning that

W ∈ C([0, T ],L(H0, L
2(Ω))) is such that t 7→ W (t)u is an Ft-predictable real-

valued Brownian motion for every u ∈ H0 and

E
[
W (s)uW (t)v

]
= min(s, t)〈u, v〉H0

, u, v ∈ H0, s, t ∈ [0, T ].

For predictable Φ ∈ L2([0, T ]× Ω,L0
2) the H-valued stochastic Itō-integral∫ T

0

Φ(t) dW (t) ∈ L2(Ω, H),

is a well defined random variable. For details on the construction of cylindrical

Wiener processes and the corresponding stochastic integral we refer to [10, 35, 38].

For technical reasons we assume that the σ-field F is generated by (W (t))t∈[0,T ]

and the filtration (Ft)t∈[0,T ] is the natural filtration associated with (W (t))t∈[0,T ].

We cite the following special case of Burkholder’s inequality [10, Lemma 7.2].

Lemma 2.2. Let (Φ(t))t∈[0,T ] be a predictable and L0
2-valued process such that

‖Φ‖Lp(Ω,L2([0,T ],L0
2)) < ∞ for some p ≥ 2. Then there exists a constant Cp, such

that ∥∥∥∫ T

0

Φ(s) dW (s)
∥∥∥
Lp(Ω,H)

≤ Cp‖Φ‖Lp(Ω,L2([0,T ],L0
2)).
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2.3. The stochastic equation. We study equation (1.2) under the following As-

sumption and recall that the solution X takes values in H.

Assumption 2.3. (i) Let (A,D(A)) be a linear operator on H such that A−1 ∈
L(H) exists and −A is the generator of an analytic semigroup (S(t))t≥0 of

bounded linear operators S(t) = e−tA on H.

(ii) The initial value X0 is deterministic and satisfies X0 ∈ Ḣ2β, for some β ∈
(0, 1], where Ḣα ⊂ H denotes the domain of A

α
2 .

(iii) The covariance operator Q satisfies ‖A
β−1
2 ‖L0

2
= ‖A

β−1
2 Q

1
2 ‖L2 < ∞, for the

same β as in (ii).

(iv) The drift F : H → H is assumed to be twice Fréchet differentiable with bounded

derivatives of order 1 and 2, i.e., F ∈ C2
b(H,H).

Under Assumption 2.3 (i) the fractional powers A
r
2 for r ∈ R are well defined,

see [34, Section 2.6]. We define the norms ‖v‖r = ‖A r
2 v‖ and let Ḣr = D(A

r
2 ) for

r ≥ 0. For r < 0 we define Ḣr as the closure of H under the norm ‖v‖r. The spaces

Ḣr ⊂ H ⊂ Ḣ−r form a Gelfand triple for r > 0.

The analytic semigroup (S(t))t≥0 generated by −A satisfies, see [34, Section 2.6],

‖A%S(t)‖L ≤ C%t−%, t > 0, % ≥ 0,(2.4)

‖(S(t)− I)A−%‖L ≤ C%t%, t ≥ 0, 0 < % ≤ 1,(2.5)

where C% = 2
% . For later reference we state the semigroup property:

S(s+ t) = S(s)S(t), s, t ≥ 0; S(0) = I.(2.6)

Under Assumption 2.3, the stochastic equation (1.2) has a mild solution X ∈
C([0, T ], Lp(Ω, H)), for every p ≥ 2, in the sense that it satisfies the integral equation

(2.7) X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s)) ds+

∫ t

0

S(t− s) dW (s), t ∈ [0, T ],

and

sup
t∈[0,T ]

‖X(t)‖Lp(Ω,H) ≤ C(1 + ‖X0‖).(2.8)

For every γ ∈ [0, β) the solution satisfies X(t) ∈ Ḣγ , P-a.s., for all t ∈ [0, T ]. For

more details we refer to [10,22,23,29] and the references therein.

2.4. Approximation of the solution. We approximate equation (1.2) in finite-

dimensional approximation spaces Vh ⊆ H, h ∈ (0, 1]. The parameter h ∈ (0, 1] is

a refinement parameter. We denote by Ph : H → Vh the orthogonal projector onto

Vh and by (Ah)h∈(0,1] a family of operators Ah : Vh → Vh approximating A. The

assumptions on (Vh)h∈(0,1], and (Ah)h∈(0,1] are given in Assumption 2.4 below.

For the time discretization let k ∈ (0, 1) be the constant step size. We define the

discrete time points by tn = nk, n = 0, . . . , N , where N = N(k) ∈ N is determined

by tN ≤ T < tN +k. We define the operator Sh,k = (I+kAh)−1Ph and notice that

Sh,kQ
1
2 ∈ L2(H) since Sh,k is a finite rank operator. Hence it is a valid integrand
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for the stochastic integral. Our completely discrete scheme is to find the recursive

sequence (Xn
h,k)Nn=0 ⊂ Vh given by the semi-implicit Euler-Maruyama method:

Xn+1
h,k = Sh,kX

n
h,k + kSh,kF (Xn

h,k) +

∫ tn+1

tn

Sh,k dW (s), n = 0, . . . , N − 1;

X0
h,k = PhX0.

(2.9)

By iterating (2.9) we obtain the discrete analog of (2.7)

Xn
h,k = Snh,kPhX0 + k

n−1∑
j=0

Sn−jh,k F (Xj
h,k) +

n−1∑
j=0

∫ tj+1

tj

Sn−jh,k dW (t), n = 0, . . . , N.

(2.10)

Further, we define the error operators Enh,k, h, k ∈ (0, 1], by

Enh,k := S(nk)− Snh,k.(2.11)

We now state our assumption on the numerical discretization.

Assumption 2.4. The linear operators Ah : Vh → Vh and the orthogonal projectors

Ph : H → Vh, h ∈ (0, 1], satisfy for all 0 ≤ % ≤ 1
2

‖A%hS
n
h,k‖L ≤ Ct−%n , n = 1, . . . , N,(2.12)

‖A−%h PhA
%‖L ≤ C,(2.13)

uniformly in h, k ∈ (0, 1], and for all 0 ≤ θ ≤ 2, 0 ≤ % ≤ min(1, 2− θ),

‖Enh,kA
%
2 ‖L ≤ C

(
hθ + k

θ
2

)
t
− θ+%2
n , n = 1, . . . , N.(2.14)

We remark that the error estimate (2.14) is non-standard, due to the low reg-

ularity regime we consider. In fact, it corresponds to an error estimate for the

deterministic linear equation with rough initial data, i.e., S(t)X0 = S(t)A
%
2 x with

x ∈ H, so that X0 = A
%
2 x ∈ Ḣ−%. We verify (2.14) in Section 5 for the finite

element method and the heat equation by means of interpolation techniques, using

already established results from [27, 28]. By [27, Example 3.4], spectral Galerkin

approximations also fit under our Assumption 2.4.

3. Malliavin calculus

The papers [17] and [31] are the earliest works to treat Malliavin calculus for

stochastic evolution equations in the Hilbert space framework. Later it was used in

several papers related to optimal control of stochastic partial differential equations,

in particular, in connection with backward stochastic differential equations [15] and

backward Volterra integral equations in Hilbert spaces [3]. Malliavin differentia-

bility of solutions to stochastic evolution equations is proved in [15]. There are

also works using the Malliavin calculus for specific equations outside the setting of

the present paper and it is more extensively developed for equations studied in the

framework of [39], see the book [36]. We mention also the papers [2], [5], [6], [8],

[12], [18], [19], [24], [40], where the Malliavin calculus is applied to the problem of
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proving weak convergence. Below we take a new direction and introduce in Sub-

section 4.1 a family of refined Watanabe-Sobolev spaces. We show in Subsection

4.2 that these spaces are particularly useful in connection with duality.

3.1. Refined Watanabe-Sobolev spaces. Let I : L2([0, T ], H0)→ L2(Ω) be the

mapping given by

I(φ) =

∫ T

0

φ(t) dW (t), φ ∈ L2([0, T ], H0),

where we identify L2([0, T ], H0) ∼= L2([0, T ],L2(H0,R)). This identification is im-

portant since an R-valued stochastic integral has an L2([0, T ],L2(H0,R))-valued

integrand. Fix an ON-basis (φj)j∈N ⊂ L2([0, T ], H0), let Pn be the set of random

variables given by n:th order polynomials of the random variables (I(φj))j∈N. The

set ∪n∈NPn is independent of the choice of basis, see [21], and⋃
n∈N

Pn ⊂ Lp(Ω) is dense for 1 ≤ p <∞.(3.1)

Let 2 ≤ q ≤ ∞ and let the mapping i : Lq([0, T ], H0) → L2([0, T ], H0) denote

the canonical embedding. Let Sq be the set of random variables F of the form

F = f(I(i(φ1)), . . . , I(i(φn))),

f ∈ C1
p(Rn,R), (φj)

n
j=1 ⊂ Lq([0, T ], H0), n ∈ N.

(3.2)

The class S2 is standard in Malliavin calculus and is usually denoted by S. Our

definition coincides with that in [28] but in the standard work [33] and many other

works C∞p (Rn,R) is used instead of C1
p(Rn,R). The classes Sq for q > 2 are new

to our knowledge.

Lemma 3.1. For every 1 ≤ p <∞ and 2 ≤ q ≤ ∞, Sq ⊂ Lp(Ω) is dense.

Proof. Without causing confusion we also let i denote the canonical embedding

from Lq([0, T ],R) to L2([0, T ],R). We notice the isomorphism L2([0, T ], H0) ∼=
L2([0, T ],R)⊗H0.

Since there even exists a bounded ON-basis of the space L2([0, T ],R) we clearly

find a sequence (fn)n∈N ⊂ Lq([0, T ],R) such that (i(fn))n∈N is an ON-basis for

L2([0, T ],R). If (hn)n∈N is an ON-basis for H0, then (i(fm)⊗hn)m,n∈N is an ON-

basis for L2([0, T ],R)⊗H0. In particular, we have that i(fm ⊗ hn) = i(fm)⊗ hn.

Since the result (3.1) is independent of the choice of the basis, we conclude our

assertion by using the sequence (I(i(fm ⊗ hn)))m,n∈N. �

For 1 ≤ p < ∞ and 2 ≤ q ≤ ∞ we define the action of the Malliavin derivative

D : Sq → Lp(Ω, Lq([0, T ], H0)) on a random variable F of the form (3.2) by

Dt F =

n∑
j=1

∂jf(I(i(φ1)), . . . , I(i(φn)))⊗ φj(t), t ∈ [0, T ].

This is well defined because φ1, . . . , φn ∈ Lq([0, T ], H0), the random variables

I(φ1), . . . , I(φn) are Gaussian with all existing moments and since f has poly-

nomial growth. By a direct modification of [28, Proposition 4.2] it does not depend

on the specific representation of F .
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We remark that for q = 2 the linear operator D : S2 → Lp(Ω, L2([0, T ], H0)) is

the standard Malliavin derivative. Technically speaking, we have restricted the do-

main of the Malliavin derivative to Sq ⊂ S2 for 2 < q ≤ ∞. By this we have ensured

that D|Sq maps into the smaller space Lp(Ω, Lq([0, T ], H0)) ⊂ Lp(Ω, L2([0, T ], H0)).

We define the Malliavin derivative for H-valued random variables as in [28,

Chap. 4]. For this we denote by Sq(H) the collection of all H-valued smooth

random variables of the form

X =

n∑
j=1

hj ⊗ Fj , h1, . . . , hn ∈ H, F1, . . . , Fn ∈ Sq, n ∈ N.

Since H is separable and by Lemma 3.1 it follows that Sq(H) is dense in Lp(Ω, H)

for all 1 ≤ p <∞. The Malliavin derivative D : Sq(H)→ Lp(Ω, Lq([0, T ],L0
2)) acts

in the following way:

DtX = Dt

n∑
j=1

hj ⊗ Fj =

n∑
j=1

hj ⊗DtFj , t ∈ [0, T ].

Here we did the identifications

H ⊗ Lp(Ω, Lq([0, T ], H0)) ∼= Lp(Ω, H ⊗ Lq([0, T ], H0)) ∼= Lp(Ω, Lq([0, T ],L0
2)).

We write Du
tX = DtXu ∈ L2(Ω, H) for the derivative in the direction u ∈ H0.

In the final step of its construction we extend the domain of the Malliavin de-

rivative to its closure with respect to the graph norm. For this we recall that an

unbounded operator A : U → V is closable if and only if for every (un)n∈N ⊂ U

such that limn→∞ un = 0 and limn→∞Aun = v, we have v = 0.

Lemma 3.2. The Malliavin derivative D : Sq → Lp(Ω, Lq([0, T ],L0
2)) is closable

for every 1 < p <∞ and 2 ≤ q ≤ ∞.

Proof. We will use the fact that D : S2(H) → Lp(Ω, L2([0, T ],L0
2)) is closable

for p > 1, [28, Proposition 4.4]. Let (Xn)n∈N ⊂ Sq(H) ⊂ S2(H) be a se-

quence satisfying limn→∞Xn = 0 in Lp(Ω, H) such that limn→∞DXn = Z in

Lp(Ω, Lq([0, T ],L0
2)), and hence also in Lp(Ω, L2([0, T ],L0

2)). By the closability we

have Z = 0 in Lp(Ω, L2([0, T ],L0
2)) and, consequently, also in Lp(Ω, Lq([0, T ],L0

2)).

�

For 1 < p <∞ and 2 ≤ q ≤ ∞ we can therefore consider the closure M1,p,q(H)

of Sq(H) with respect to the norm

‖X‖M1,p,q(H) =
(
‖X‖pLp(Ω,H) + ‖DX‖p

Lp(Ω,Lq([0,T ],L0
2))

) 1
p

.

Clearly, the spaces M1,p,2(H), p > 1, coincide with the classical Watanabe-Sobolev

spaces of the Malliavin calculus, which are usually denoted by D1,p(H). The stan-

dard Malliavin derivative is uniquely extended to an operator from M1,p,2(H)

to Lp(Ω, L2([0, T ],L0
2)). In addition it holds M1,p,q1(H) ⊂ M1,p,q2(H) for all

∞ ≥ q1 ≥ q2 ≥ 2 and from Lemma 3.2 it follows that the restriction of the stan-

dard Malliavin derivative D|M1,p,q(H) is a well-defined operator from M1,p,q(H) to

Lp(Ω, Lq([0, T ],L0
2)). If p = q we abbreviate M1,p(H) = M1,p,p(H).



10 A. ANDERSSON, R. KRUSE, AND S. LARSSON

The space M1,2(H) is a Hilbert space and it has a well developed theory of Malli-

avin calculus. The adjoint of the Malliavin derivative D : M1,2(H) ⊂ L2(Ω, H) →
L2([0, T ] × Ω,L0

2) is called the divergence operator or the Skorohod integral and

denoted by δ : L2([0, T ]×Ω,L0
2)→ L2(Ω, H) with domain D(δ). The duality reads〈

X, δΦ
〉
L2(Ω,H)

=
〈
DX,Φ

〉
L2([0,T ]×Ω,L0

2)
, X ∈M1,2(H), Φ ∈ D(δ).(3.3)

We refer to this as the Malliavin integration by parts formula. It is well known

that for predictable Φ ∈ D(δ) the action of δ coincides with that of the H-valued

Itō integral, i.e., δΦ =
∫ T

0
Φ(t) dW (t), [28, Proposition 4.12].

In the remainder of this subsection we state a modification of the chain rule from

[28, Lemma 4.7] and a product rule for the Malliavin derivative.

Lemma 3.3. Let U, V be two separable Hilbert spaces and let σ ∈ C1(U, V ), be such

that there exist constants C and r ≥ 0 with

‖σ(u)‖V ≤ C
(
1 + ‖u‖1+r

U

)
, ‖σ′(u)‖L(U,V ) ≤ C

(
1 + ‖u‖rU

)
,

for all u ∈ U . Then for every 1 < p < ∞, 2 ≤ q ≤ ∞ and X ∈ M1,(1+r)p,q(U) it

follows that σ(X) ∈M1,p,q(V ) with ‖σ(X)‖M1,p,q(V ) . (1 + ‖X‖1+r
M1,(1+r)p,q(U)

) and

Dt(σ(X)) = σ′(X) ·DtX, t ∈ [0, T ].(3.4)

Proof. Let p > 1 be arbitrary. For q = 2 the result follows directly from [28, Lemma

4.7]. Therefore, it suffices to show that ‖σ(X)‖M1,p,q(V ) <∞ if X ∈M1,(1+r)p,q(U)

for q > 2. Indeed, from the polynomial growth condition it follows that∥∥σ(X)
∥∥
Lp(Ω,V )

≤ C
(
1 + ‖X‖1+r

L(1+r)p(Ω,U)

)
≤ C

(
1 + ‖X‖1+r

M1,(1+r)p,q(U)

)
.

Moreover, it holds∥∥Dσ(X)
∥∥
Lp(Ω,Lq([0,T ],L2(H0,V )))

=
(
E
[∥∥σ′(X) ·DX

∥∥p
Lq([0,T ],L2(H0,V ))

]) 1
p

.
(
E
[(

1 +
∥∥X∥∥r

U

)p‖DX‖pLq([0,T ],L2(H0,U))

]) 1
p

≤
(
1 + ‖X‖rL(1+r)p(Ω,U)

)∥∥DX∥∥
L(1+r)p(Ω,Lq([0,T ],L2(H0,U)))

.
(
1 + ‖X‖1+r

M1,(1+r)p,q(U)

)
,

where we applied the polynomial growth condition on σ′ and the Hölder inequality

with exponents (r + 1)/r and (r + 1). This completes the proof. �

Lemma 3.4. For σ ∈ C2
b(H) it holds σ′(X) · Y ∈ M1,p,q(H) for all X,Y ∈

M1,2p,q(H), 1 ≤ p <∞, 2 ≤ q ≤ ∞. In addition, we have

Dt(σ
′(X) · Y ) = σ′′(X) · (DtX,Y ) + σ′(X) ·DtY, t ∈ [0, T ].(3.5)

Proof. The proof is done by an application of the chain rule. For this define the

mapping γ : H × H → H given by γ(x, y) = σ′(x) · y. Certainly, it holds γ ∈
C1(H×H,H) and we have ‖γ(x, y)‖ = ‖σ′(x) ·y‖ ≤ |σ|C1b‖y‖ for all (x, y) ∈ H×H.

Further, it holds

γ′(x, y) · (z1, z2) = σ′′(x) · (z1, y) + σ′(x) · z2,
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for all (x, y), (z1, z2) ∈ H ×H. Therefore,∥∥γ′(x, y) · (z1, z2)
∥∥ ≤ |σ|C2b‖z1‖‖y‖+ |σ|C1b‖z2‖

≤ max{|σ|C1b , |σ|C2b}
(
1 + ‖y‖

)(
‖z1‖+ ‖z2‖

)
.

Hence, γ satisfies the assumption of Lemma 3.3 with r = 1 and the result follows.

�

3.2. Duality. For any 2 ≤ p <∞, 2 ≤ q ≤ ∞ the inclusion M1,p,q(H) ⊂ L2(Ω, H)

is dense and continuous and hence the spaces

M1,p,q(H) ⊂ L2(Ω, H) ⊂M1,p,q(H)∗,(3.6)

define a Gelfand triple, where we identify L2(Ω, H) ∼= L2(Ω, H)∗ by the Riesz Rep-

resentation Theorem. We denote the dual pairing of M1,p,q(H)∗ and M1,p,q(H) by

[Z, Y ] for Z ∈M1,p,q(H)∗, Y ∈M1,p,q(H). The inclusion L2(Ω, H) ⊂M1,p,q(H)∗

is realized through the definition [Z, Y ] = 〈Z, Y 〉L2(Ω,H) for all Z ∈ L2(Ω, H),

Y ∈M1,p,q(H), with the norm

‖Z‖M1,p,q(H)∗ = sup
Y ∈M1,p,q(H)

〈Y,Z〉L2(Ω,H)

‖Y ‖M1,p,q(H)
, Z ∈ L2(Ω, H).(3.7)

We will now prove an inequality that is a sort of Burkholder inequality in the

M1,p,q(H)∗-norm. Lemma 2.2 gives an estimate that is L2 in time. In this weaker

norm we get an estimate that is Lq
′

in time, where q′ is the conjugate exponent to

q given by 1
q + 1

q′ = 1 if q < ∞ and q′ = 1 otherwise. Since q ∈ [2,∞], and hence

q′ ∈ [1, 2], we can integrate worse singularities.

Theorem 3.5. Let p ∈ [2,∞), q ∈ [2,∞] and p′, q′ denote the conjugate exponents

given by 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1 with q′ = 1 for q =∞. If Φ ∈ L2([0, T ]×Ω,L0
2)

is predictable, then∥∥∥∫ T

0

Φ(t) dW (t)
∥∥∥
M1,p,q(H)∗

≤ ‖Φ‖Lp′ (Ω,Lq′ ([0,T ],L0
2)).

Proof. We use the fact that the stochastic integral of Φ equals δΦ. By (3.7), (3.3),

and Hölder’s inequality, we get

∥∥δΦ∥∥
M1,p,q(H)∗

= sup
Y ∈M1,p,q(H)

〈
Y, δΦ

〉
L2(Ω,H)

‖Y ‖M1,p,q(H)
= sup
Y ∈M1,p,q(H)

〈
DY,Φ

〉
L2([0,T ]×Ω,L0

2)

‖Y ‖M1,p,q(H)

≤ sup
Y ∈M1,p,q(H)

‖DY ‖Lp(Ω,Lq([0,T ],L0
2))

∥∥Φ
∥∥
Lp′ (Ω,Lq′ ([0,T ],L0

2))

‖Y ‖M1,p,q(H)

≤ ‖Φ‖Lp′ (Ω,Lq′ ([0,T ],L0
2)),

which finishes the proof. �

Remark 3.6. We prove the reverse inequality for deterministic Φ ∈ L2(Ω ×
[0, T ],L0

2). Since Hq1(H) = {δΨ : Ψ ∈ Lq([0, T ],L0
2)} ⊂ M1,p,q(H) we get an

inequality by taking the supremum over Hq1(H) in (3.7) instead of M1,p,q(H). We
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also use the identity DδΨ = Ψ + δDΨ = Ψ for deterministic Ψ ∈ Lq([0, T ],L0
2). By

Burkholder’s inequality Lemma 2.2 and Hölder’s inequality we get

∥∥δΦ∥∥
M1,p,q(H)∗

= sup
Y ∈M1,p,q(H)

〈
Y, δΦ

〉
L2([0,T ]×Ω,L0

2)

‖Y ‖M1,p,q(H)

≥ sup
Y ∈Hq1(H)

〈
DY,Φ

〉
L2([0,T ]×Ω,L0

2)

‖Y ‖M1,p,q(H)

= sup
Ψ∈Lq([0,T ],L0

2)

〈
DδΨ,Φ

〉
L2([0,T ]×Ω,L0

2)(
‖δΨ‖pLp(Ω,H) + ‖DδΨ‖p

Lp(Ω,Lq([0,T ],L0
2))

) 1
p

≥ sup
Ψ∈Lq([0,T ],L0

2)

〈
Ψ,Φ

〉
L2([0,T ],L0

2)(
Cpp‖Ψ‖pL2([0,T ],L0

2)
+ ‖Ψ‖p

Lq([0,T ],L0
2)

) 1
p

≥ 1(
CppT

q
q−2 + 1

) 1
p

sup
Ψ∈Lq([0,T ],L0

2)

〈
Ψ,Φ

〉
L2([0,T ],L0

2)

‖Ψ‖Lq([0,T ],L0
2)

=
1(

CppT
q
q−2 + 1

) 1
p

‖Φ‖Lq′ ([0,T ],L0
2).

The proof relies strongly on the fact that DΨ = 0. For random Φ one needs random

Ψ ∈ Lp(Ω, Lq([0, T ],L0
2)) and, since δDΨ 6= 0 in this case, the proof above does not

work.

Remark 3.7. One consequence of Theorem 3.5 is that the stochastic integral can

be extended in M1,p,q(H)∗ to integrands in Lp
′
(Ω, Lq

′
([0, T ],L0

2)). The elements

of M1,p,q(H)∗ are distributions defined by their action on random variables in

M1,p,q(H). One can show that the solution of the linear stochastic heat equation

driven by space-time white noise in two space dimensions is a stochastic process

X ∈ C([0, T ],M1,p,q(H)∗) for every p ≥ 2 and q > 2. In three space dimensions the

same is valid for every p ≥ 2 and q > 4. In higher space dimensions than three the

solution is not M1,p,q(H)∗-valued since this would force q′ < 1. Hölder continuity

in time in the M1,p,q(H)∗-norms can be shown for the solution in two and three

space dimensions for the p, q for which the solution is defined. See Lemma 3.8 below

for the regular case.

Solutions defined in a distributional sense with respect to Ω is not conceptually

new. This is the heart of the white noise approach to SPDE, see, e.g., [4],[20]. In [4]

semilinear equations are considered in the random field framework and a fixed point

argument is performed. In a future work we will explore if there are suitable spaces

in which such an analysis can be performed for equations within the semigroup

framework and then, in particular, for the case of multiplicative noise.

Theorem 3.5 is a key result in the present work. But to be able to perform error

estimates for semilinear equations we also need an intermediate space between

M1,p,p(H) and M1,2p,p(H). For 2 ≤ p <∞ we define G1,p(H), to be the subspace
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of M1,p,p(H) with the additional integrability property G1,p(H) ⊂ L2p(Ω, H), i.e.,

G1,p(H) = M1,p,p(H) ∩ L2p(Ω, H).

It is a Banach space equipped with the norm

‖Y ‖G1,p(H) = max
(
‖Y ‖M1,p,p(H), ‖Y ‖L2p(Ω,H)

)
.

It holds M1,2p,p(H) ⊂ G1,p(H) ⊂M1,p,p(H) and we obtain a new Gelfand triple

G1,p(H) ⊂ L2(Ω, H) ⊂ G1,p(H)∗.(3.8)

Our next key result is stated in Lemma 3.8 below. It establishes a local Lipschitz

bound in the G1,p(H)∗-norm. This helps us to perform a Gronwall argument in

this norm in Section 4.2.

Lemma 3.8. Let p ≥ 2. For F ∈ C2
b(H) the following local Lipschitz bound holds∥∥F (X1)− F (X2)

∥∥
G1,p(H)∗

≤ max
(
|F |C1b , |F |C2b

)(
1 +

2∑
i=1

‖Xi‖M1,2p,p(H)

)∥∥X1 −X2

∥∥
G1,p(H)∗

,

for all X1, X2 ∈M1,2p,p(H).

Proof. In view of (2.3) it suffices to show

‖F ′(X) · Y ‖G1,p(H)∗

≤ max
(
|F |C1b , |F |C2b

)(
1 + ‖X‖M1,2p,p(H)

)
‖Y ‖G1,p(H)∗ ,

(3.9)

for all X,Y ∈M1,2p,p(H). We have

‖F ′(X) · Y
∥∥
G1,p(H)∗

≤
∥∥F ′(X)∗

∥∥
L(G1,p(H))

∥∥Y ∥∥
G1,p(H)∗

,

since ‖F ′(X)‖L(G1,p(H)∗) = ‖F ′(X)∗‖L(G1,p(H)). To bound the latter norm we

calculate

‖F ′(X)∗ · Z‖L2p(Ω,H) ≤
(
E
[
‖F ′(X)∗‖2pL ‖Z‖

2p
]) 1

2p

≤ |F |C1b‖Z‖L2p(Ω,H) ≤ |F |C1b‖Z‖M1,2p,p(H).

Further, by the product rule (3.5) and the Cauchy-Schwarz inequality we get∥∥DF ′(X)∗ · Z
∥∥
Lp(Ω,Lp([0,T ],L0

2))

=
∥∥F ′′(X)∗ ·

(
DX,Z

)
+ F ′(X)∗ ·DZ

∥∥
Lp(Ω,Lp([0,T ],L0

2))

≤ |F |C2b
(
E
[ ∫ T

0

‖DsX‖pL0
2

ds ‖Z‖p
]) 1

p

+ |F |C1b‖DZ‖Lp(Ω,Lp([0,T ],L0
2))

≤ |F |C2b‖DX‖L2p(Ω,Lp([0,T ],L0
2))‖Z‖L2p(Ω,H) + |F |C1b‖DZ‖Lp(Ω,Lp([0,T ],L0

2))

≤ max
(
|F |C1b , |F |C2b

)(
1 + ‖X‖M1,2p,p(H)

)
‖Z‖G1,p(H).

Taken together, these bounds prove (3.9), which completes the proof. �
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3.3. Regularity of the solution. Here we prove a regularity result for the Malli-

avin derivative as well as Hölder continuity in the M1,p(H)∗-norm of the solution

X to (2.7) under Assumption 2.3. For a suitably chosen p the latter turns out to be

twice as high as in the L2(Ω, H)-norm. The Malliavin derivative DrX(t) of X(t)

at time r ∈ [0, T ] satisfies the equation [15, Proposition 3.5 (ii)]

DrX(t) = S(t− r) +

∫ t

r

S(t− s)F ′(X(s))DrX(s) ds, t ∈ [r, T ],

DrX(t) = 0, t ∈ [0, r].

(3.10)

Proposition 3.9. Let Assumption 2.3 hold. If β ∈ (0, 1), then

sup
t∈[0,T ]

∥∥X(t)
∥∥
M1,p,q(H)

<∞,

for every 2 ≤ q < 2
1−β and 2 ≤ p < ∞. If β = 1, then the same holds for every

2 ≤ q ≤ ∞.

Proof. We remark that the case p = q = 2 was already proved in [15]. The moment

estimate (2.8) tells that supt∈[0,T ] ‖X(t)‖Lp(Ω,H) < ∞ for every 2 ≤ p < ∞ and

t ∈ [0, T ]. Using (3.10) and DrX(t) = 0 for r ∈ [t, T ] as well as Assumption 2.3

(iii), we get

∥∥DX(t)
∥∥
Lp(Ω,Lq([0,T ],L0

2))
=
(
E
[( ∫ t

0

‖DrX(t)‖qL0
2

dr
) p
q
]) 1

p

≤
∥∥S(t− ·)

∥∥
Lq([0,t],L0

2)
+
∥∥∥∫ t

0

S(t− s)F ′(X(s))DX(s) ds
∥∥∥
Lp(Ω,Lq([0,T ],L0

2))

≤
∥∥S∥∥

Lq([0,T ],L0
2)

+

∫ t

0

∥∥S(t− s)F ′(X(s))DX(s)
∥∥
Lp(Ω,Lq([0,T ],L0

2))
ds

≤
∥∥SA 1−β

2

∥∥
Lq([0,T ],L)

∥∥A β−1
2

∥∥
L0

2
+ |F |C1b

∫ t

0

∥∥DX(s)
∥∥
Lp(Ω,Lq([0,T ],L0

2))
ds.

(3.11)

With our choice of q we have, by (2.4) with % = 1−β
2 ,

∥∥SA 1−β
2

∥∥
Lq([0,T ],L)

=
(∫ T

0

∥∥S(t)A
1−β
2

∥∥q
L dt

) 1
q

.
(∫ T

0

t−q
1−β
2 dt

) 1
q

<∞.

We conclude by a standard Gronwall lemma. �

Proposition 3.10. Let Assumption 2.3 hold with β ∈ (0, 1] and denote by X the

solution to (2.7). For γ ∈ [0, β) set q = 2
1−γ . Then there exists for every p ∈ [2,∞)

a constant C > 0 such that∥∥X(t2)−X(t1)
∥∥
M1,p,q(H)∗

≤ C
∣∣t2 − t1∣∣γ , t1, t2 ∈ (0, T ].
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Proof. Without loss of generality we assume t2 > t1 > 0. From (2.7) we then get

X(t2)−X(t1) =
(
S(t2 − t1)− I

)
S(t1)X0

+
(
S(t2 − t1)− I

) ∫ t1

0

S(t1 − s)F (X(s)) ds

+
(
S(t2 − t1)− I

) ∫ t1

0

S(t1 − s) dW (s)

+

∫ t2

t1

S(t2 − s)F (X(s)) ds+

∫ t2

t1

S(t2 − s) dW (s).

In the following we study the M1,p,q(H)∗-norms of these five summands. For the

first, second, and fourth terms we use the fact that ‖Z‖M1,p,q(H)∗ ≤ ‖Z‖L2(Ω,H).

For the first summand, we use (2.5) with % = γ and (2.4) with % = 0 as well as

Assumption 2.3 (ii). This yields∥∥(S(t2 − t1)− I
)
S(t1)X0

∥∥
M1,p,q(H)∗

≤
∥∥(S(t2 − t1)− I

)
A−γS(t1)AγX0

∥∥
L2(Ω,H)

.
∣∣t2 − t1∣∣γ‖AγX0‖ .

∣∣t2 − t1∣∣γ‖X0‖Ḣ2β .

The estimate of the second summand is done by applying Assumption 2.3 (iv)

and the same arguments as for the first term. To be more precise, we get∥∥∥(S(t2 − t1)− I
) ∫ t1

0

S(t1 − s)F (X(s)) ds
∥∥∥
M1,p,q(H)∗

≤
∥∥(S(t2 − t1)− I

)
A−γ

∥∥
L

∫ t1

0

∥∥AγS(t1 − s)
∥∥
L

∥∥F (X(s))
∥∥
L2(Ω,H)

ds

.
∣∣t2 − t1∣∣γ ∫ t1

0

(t1 − s)−γ ds
(

1 + sup
s∈[0,T ]

‖X(s)‖L2(Ω,H)

)
.
∣∣t2 − t1∣∣γ ,

where the last term is bounded by (2.8).

We now turn to the third term. We recall that q = 2/(1− γ) and q′ = 2/(1 + γ).

Since γ < β we have

q′
2γ + 1− β

2
=

2γ + 1− β
1 + γ

= 1− β − γ
1 + γ

< 1.(3.12)

We apply Theorem 3.5 to the third summand. Then by (2.4), (2.5) with % = γ,

Assumption 2.3 (iii), and (3.12), we obtain∥∥∥(S(t2 − t1)− I
) ∫ t1

0

S(t1 − s) dW (s)
∥∥∥
M1,p,q(H)∗

≤
∥∥(S(t2 − t1)− I

)
S(t1 − ·)

∥∥
Lp′ (Ω,Lq′ ([0,t1],L0

2))

≤
∥∥(S(t2 − t1)− I

)
A−γ

∥∥
L

(∫ t1

0

∥∥AγS(t1 − s)
∥∥q′
L0

2
ds
) 1
q′

.
∣∣t2 − t1∣∣γ(∫ t1

0

(t1 − s)−q
′ 2γ+1−β

2

∥∥A β−1
2

∥∥q′
L0

2
ds
) 1
q′
.
∣∣t2 − t1∣∣γ .
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Next we turn to the fourth term. By applying the same arguments as for the

second summand, we derive the bound∥∥∥∫ t2

t1

S(t2 − s)F (X(s)) ds
∥∥∥
M1,p,q(H)∗

≤
∫ t2

t1

∥∥S(t2 − s)F (X(s))
∥∥
L2(Ω,H)

ds

. |t2 − t1|
(

1 + sup
s∈[0,T ]

∥∥X(s)
∥∥
L2(Ω,H)

)
,

since the integrand is bounded with respect to the L2(Ω, H)-norm.

Finally, a further application of Theorem 3.5 and (2.4) with % = 1−β
2 yields for

the fifth summand∥∥∥∫ t2

t1

S(t2 − s) dW (s)
∥∥∥
M1,p,q(H)∗

≤
(∫ t2

t1

∥∥S(t2 − s)A
1−β
2

∥∥q′
L

∥∥A β−1
2

∥∥q′
L0

2
ds
) 1
q′

. |t2 − t1|
2−q′(1−β)−2q′γ

2q′ |t2 − t1|γ .

Now, by inserting q′ = 2/(1 + γ) and since β > γ we get

2− q′(1− β)− 2q′γ

2q′
=

1

2
(1 + γ − (1− β)− 2γ) =

1

2
(β − γ) > 0.

Thus it follows |t2 − t1|
2−q′(1−β)−2q′γ

2q′ ≤ T 1
2 (β−γ). This completes the proof. �

3.4. Regularity of the numerical solution. Here we first show a bound on the

p:th-moment of the discrete solutions Xh,k to (2.9), uniformly in h, k ∈ (0, 1], and

then we prove a discrete analogy of Proposition 3.9.

Proposition 3.11. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. Then, for

every p ≥ 2 there exists a constant C such that

max
n∈{0,...,N}

sup
h,k∈(0,1]

∥∥Xn
h,k

∥∥
Lp(Ω,H)

≤ C.

Proof. Fix arbitrary h, k ∈ (0, 1]. For n ∈ {1, . . . , N} we recall the representation

(2.10) of Xn
h,k. Hence, it follows

∥∥Xn
h,k

∥∥
Lp(Ω,H)

≤
∥∥Snh,kPhX0

∥∥+ k
n−1∑
j=0

∥∥Sn−jh,k F (Xj
h,k)

∥∥
Lp(Ω,H)

+
∥∥∥∫ T

0

( n−1∑
j=0

χ(tj ,tj+1](t)S
n−j
h,k

)
dW (t)

∥∥∥
Lp(Ω,H)

.

By (2.12) with % = 0 we have

sup
n∈{1,...,N}

∥∥Snh,k∥∥L . 1,(3.13)

uniformly in h, k ∈ (0, 1]. Therefore, by also applying Lemma 2.2,∥∥Xn
h,k

∥∥
Lp(Ω,H)

≤ ‖X0‖+

n−1∑
j=0

k
∥∥F (Xj

h,k)
∥∥
Lp(Ω,H)

+ C
∥∥∥ n−1∑
j=0

χ(tj ,tj+1]S
n−j
h,k

∥∥∥
L2([0,T ],L0

2)
.



DUALITY IN REFINED WATANABE-SOBOLEV SPACES 17

From (2.12) and (2.13) with % = 1−β
2 we obtain∥∥∥ n−1∑

j=0

χ(tj ,tj+1]S
n−j
h,k Ph

∥∥∥2

L2([0,T ],L0
2)
≤ k

n−1∑
j=0

∥∥Sn−jh,k A
1−β
2

h

∥∥2

L

∥∥A β−1
2

h Ph
∥∥2

L0
2

≤ Ck
n−1∑
j=0

t−1+β
n−j

∥∥A β−1
2

h PhA
1−β
2

∥∥2

L

∥∥A β−1
2

∥∥2

L0
2
. 1,

since β ∈ (0, 1]. In particular this estimate is independent of h, k ∈ (0, 1].

Further, since the drift F : H → H satisfies a linear growth bound under As-

sumption 2.3 (iv) it follows

∥∥Xn
h,k

∥∥
Lp(Ω,H)

. 1 + ‖X0‖+ k

n−1∑
j=0

∥∥Xj
h,k

∥∥
Lp(Ω,H)

and the result follows from an application of Gronwall’s Lemma 2.1. �

Proposition 3.12. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. If β ∈ (0, 1)

then

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥∥Xn
h,k

∥∥
M1,p,q <∞,

for every 2 ≤ q < 2
1−β and 2 ≤ p < ∞. If β = 1 then the same holds for every

2 ≤ q ≤ ∞.

Proof. The Malliavin differentiability of X1
h,k, . . . , X

N
h,k is proved inductively using

(2.10). First, for a given n = 0, . . . , N−1 let us note that DrX
n
h,k = 0 for all r ≥ tn

since Xn
h,k is Fr-measurable. In addition, we have that DrX

1
h,k = χ[0,k](r)Sh,k from

(2.9). For the inductive step let n = 2, . . . , N − 1 and fix r ∈ [tj , tj+1) for some

j = 0, . . . , n − 1. By using (3.4) we apply the Malliavin derivative termwise to

equation (2.10) and obtain

DrX
n
h,k = Sn−jh,k + k

n−1∑
i=j+1

Sn−ih,k F
′(Xi

h,k)DrX
i
h,k.(3.14)

Let l(r) = j for r ∈ [tj , tj+1), j = 0, . . . , N − 1, and l = l(·). By (3.13) it holds∥∥DXn
h,k

∥∥
Lp(Ω,Lq([0,T ],L0

2))
≤
∥∥χ(0,tn]S

n−l
h,k

∥∥
Lq([0,T ],L0

2)

+ k sup
j∈{1,...,N}

∥∥Sjh,k∥∥L|F |C1b n−1∑
i=1

∥∥DrX
i
h,k

∥∥
Lp(Ω,Lq([0,T ],L0

2))

.
∥∥χ(0,tn]S

n−l
h,k A

1−β
2

∥∥
Lq([0,T ],L)

∥∥A β−1
2

∥∥
L0

2
+ k

n−1∑
i=1

∥∥DrX
i
h,k

∥∥
Lp(Ω,Lq([0,T ],L0

2))
.

With our choice of q we have∥∥χ(0,tn]S
n−l
h,k A

1−β
2

∥∥
Lq([0,T ],L)

≤
(
k

N−1∑
i=0

∥∥SN−ih,k A
1−β
2

∥∥q
L

) 1
q

.
(
k

N−1∑
i=0

t
−q 1−β

2

N−i

) 1
q ≤ C,

uniformly in h, k ∈ (0, 1]. By the discrete Gronwall Lemma 2.1 we conclude. �
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4. Weak convergence by duality

Let X be the solution to equation (2.7) and Xh,k be the discretization given

by the recursive scheme (2.9) and take at this stage ϕ ∈ C1(H,R). We start our

approach to weak convergence by an application of (2.3) to get

max
n∈{1,...,N}

∣∣E[ϕ(X(tn))− ϕ(Xn
h,k)

]∣∣ = max
n∈{1,...,N}

∣∣〈Φnh,k, X(tn)−Xn
h,k

〉
L2(Ω,H)

∣∣,(4.1)

where

Φnh,k =

∫ 1

0

ϕ′(Θn
h,k(%)) d% and Θn

h,k(%) = %X(tn) + (1− %)Xn
h,k,(4.2)

for n ∈ {1, . . . , N}. This linearization was first proposed in [8] for nonlinear sto-

chastic ordinary differential equations. Their approach after the linearization is

based on duality in the sense of an adjoint equation. This approach applies also in

our setting by using backward stochastic evolution equations, although the avail-

able theory of Malliavin calculus for such equations is slightly insufficient for the

purpose. Independently, the linearization was applied in [28] for linear stochastic

partial differential equations.

Extending the idea of [28], we proceed as follows: choose a Gelfand triple V ⊂
L2(Ω, H) ⊂ V ∗ such that Φnh,k ∈ V . By duality we have∣∣E[ϕ(X(tn))− ϕ(Xn

h,k)
]∣∣ ≤ ( sup

h,k∈(0,1]

∥∥Φnh,k
∥∥
V

)∥∥X(tn)−Xn
h,k

∥∥
V ∗
.(4.3)

The proof of our weak convergence result in Theorem 4.4 then amounts to showing

that, for every γ ∈ [0, β), we can find a suitable space V such that

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥∥Φnh,k
∥∥
V
≤ C,

max
n∈{1,...,N}

∥∥X(tn)−Xn
h,k

∥∥
V ∗
≤ C

(
h2γ + kγ

)
, h, k ∈ (0, 1].

(4.4)

For a comparison, the strong error converges with half this rate, i.e., for every

γ ∈ [0, β) there exist a C > 0 such that

max
n∈{1,...,N}

‖X(tn)−Xn
h,k‖L2(Ω,H) ≤ C(hγ + k

γ
2 ), h, k ∈ (0, 1].

This is not to be found in the literature, although the proof is straightforward using

our low regularity error estimate Assumption 2.4.

We will explain our method by gradually choosing more sophisticated spaces V

and start with the simpler problem of the weak approximation of the stochastic

convolution. This problem is treated in [13], [16] [25], [26], [28] and to some extent

in [42]. We show that in this case V = L2(Ω, Ḣγ), and V = M1,p,p(H) with

p = 2
1−γ , suffice with different degrees of success. The proofs are simpler than in

the mentioned papers, except for [28] to which the present paper is an extension.

We continue with a subsection containing our main result on the case of semilinear

equations with additive noise. This is where we need the space V = G1,p(H),

whose dual norm allows for a Gronwall argument in view of Lemma 3.8. Finally,
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we discuss multiplicative noise in Subsection 4.3 and illustrate why our approach

is not yet sufficient for this generality.

In general we assume that test functions are C2 with polynomial growth:

Assumption 4.1. The function ϕ : H → R is twice continuously Fréchet differen-

tiable and there exists an integer m ≥ 2 such that (recall the norm in (2.2))

‖ϕ(j)(x)‖L[j](H,R) ≤ C
(
1 + ‖x‖m−j

)
, x ∈ H, j = 1, 2.(4.5)

4.1. The stochastic convolution. We consider the stochastic convolution WA

and its approximations WAh
h,k ,

WA(tn) =

∫ tn

0

S(tn − s) dW (s) and WAh,n
h,k =

n−1∑
j=0

∫ tj+1

tj

Sn−jh,k dW (s)

for n ∈ {1, . . . , N}. For arbitrary γ ∈ (0, β) consider first the Gelfand triple

L2
(
Ω, Ḣγ

)
⊂ L2(Ω, H) ⊂ L2

(
Ω, Ḣ−γ

)
.

In order to have Φnh,k ∈ L2(Ω, Ḣγ) we need to impose an extra assumption on ϕ,

namely that, for some m ≥ 1 and every γ ∈ (0, β), it holds∥∥ϕ′(x)
∥∥
Ḣγ
≤ C

(
1 + ‖x‖m−1

Ḣγ

)
, x ∈ Ḣγ .(4.6)

Then we first get by the Sobolev regularity of WA and WAh
h,k∥∥Φnh,k

∥∥
L2(Ω,Ḣγ)

.
∥∥WA(tn)

∥∥m−1

L2(m−1)(Ω,Ḣγ)
+
∥∥WAh,n

h,k

∥∥m−1

L2(m−1)(Ω,Ḣγ)
. 1,

uniformly in h, k ∈ (0, 1]. To prove convergence in L2(Ω, Ḣ−γ) we write the differ-

ence of the stochastic convolution and its numerical discretization in the form

WA(tn)−WAh,n
h,k =

∫ tn

0

Ẽh,k(tn − t) dW (t),(4.7)

where Ẽh,k : [0, T ]→ L0
2 is given by

Ẽh,k(t) := S(t)− Sj+1
h,k , for t ∈ [tj , tj+1), j = 0, . . . , N − 1.(4.8)

Provided that this error operator satisfies∥∥A− γ2 Ẽh,k(tn − s)A
1−β
2

∥∥2

L .
(
h2γ + kγ

)
(tn − s)−1+β−γ ,(4.9)

for all n ∈ {1, . . . , N} and s ∈ [0, tn), we obtain by the Itō isometry and Assump-

tion 2.3 (iii)∥∥WA(tn)−WAh,n
h,k

∥∥
L2(Ω,Ḣ−γ)

=
(∫ tn

0

∥∥A− γ2 Ẽh,k(tn − s)
∥∥2

L0
2

ds
) 1

2

≤
(∫ tn

0

∥∥A− γ2 Ẽh,k(tn − s)A
1−β
2

∥∥2

L

∥∥A β−1
2

∥∥2

L0
2

ds
) 1

2

.
(
h2γ + kγ

)( ∫ tn

0

(tn − s)−1+β−γ ds
) 1

2

. h2γ + kγ .

The error estimate (4.9) is verified for Galerkin finite element approximations in

Section 5 for γ = 0, but the case γ > 0 is not to be found in the literature, so for

this particular choice of Gelfand triple we do not work in full rigor. An integrated
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version of (4.9) is found in [42], details in [41], and we find no reason to doubt

the validity of (4.9). In view of (4.3) and assuming (4.9) we have proved weak

convergence of the same rate.

Actually, [42, Theorem 1.2] shows convergence of orderO(h2β+kβ) in L2(Ω, Ḣ−1)

(except for a logarithmic factor). However, the fact that L2(Ω, Ḣ−1)-convergence

implies weak convergence for more than linear test functions was not realized in

the early work [42]. Subsequent works except [28] rely on the use of Kolmogorov’s

equation. In the paper [16] this was done for test functions (4.6), while [13] only

assumed ϕ ∈ C2
b(H,R). We also remark that the only technical ingredient used in

the present proof is the Itō isometry. Therefore this proof carries over without addi-

tional difficulties to the case when the cylindrical Q-Wiener process W is replaced

by a square integrable martingale M , by just introducing the suitable notation.

This gives a partial extension of the results in [32] in which impulsive noise was

considered. In that paper the additional assumption (4.6) was not used but instead

the test functions were assumed to be in C2
b(H,R).

Fix γ ∈ (0, β) and let p = 2
1−γ . Consider next the choice of Gelfand triple

M1,p,p(H) ⊂ L2(Ω, H) ⊂M1,p,p(H)∗.

With these spaces we need no assumptions on the test functions other than Assump-

tion 4.1. We state the two parts of our weak convergence proof as two separate

Lemmas. Notice that the first lemma is not restricted to the stochastic convolution.

Lemma 4.2. Let Assumptions 2.3, 2.4, and 4.1 hold with β ∈ (0, 1]. Then for

p = 2
1−γ with γ ∈ (0, β) it holds

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥∥Φnh,k
∥∥
M1,p,p(H)

≤ C,

where Φnh,k is defined in (4.2).

Proof. First note that ϕ′ satisfies the condition of the chain rule in Lemma 3.3 with

r = m− 2 by Assumption 4.1. Thus, it holds

Φnh,k =

∫ 1

0

ϕ′(Θn
h,k(%)) d% ∈M1,p,p(H),

since Θn
h,k(%) = %X(tn) + (1 − %)Xn

h,k ∈ M1,(m−1)p,p(H) by Propositions 3.9 and

3.12. Further, from Lemma 3.3 we also get∥∥Φnh,k
∥∥
M1,p,p(H)

.
(
1 + sup

%∈[0,1]

∥∥Θn
h,k

∥∥m−1

M1,(m−1)p,p(H)

)
.
(
1 +

∥∥X(tn)
∥∥m−1

M1,(m−1)p,p(H)
+
∥∥Xn

h,k

∥∥m−1

M1,(m−1)p,p(H)

)
.

By Propositions 3.9 and 3.12 this can be bounded independently of h, k ∈ (0, 1]. �

Lemma 4.3. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. For an arbitrary

γ ∈ (0, β) set p = 2
1−γ . It holds

max
n∈{1,...,N}

∥∥WA(tn)−WAh,n
h,k

∥∥
M1,p,p(H)∗

≤ C
(
h2γ + kγ

)
, h, k ∈ (0, 1].
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Proof. By (4.7), Theorem 3.5 and Assumption 2.3 (iii) we get with p′ = 2
1+γ

∥∥WA(tn)−WAh,n
h,k

∥∥
M1,p,p(H)∗

≤
(∫ tn

0

∥∥Ẽh,k(tn − t)
∥∥p′
L0

2
dt
) 1
p′

≤
(∫ tn

0

∥∥Ẽh,k(tn − t)A
1−β
2

∥∥p′
L

∥∥A β−1
2

∥∥p′
L0

2
dt
) 1
p′
.

(4.10)

Recalling the error operator (2.11) we obtain for t ∈ (tj , tj+1], j = 0, . . . , n− 1,∥∥Ẽh,k(tn − t)A
1−β
2

∥∥
L

≤
∥∥(S(tn − t)− S(tn − tj)

)
A

1−β
2

∥∥
L +

∥∥En−jh,k A
1−β
2

∥∥
L

≤
∥∥(I − S(t− tj)

)
A−γ

∥∥
L

∥∥S(tn − t)A
2γ+1−β

2

∥∥
L +

∥∥En−jh,k A
1−β
2

∥∥
L

. (tn − t)−
2γ+1−β

2

(
h2γ + kγ

)
,

(4.11)

where we applied (2.4), (2.5) and (2.14) in the last step. By recalling (3.12) the

estimate in (4.10) is completed by∥∥WA(tn)−WAh,n
h,k

∥∥
M1,p(H)∗

.
(
h2γ + kγ

)( ∫ tn

0

(tn − t)−p
′ 2γ+1−β

2 dt
) 1
p′

. h2γ + kγ ,

where the integral is bounded independently of tn. �

4.2. Semilinear equations with additive noise. Above we demonstrated that

V = M1,p,p(H) is suitable for the weak error analysis for the stochastic convolution.

In order to treat semilinear equations we need an even smaller space. Here we work

with the Gelfand triple

G1,p(H) ⊂ L2(Ω, H) ⊂ G1,p(H)∗.

The line of proof is the same as above only that the convergence in the dual norm

is more involved and relies on the local Lipschitz continuity stated in Lemma 3.8,

the inequality Lemma 3.5 and a classical Gronwall argument.

Theorem 4.4. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. Let X and

XN
h,k be the solutions to equations (2.7) and (2.9), respectively. For every function

ϕ : H → H that satisfies Assumption 4.1 and every γ ∈ [0, β) we have for h, k ∈
(0, 1] the weak convergence

max
n∈{1,...,N}

∣∣E[ϕ(X(tn))− ϕ(Xn
h,k)

]∣∣ ≤ C(h2γ + kγ
)
.

Proof. This is a direct consequence of (4.4) and Lemma 4.5 and 4.6 below. �

Lemma 4.5. Let the assumptions of Theorem 4.4 hold. For an arbitrary γ ∈ (0, β)

set p = 2
1−γ . It holds

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥∥Φnh,k
∥∥
G1,p(H)

≤ C.
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Proof. By Lemma 4.2 we have ‖Φnh,k‖M1,p,p(H) ≤ C uniformly in n and h, k. In

addition, by (2.8), Proposition 3.11 and Assumption 4.1 it holds ‖Φnh,k‖L2p(Ω,H) ≤ C
uniformly in n and h, k. �

Lemma 4.6. Let the assumptions of Theorem 4.4 hold. For an arbitrary γ ∈ (0, β)

set p = 2
1−γ . Then there exists a constant C > 0 independent of h, k ∈ (0, 1] such

that

max
n∈{1,...,N}

∥∥X(tn)−Xn
h,k

∥∥
G1,p(H)∗

≤ C
(
h2γ + kγ

)
, h, k ∈ (0, 1].

Proof. Let n ∈ {1, . . . , N} be arbitrary. Using mild solution (2.7) and its discrete

counterpart (2.10), we can write

X(tn)−Xn
h,k =

(
S(tn)− Snh,k

)
X0

+

n−1∑
j=0

∫ tj+1

tj

(
S(tn − t)− Sn−jh,k

)
F (X(t)) dt

+

n−1∑
j=0

∫ tj+1

tj

Sn−jh,k

(
F (X(t))− F (Xj

h,k)
)

dt+WA(tn)−WAh,n
h,k .

(4.12)

By recalling the error operators Ẽh,k(t) from (4.8) we obtain∥∥X(tn)−Xn
h,k

∥∥
G1,p(H)∗

≤
∥∥(S(tn)− Snh,k

)
X0

∥∥
+
∥∥∥∫ tn

0

Ẽh,k(tn − t)F (X(t)) dt
∥∥∥
G1,p(H)∗

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

Sn−jh,k

(
F (X(t))− F (Xj

h,k)
)

dt
∥∥∥
G1,p(H)∗

+
∥∥WA(tn)−WAh,n

h,k

∥∥
G1,p(H)∗

.

(4.13)

By (2.14) with % = 0 and θ = 2γ and Assumption 2.3 (ii) we get∥∥(S(tn)− Snh,k
)
X0

∥∥ ≤ ∥∥(S(tn)− Snh,k)A−
γ
2

∥∥
L

∥∥A γ
2X0

∥∥ . (h2γ + kγ
)∥∥A γ

2X0

∥∥.
For the second term in (4.13) we first use that ‖Z‖G1,p(H)∗ ≤ ‖Z‖L2(Ω,H) for all

Z ∈ L2(Ω, H). Then by (4.11) with β = 1, the linear growth of F , and (2.8) we

have∥∥∥∫ tn

0

Ẽh,k(tn − t)F (X(t)) dt
∥∥∥
G1,p(H)∗

≤
∫ tn

0

∥∥Ẽh,k(tn − t)
∥∥
L

∥∥F (X(t))
∥∥
L2(Ω,H)

dt

.
(
h2γ + kγ

) ∫ tn

0

(tn − t)−γ dt
(

1 + sup
t∈[0,T ]

∥∥X(t)
∥∥
L2(Ω,H)

)
. h2γ + kγ .

For the third summand we first notice that Proposition 3.9 and Proposition 3.12

justify the use of Lemma 3.8 for Y1 = X(t) and Y2 = Xj
h,k with t ∈ (tj , tj+1]. We
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get∥∥F (X(t))− F (Xj
h,k)

∥∥
G1,p(H)∗

≤ max
i∈{1,2}

|F |Cib
(

1 + ‖DX(t)‖Lp([0,T ],L2p(Ω,L0
2)) + ‖DXj

h,k‖Lp([0,T ],L2p(Ω,L0
2))

)
× ‖X(t)−Xj

h,k‖G1,p(H)∗ . ‖X(t)−Xj
h,k‖G1,p(H)∗ .

By (3.13) we get∥∥∥ n−1∑
j=0

∫ tj+1

tj

Sn−jh,k

(
F (X(t))− F (Xj

h,k)
)

dt
∥∥∥
G1,p(H)∗

≤
n−1∑
j=0

∫ tj+1

tj

max
i∈{1,...,N}

∥∥Sih,k∥∥L∥∥F (X(t))− F (Xj
h,k)

∥∥
G1,p(H)∗

dt

.
n−1∑
j=0

∫ tj+1

tj

∥∥X(t)−Xj
h,k

∥∥
G1,p(H)∗

dt.

(4.14)

We split to get∥∥X(t)−Xj
h,k

∥∥
G1,p(H)∗

≤
∥∥X(t)−X(tj)

∥∥
G1,p(H)∗

+
∥∥X(tj)−Xj

h,k

∥∥
G1,p(H)∗

By the Hölder continuity Proposition 3.10 it holds ‖X(t) − X(tj)‖G1,p(H)∗ . kγ

and therefore ∥∥∥ n−1∑
j=0

∫ tj+1

tj

Sn−jh,k

(
F (X(t))− F (Xj

h,k)
)

dt
∥∥∥
G1,p(H)∗

.
n−1∑
j=0

k1+γ + k

n−1∑
j=0

∥∥X(tj)−Xj
h,k

∥∥
G1,p(H)∗

.

The fourth summand is estimated in Lemma 4.3. Altogether we conclude that∥∥X(tn)−Xn
h,k

∥∥
G1,p(H)∗

.
(
h2γ + kγ

)
+ k

n−1∑
j=0

∥∥X(tj)−Xj
h,k

∥∥
G1,p(H)∗

.

By the discrete Gronwall Lemma 2.1 the assertion follows. �

Remark 4.7. In all the works we know of the rate of weak convergence is twice

that of strong convergence. This can be understood from the point of view we have

presented here. Let V ⊂ L2(Ω, H) ⊂ V ∗ denote any of the above mentioned Gelfand

triples. Although we estimate X − Xh,k in the V ∗-norm we have X − Xh,k ∈ V .

The strong error is measured in the L2(Ω, H)-norm, exactly in the middle of V

and V ∗ in the regularity scale, giving an intuition for the relationship between the

strong and weak convergence.

Remark 4.8. A second observation is that we have used two different regular-

ity scales, regularity in the Malliavin sense and regularity in space. Our analysis

shows that exploiting the fine property of the first Malliavin derivative is similar

to exploiting the spatial regularity of order β. This is somehow analogous to the

parabolic scaling, where one time derivative corresponds to two space derivatives.
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4.3. Multiplicative noise. The choice V = G1,p(H) of Subsection 4.2 only works

for equations with additive noise. We demonstrate this here by considering the

following equation with multiplicative noise

dX(t) +AX(t) dt = F (X(t)) dt+G(X(t)) dW (t), t ∈ (0, T ]; X(0) = X0.

Here G ∈ C2
b(H,L(H0, Ḣ

β−1)). In order to perform the Gronwall argument in the

G1,p(H)∗-norm for this equation, one would need a bound∥∥∥ n−1∑
j=0

∫ tj+1

tj

Sn−jh,k

(
G(X(t))−G(Xj

h,k)
)

dW (t)
∥∥∥
G1,p(H)∗

.
n−1∑
j=0

∫ tj+1

tj

∥∥X(t)−Xj
h,k

∥∥
G1,p(H)∗

dt,

cf. (4.14). In order to simplify the presentation, we consider proving∥∥∥∫ T

0

(
G(Y1(t))−G(Y2(t))

)
dW (t)

∥∥∥
G1,p(H)∗

.
∫ T

0

∥∥Y1(t)− Y2(t)
∥∥
G1,p(H)∗

dt

(4.15)

for Y1, Y2 sufficiently regular. Define

K(t) =

∫ 1

0

G′(Y2(t) + %(Y1(t)(t)− Y2(t))) d%, t ∈ [0, T ].

Recall that ‖Y ‖G1,p(H)∗ = supZ∈B〈Z, Y 〉L2(Ω,H), where B ⊂ G1,p(H) is the unit

ball. We integrate by parts and move the supremum inside the integral to get∥∥∥∫ T

0

(
G(Y1(t))−G(Y2(t))

)
dW (t)

∥∥∥
G1,p(H)∗

= sup
Z∈B

〈
Z,

∫ T

0

K(t) ·
(
Y1(t)− Y2(t)

)
dW (t)

〉
L2(Ω,H)

= sup
Z∈B

∫ T

0

〈
DtZ,K(t) ·

(
Y1(t)− Y2(t)

)〉
L2(Ω,L0

2)
dt

≤
∫ T

0

sup
Z∈B

〈
K(t)∗DtZ, Y1(t)− Y2(t)

〉
L2(Ω,H)

dt.

Certainly K(t)∗DtZ 6∈ G1,p(H), since Z is not more than once Malliavin differen-

tiable. Therefore, there is no constant C such that, for all Y ∈ L2(Ω, H),

sup
Z∈B

〈
K(t)∗DtZ, Y

〉
L2(Ω,H)

≤ C‖Y ‖G1,p(H)∗ = C sup
Z∈B

〈
Z, Y

〉
L2(Ω,H)

.(4.16)

This shows that V = G1,p(H) only suffices for equations with additive noise.

In view of (4.16), for any feasible choice of V , we need ‖Z‖V . ‖K(t)∗DtZ‖V
uniformly in t. Therefore it is clear that V must be a space of infinitely smooth

random variables. Such spaces are Fréchet spaces but not normed spaces, which

makes the formulation (4.15) with G1,p(H)∗ replaced by V ∗ invalid. But more

importantly, in view of (4.4) we need ‖Φnh,k‖V ≤ C uniformly in n, h, k. We thus

require infinite smoothness of the solution X. To our knowledge, there are no results
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on Malliavin differentiability of arbitrary order for stochastic evolution equations

in the Hilbert space framework. It is clear that such a smooth solution requires

F ∈ C∞b (H,H) and G ∈ C∞b (H,L0
2).

5. Approximation by the finite element method

In this section we describe a more explicit example for the linear operator A and

its corresponding numerical discretization by the finite element method.

For this we consider the Hilbert space H = L2(D), where D ⊂ Rd, d = 1, 2, 3, is

a bounded, convex and polygonal domain. The linear operator (A,D(A)) is defined

to be Au = ∇ · (a∇u) + cu with Dirichlet boundary conditions, where a, c : D → R
are sufficiently smooth with c(x) ≥ 0 and a(x) ≥ a0 > 0. Under these conditions A

is an elliptic, selfadjoint, second order differential operator with compact inverse,

see for instance [30, Chap. 6.1]. In particular, A satisfies Assumption 2.3 (i).

As before we measure spatial regularity in terms of the spaces Ḣθ, θ ∈ R,

which now correspond to classical Sobolev spaces, for example Ḣ1 = H1
0 (D) and

Ḣ2 = H1
0 (D)∩H2(D). For more details we refer to [28, App. B.2] and the references

therein.

Let (Th)h∈(0,1] be a regular family of triangulations of D with maximal mesh

size h ∈ (0, 1]. We define a family of subspaces (Vh)h∈(0,1] of Ḣ1, consisting of

continuous piecewise linear functions corresponding to (Th)h∈(0,1]. By equipping

the space Ḣ1 with the inner product 〈·, ·〉1 := 〈A 1
2 ·, A 1

2 ·〉, we define Ah : Vh → Vh,

h ∈ (0, 1], to be the linear operators given by the relationship

〈Ahvh, uh〉 = 〈vh, uh〉1, ∀vh, uh ∈ Vh.

Now, from [28, (3.15)] we get ‖A−1
h Phx‖ ≤ ‖x‖−1 for all x ∈ Ḣ−1. Hence it holds

‖A−
1
2

h PhA
1
2 ‖L ≤ 1.

An interpolation between this and ‖Ph‖L ≤ 1 yields (2.13) for % ∈ [0, 1].

As in Subsection 2.3 we denote by (S(t))t≥0 the semigroup generated by −A
and Sh,k := (I+kAh)−1Ph. The standard literature on finite element methods, for

instance [37], provides error estimates for the approximation of the semigroup with

smooth and nonsmooth initial data. More precisely, it holds for the error operator

(4.8)

‖Ẽh,k(t)x‖ ≤ C
(
h2 + k

)
t−

2−q
2 ‖x‖Ḣq , x ∈ Ḣq, q = 0, 2.

For the purpose of the present work we need to extend this to less regular initial

data. This is done by the next lemma, which is a consequence of [28, Lemma 3.12].

Lemma 5.1. Under the above assumptions and for 0 ≤ θ ≤ 2 and 0 ≤ % ≤
min(1, 2− θ), the following estimate holds true

‖Ẽh,k(t)x‖ ≤ C
(
hθ + k

θ
2

)
t−

θ+%
2 ‖x‖−%, x ∈ Ḣ−%, t > 0, h, k ∈ (0, 1].

Proof. By [28, Lemma 3.12 (i)] the estimate

‖Ẽh,k(t)x‖ ≤ C
(
hθ + k

θ
2

)
t−

θ
2 ‖x‖, t > 0, 0 ≤ θ ≤ 2,(5.1)
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holds for all h, k ∈ (0, 1]. By [28, Lemma 3.12 (iii)] the error operator Ẽh,k also

satisfies for 1 ≤ θ ≤ 2

‖Ẽh,k(t)x‖ ≤ C
(
hθ + k

θ
2

)
t−1‖x‖−(2−θ), t > 0.(5.2)

Interpolation of (5.1) and (5.2) with fixed 1 ≤ θ ≤ 2 gives that, for λ ∈ [0, 1],

‖Ẽh,k(t)x‖ ≤ C
(
hθ + k

θ
2

)
t−(1−λ) θ2 t−λ‖x‖−λ(2−θ)

= C
(
hθ + k

θ
2

)
t−

θ
2−

λ(2−θ)
2 ‖x‖−λ(2−θ), t > 0.

If we let % = λ(2 − θ), then we get the following estimate: for 1 ≤ θ ≤ 2 and

0 ≤ % ≤ 2− θ

‖Ẽh,k(t)x‖ ≤ C
(
hθ + k

θ
2

)
t−

θ+%
2 ‖x‖−%, t ≥ 0.(5.3)

By [28, Lemma 3.12 (ii)] it holds

‖Ẽh,k(t)x‖ ≤ Ct−
%
2 ‖x‖−%, t > 0, 0 ≤ % ≤ 1,(5.4)

and using (5.3) with θ = 1 and (5.4), both with the same 0 ≤ % ≤ 1, yields

‖Ẽh,k(t)x‖ = ‖Ẽh,k(t)x‖λ‖Ẽh,k(t)x‖1−λ ≤ C
(
h+ k

1
2

)λ
t−

λ+%
2 ‖x‖−%

≤ C
(
hλ + k

λ
2

)
t−

λ+%
2 ‖A−

%
2 x‖, t > 0, 0 ≤ λ ≤ 1.

(5.5)

Combining (5.3) and (5.5) concludes the proof. �

Writing the statement of the lemma in operator form reads

‖Ẽh,k(t)A
%
2 ‖L ≤ C

(
hθ + k

θ
2

)
t−

θ+%
2 , t > 0, 0 ≤ θ ≤ 2, 0 ≤ % ≤ min(1, 2− θ).

In particular, this shows (2.14) for the finite element method. To verify Assumption

2.4 it remains to show (2.12). By [28, (3.42)]

‖Snh,kx‖ ≤ Ct−
1
2 ‖x‖−1.

Interpolating between this and ‖Snh,kx‖ ≤ C‖x‖ yields (2.12).
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de Wiener cylindrique et calcul stochastique associé, Appl. Math. Optim. 25 (1992), no. 1,
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