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Pair distributions of fluids confined between two surfaces at close distance are of fundamental im-
portance for a variety of physical, chemical, and biological phenomena, such as interactions between
macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to
bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Moti-
vated by recent experimental advances in determining anisotropic structure factors of confined fluids,
we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere
fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inho-
mogeneous fluids. For this purpose, we introduce an experimentally accessible ensemble-averaged
local density correlation function and study its behavior as a function of confining slit width. Upon in-
creasing the distance between the confining surfaces, we observe an alternating sequence of strongly
anisotropic versus more isotropic local order. The latter is due to packing frustration of the spher-
ical particles. This observation highlights the importance of studying inhomogeneous fluids at the
pair-distribution level. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825176]

I. INTRODUCTION

Fluids confined between two surfaces at close distance
are abundant in physical, chemical, and biological systems.
The spatial confinement induces a complex microscopic or-
dering of the fluid, which depends on both the interactions
between the fluid particles and the confining walls as well as
the mutual interactions between the fluid particles. The mi-
croscopic structure of the fluid is of fundamental importance
for a wide range of phenomena, such as the interactions be-
tween macromolecules or colloidal particles in solution,1 ap-
parent charge reversal of suspended particles due to many-
body ion correlations,2–5 and like-charge attraction due to ion-
ion correlations.6–8 Moreover, an accurate description of the
dynamical properties of confined fluids, such as the diffusiv-
ity in narrow pores9, 10 and the friction between surfaces sus-
pended in fluids,11 necessitates a good description of static
structure of the fluid. The relevance of the topic is further
highlighted by the development of novel technological appli-
cations based on confinement of fluids, such as ionogels.12

Fluids are disordered systems, which are characterized
by short-range density variations known as the local struc-
ture of the fluid. In the case of bulk fluids of spherical par-
ticles, the isotropic density around a fluid particle is given
by n0g(r), with n0 denoting the bulk number density, g(r) the
pair-distribution function (also called the radial distribution
function), and r the distance from the particle center. The pair
distributions are also directly related to thermodynamic quan-
tities, thereby providing a formal connection between micro-
scopic and macroscopic properties of the fluid.13 Moreover,
pair distributions can be routinely determined experimentally
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by means of x-ray or neutron scattering, making them the
single most important quantity for characterization of fluid
properties.

For confined fluids, in turn, the local density is governed
by a complex interplay between particle-wall and particle-
particle interactions. Hence, the local density at position r1

around a particle with its center at position r2 is given by
n(r1)g(r1, r2), with n(r1) denoting the number density pro-
file and g(r1, r2) the pair-distribution function. In comparison
with bulk fluids, there are two notable differences due to the
presence of the confining surfaces: (i) n(r1) exhibits spatial
variation and (ii) g(r1, r2) is anisotropic, depending on the in-
dividual values of r1 and r2 rather than on the magnitude of
their difference, r12 = |r1 − r2|. Moreover, while the proper-
ties of bulk fluids are routinely analyzed microscopically in
terms of their pair distributions, studies on the pair distribu-
tions of confined fluids remain scarce.

Given their fundamental importance, one may question
why the pair distributions of confined fluids have, to a large
extent, been neglected so far? This neglect can primarily be
attributed to two causes. First, although the theoretical frame-
work was developed a long time ago,14, 15 the determina-
tion of theoretical pair distributions in confined fluids has
so far been considered a computationally demanding task.
In fact, the vast majority of computational work has fo-
cused on the simpler and generally less accurate singlet dis-
tribution (i.e., the density profile), while explicit calculations
of pair distributions in confined fluids have been reported
only very seldom.16–22 Second, there has to date been a lack
of experimental data for comparison at the pair-distribution
level, and hence there has been no strong incentive to ex-
plicitly determine theoretical pair distributions of confined
fluids. Experimental studies have instead focused on sin-
glet distributions of confined fluids—either indirectly using
surface-force experiments23–25 or directly using, e.g., x-ray
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scattering26 or confocal microscopy.27 However, recently we
demonstrated an experimental approach based on x-ray scat-
tering from colloid-filled nanofluidic channel arrays,28 pro-
viding experimental access to confined fluids at the pair-
distribution level in terms of anisotropic structure factors—
in quantitative agreement with first-principles statistical me-
chanics of inhomogeneous fluids.29

In this paper, we analyze theoretically the anisotropic
structure factors of Ref. 29 in terms of the underlying pair dis-
tributions. As a model system we study the archetypical hard-
sphere fluid confined between smooth and hard planar sur-
faces, which is a good approximation for entropy-dominated
fluids. The first-principles theoretical calculations are carried
out within integral-equation theory, by solving the inhomo-
geneous Ornstein-Zernike and Lovett-Mou-Buff-Wertheim
equations using the anisotropic Percus-Yevick closure.17, 30

The main results of the paper are twofold: First, we show that
the experimentally accessible anisotropic structure factor can
be interpreted in terms of an ensemble-averaged local density
correlation function of the confined fluid. Next, we use this
result to interpret the experimental findings of Ref. 29 as evi-
dence for an alternating sequence of highly anisotropic, peri-
odically modulated versus a more isotropic local order upon
increasing the separation between the confining surfaces. In
essence, this effect is driven by packing frustration, i.e., an in-
compability between the preferred local order of the fluid and
the layering induced by the confining surfaces. The direct ob-
servation of a hitherto unknown sequence of local ordering-
disordering phenomena on the pair-distribution level in the
extensively studied system of a hard-sphere fluid between
hard planar surfaces emphasizes the importance of explicitly
studying inhomogeneous fluids at this level.

II. METHODS

A. Inhomogeneous integral-equation theory

The interaction potentials for the system with hard
spheres between two hard surfaces are given by the particle-
particle interaction potential,

βu(r1, r2) =
{

0 if |r1 − r2| ≥ σ

∞ if |r1 − r2| < σ
(1)

and the particle-wall potential,

βv(z) =
{

0 if |z| ≤ L/2,

∞ if |z| > L/2,
(2)

with β = (kBT)−1, kB Boltzmann’s constant, and T the ab-
solute temperature. Here, the z-axis is placed perpendicular
to the confining surfaces with its origin midway in between,
while the particle centers are confined to a reduced slit width
of L = H − σ , with H denoting the surface separation and σ

the particle diameter.
In the calculations the planar symmetry of the system

has been utilized. This reduces the spatial dimension of the
density distribution n(r) from three to one and the pair-
distribution functions from six to three, for example, g(r1,
r2) = g(z1, z2, R12), where R12 = |R12| and R12 = (x2 − x1,

y2 − y1). The density profile, the total correlation function
h(r1, r2) = h(z1, z2, R12) = g(z1, z2, R12) − 1, and the direct
correlation function c(r1, r2) = c(z1, z2, R12) are obtained by
solving the following set of equations: the Lovett-Mou-Buff-
Wertheim equation,

d[log n(z1) + βv(z1)]

dz1
=

∫
c(z1, z2, R12)

dn(z2)

dz2
dz2dR12

(3)
and the inhomogeneous Ornstein-Zernike equation,

h(r1, r2) = c(r1, r2) +
∫

h(r1, r3)n(z3)c(r3, r2)dr3, (4)

subject to the anisotropic Percus-Yevick (PY) closure

c(r1, r2) = g(r1, r2) − y(r1, r2), (5)

where y(r1, r2) is the cavity function that satisfies

g(r1, r2) = y(r1, r2) exp[−βu(r1, r2)]. (6)

The PY closure is the only approximation made. The set of
Eqs. (3)–(6) is solved fully self-consistently in an iterative
manner.

In the calculations the cavity function y is determined nu-
merically on a grid. The number of grid points can thereby
be kept to a minimum, since this function is continuous at
the hard core periphery of the spheres. The pair-distribution
function is then obtained from Eq. (6).

B. Boundary conditions

To solve Eq. (3), one needs a boundary condition for the
density profile or some other suitable information. There are
two particularly convenient choices: the number of particles
per unit area in the slit, N = ∫ L/2

−L/2 n(z)dz, or the value of the
density at some point, for instance, the contact density at a
wall surface n(±L/2) or the value at the midpoint between the
surfaces n(0). One must, however, know what value to use
when the fluid in the slit is in equilibrium with a bulk fluid
of given density, which is a nontrivial problem within most
integral equation theories at the anisotropic pair distribution
level.31 We used the following method to determine this value
for various surface separations.

The rate of change of the profile when the surface sep-
aration is changed under the condition of constant chemical
potential is given by the exact equation17, 30

∂n(z1; L)

∂L
= −βn(z1; L)

[
∂v(z1; L)

∂L
+

∫
n(z2; L)

×h(z1, z2, R12; L)
∂v(z2; L)

∂L
dz2dR12

]
, (7)

where we have indicated explicitly that all functions depend
on L [this notation is suppressed in Eqs. (3)–(6)]. By inserting
v from Eq. (2) into Eq. (7) and integrating over z1, we obtain
after simplification

dN(L)

dL
= n(L/2; L)

[
1 +

∫
n(z1; L)

×h(z1, L/2, R12; L)dz1dR12

]
, (8)
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where we have used the symmetry with respect to the mid-
plane between the surfaces. This is formally a first order dif-
ferential equation for N as a function of L at constant chemical
potential, i.e., dN/dL = f(N, L), where f is the right-hand side
of Eq. (8) that implicitly depends on N. In order to solve it we
must have a boundary value N0 = N(L0) for N, where L0 is
some suitable slit width. This value can be obtained by select-
ing a large L0 so the density oscillations in the middle of the
slit have decayed to a large extent and the density there virtu-
ally coincides with the bulk density, i.e., n(0) = n0. Thereby,
one solves Eqs. (3)–(6) for L = L0 by using a value N = N0

such that n(0) = n0 is fulfilled. The value N0 thus obtained
can be used as boundary value for the integration of Eq. (8)
to smaller slit widths where the fluid consequently will be in
equilibrium with a bulk fluid of density n0. To evaluate f(N, L)
one must solve Eqs. (3)–(6) self-consistently at every step in
L during the numerical integration of Eq. (8) with N = N(L)
as boundary condition for Eq. (3). In this manner we obtain
the density profiles and pair-distribution functions for all wall
separations L ≤ L0.

C. Computational details

In practice, the numerical solution procedure for
Eqs. (3)–(6) and (8) starts by calculating the density profile
and the pair-correlation functions for a wide slit of width
L0, in our case L0 = 15σ . For this surface separation, N
= N0 = 11.8σ−2 gives the desired value of n(0), i.e., n0

= 0.75σ−3. The iterational procedure for this initial solu-
tion of Eqs. (3)–(6) is started with a constant density pro-
file and pair-correlation functions that are set equal to zero.
About 5 CPU-hours are needed for convergence using eight
nodes with a clock frequency of 2.6 GHz on a parallel
machine. The cut-off radius is 6.4σ in r-space and 98σ−1

in k-space; 200 grid points are applied which give a step
�r and �k of about 0.032σ and 0.49σ−1, respectively. In
the z-direction the step length �z of the grid is equal to
0.025σ .

Once the density profile and the pair-correlation func-
tions have been obtained, Eq. (8) is used to obtain a new
value of N for L = L0 − �L, where �L = 2�z = 0.05σ .
Thereby, one can utilize a numerical method, such as the
Runge-Kutta method, which we have chosen here. Equa-
tions (3)–(6) are solved again for this slit width and the
new value of N. Then the whole procedure is repeated for
L − �L, etc. The start values for the density profile at each
new slit width are obtained from Eq. (7), which gives a rather
accurate new profile, and the old pair-correlation functions
are used as start values for the new ones. Thanks to these
good start values in the iterations the convergence becomes
very fast, so only another 5 CPU-hours are needed to ob-
tain self-consistent pair-correlation functions and density pro-
files for all the slit widths at interval �L down to one hard
sphere diameter. Note that the algorithm parallelizes very
well so it can be even faster if more cores are used in the
computer.

III. RESULTS AND DISCUSSION

A. Anisotropic structure factor

In a physically appealing picture, the experimentally ac-
cessible anisotropic structure factor S(q) of Refs. 28 and 29 is
given by [see the Appendix for details, Eqs. (A1) and (A2)]

S(q) = 1 +
∫

〈n(r)h(r, 0)〉eiq·rdr, (9)

with q denoting the scattering vector. The coordinate system
is here placed with the origin at the center of a particle, coor-
dinate 0, and follows the particle during its motion. The vec-
tor r is a position vector that starts from the particle center.
The brackets depict an average over all particles in the slit,
i.e., 〈n(r)h(r, 0)〉 denotes the correlation function for the den-
sity distribution around a particle, averaged over all particle
positions and weighted with the probability of finding each
particle there [cf. Eq. (A3)]. In other words, the anisotropic
S(q) probes in a direct manner the ensemble-averaged local
density correlations in the confined fluid. In the rest of the pa-
per we will denote 〈n(r)h(r, 0)〉 as the averaged local density
correlation function.

The visualization of S(q) warrants a brief comment. Since
the system has planar symmetry, we can without loss of gen-
erality write the density profile as n(r) = n(z) and the total
pair-correlation function as h(r, 0) = h(z, R, 0). Here, the z
axis is perpendicular to the surfaces, R = |R|, and R = (x, y)
is directed parallel to the surfaces, i.e., R is the in-plane com-
ponent of r. Therefore, Eq. (9) simplifies to

S(q⊥, q‖) = 1 +
∫

〈n(z)h(z, R, 0)〉ei(q⊥z+q‖·R)dzdR, (10)

where q⊥ and q‖ denote the out-of-plane and in-plane com-
ponents of the scattering vector, respectively, and q‖ = |q‖|.
Throughout this paper, we plot for clarity also negative values
of R. In these plots, R should be interpreted as a coordinate
along a straight line in the xy plane through the origin.

Recently, we demonstrated a remarkable agreement be-
tween experimental and theoretical anisotropic structure fac-
tors S(q⊥, q‖) for a hard-sphere fluid confined between hard
planar surfaces.29 The quantitative agreement is for conve-
nience exemplified in Fig. 1 for a reduced slit width of L
= 2.10σ . Here, and throughout this study, the confined fluid
is kept in equilibrium with a bulk fluid reservoir, with the
bulk number density n0 = 0.75σ−3. For comparison, we
also present the corresponding bulk structure factor S(q),
where q = |q|. The latter is obtained by solving the isotropic
Ornstein-Zernike equation within the PY approximation, i.e.,
the isotropic counterparts of Eqs. (4)–(6), and using the hard
particle-particle interaction potential in Eq. (1).13 In con-
trast to the bulk S(q), both theoretical and experimental S(q⊥,
q‖) exhibit anisotropy, most strongly manifested as distinct
peaks around (q⊥, q‖) ∼ (±1/2, ±1) (in units of 2πσ−1) and
lobes at larger scattering vectors. The excellent agreement be-
tween theoretical and experimental S(q⊥, q‖) as shown here
(and for several slit widths in Ref. 29) evidence the accu-
racy, at the pair-distribution level, of the adopted theoretical
scheme.
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FIG. 1. Anisotropic structure factor for a hard-sphere fluid confined be-
tween hard planar surfaces. (a) Theoretical and (b) experimental S(q⊥, q‖)
are shown for a reduced slit width of L = 2.10σ and bulk number density
n0 = 0.75σ−3. The dark red feature at q‖ = 0 in the experimental data is
diffraction from the confining channel array, which should be neglected in
the comparison. The experimental data are taken from Ref. 29. (c) The cor-
responding isotropic bulk S(q) for n0 = 0.75σ−3.

In order to gain further insight into the slit-width de-
pendence of the ensemble-averaged local density correlation
function in the confined fluid, we present in Fig. 2 the theoret-
ical structure factor for a broad range of confining slit widths.
Upon increasing the slit width, we observe an intriguing se-
quence of appearances and disappearances of distinct peaks
in S(q⊥, q‖) [see Video 1 in the supplementary material for
a larger set of S(q⊥, q‖) plots32]. Since S(q⊥, q‖) is given by
the Fourier transform of the ensemble-averaged local density
correlation function 〈n(z)h(z, R, 0)〉 according to Eq. (10), this
observation directly implies an alternating sequence of local
structural ordering-disordering with increasing slit width.

We emphasize that the sequence of local ordering-
disordering phenomena of Fig. 2 is not observable in the tra-
ditionally studied density profiles of confined fluids. This is
exemplified in Fig. 3, which presents the number density pro-
file n(z) for various slit widths. The layered structure between
the walls is developed maximally for surface separations that
are close to an integer multiple of the sphere diameter, while
for intermediate surface separations the layering is less well
developed. We note that the two shoulders in the profile for L
= 1.60σ (red curve) have also been found in grand canonical
simulations.33 The adsorption excess of particles between the
surfaces, defined as � = ∫ L/2

−L/2[n(z) − n0]dz and displayed in
Fig. 4, has peaks at the separations with maximal layering and
troughs when the layering is weak. The average volume frac-
tion of hard spheres in the slit, φav = (πσ 3/6H )

∫ L/2
−L/2 n(z)dz,

also presented in Fig. 4, shows a similar pattern. The chosen
slit widths in Fig. 2 coincide approximately with subsequent
maxima [Figs. 2(a), 2(c), and 2(e)] and minima [Figs. 2(b),
2(d), and 2(f)] in the adsorption excess �.
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FIG. 2. Theoretical anisotropic structure factor as in Fig. 1, but for different
slit widths. The reduced slit widths are (a) L = 1.05σ , (b) 1.60σ , (c) 2.05σ ,
(d) 2.55σ , (e) 3.00σ , and (f) 3.50σ .
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FIG. 3. Number density profiles n(z) for the hard-sphere fluid confined be-
tween hard planar surfaces. The reduced slit widths range from L = 1.05σ to
4.00σ .
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FIG. 4. Excess adsorption � and average volume fraction φav of hard spheres
in the slit between two surfaces as functions of surface separation. The dashed
curve shows the volume fraction in bulk.

Importantly, while the peaks in n(z) are more diffuse
for slit widths close to minima compared to maxima in �,
the density profiles of Fig. 3 do not exhibit any qualitative
changes with increasing slit width which could be interpreted
as signatures of local ordering-disordering phenomena at the
pair-distribution level. Clearly, much can still be learned about
confined fluids, even the extensively studied hard-sphere fluid
between hard planar surfaces, by probing the system at the
pair-distribution level.

It should be noted that S(q⊥, q‖) of the disordered fluid is
qualitatively different during the transition from 2 → 3 parti-
cle layers [Fig. 2(b)] compared to the subsequent transitions
from 3 → 4 [Fig. 2(d)] and 4 → 5 particle layers [Fig. 2(f)].
In particular, the former S(q⊥, q‖) exhibits maxima at (q⊥, q‖)
∼ (0, ±2πσ−1), in contrast to the latter two cases, indicating
a qualitative change in the packing frustration of particles for
L ≈ 2σ . Indeed, a careful inspection of the number density
profiles of Fig. 3 (see Video 2 in the supplementary material
for a larger set of slit widths32) verifies this assertion. The
transition from 2 → 3 particle layers is found to proceed via
buckling of the particle layers next to the solid surfaces, akin
to so-called buckling transitions in thin crystalline films34–36

(for a review on buckling transitions, we refer the reader to
Ref. 37). In contrast, the new particle layers are formed in
the center of the slit during subsequent layering transitions.
It should be noted, however, that the peaks at (q⊥, q‖) ∼ (0,
±2πσ−1) in S(q⊥, q‖) are observable only in a very narrow
range of slit widths, L ≈ 1.60σ − 1.70σ . Moreover, minor
deviations from the ideal system studied here, such as size

FIG. 5. Ensemble-averaged local density correlation function 〈n(z)h(z, R, 0)〉
for the reduced slit width L = 1.05σ . In the bottom part of the figure a contour
plot of the function is shown and in the top part the same plot is illustrated in
a 3D manner with peak heights proportional to the function value. The gray
color denotes a narrow interval around the value zero.

polydispersity of particles and not perfectly parallel planar
walls in the experimental system, may preclude observation of
this subtle packing effect. Consequently, the peaks at (q⊥, q‖)
∼ (0, ±2πσ−1) in S(q⊥, q‖) were not experimentally observed
in Ref. 29.

B. Anisotropic local order

In order to obtain a real-space picture of the local struc-
tural order, we present in Fig. 5 the ensemble-averaged local
density correlation function 〈n(z)h(z, R, 0)〉 for the reduced
slit width of L = 1.05σ . The differences compared to the bulk
counterpart n0h(r) are striking. First, the packing of particles
leads to highly anisotropic, periodically modulated local den-
sity correlations, in stark contrast to the isotropic bulk coun-
terpart. Second, the peaks in 〈n(z)h(z, R, 0)〉 are significantly
more pronounced compared to the bulk n0h(r), indicative of
the enhanced local order in the former case. Third, 〈n(z)h(z, R,
0)〉 exhibits structure inside the excluded volume around po-
sition 0, in contrast to bulk fluids. This latter phenomenon can
be understood as follows. The pair-distribution function g(z,
R, 0) vanishes within the excluded volume around 0. Con-
sequently, the change in local order, relative to the average
structure n(z), becomes 〈n(z)g(z, R, 0) − n(z)〉 = 〈n(z)h(z, R,
0)〉, which equals −〈n(z)〉 for z2 + R2 < σ 2. For bulk fluids
〈n(z)〉 is simply a constant, whereas for confined fluids it is
in essence an autocorrelation of n(z), leading to the negative
and R-independent periodic structure inside the excluded vol-
ume in the latter case. We emphasize that the complexity of
〈n(z)h(z, R, 0)〉, as presented here, hampers simple analysis of
the ensuing S(q⊥, q‖); a proper analysis of experimental struc-
ture factors from confined fluids, whether colloidal suspen-
sion in slits28, 29 or molecular liquids confined in mesostruc-
tured porous matrices,38, 39 necessitates the calculation of the
underlying pair distributions theoretically.

Now we are in a position to analyze the slit-width
dependence of the structure factor. In Fig. 6, we present
the ensemble-averaged local density correlation function
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FIG. 6. Ensemble-averaged local density correlation function 〈n(z)h(z, R, 0)〉 corresponding to the anisotropic structure factors of Fig. 2. The reduced slit
widths are (a) L = 1.05σ , (b) 1.60σ , (c) 2.05σ , (d) 2.55σ , (e) 3.00σ , and (f) 3.50σ .

〈n(z)h(z, R, 0)〉 for the slit widths of Fig. 2 (see Videos 3 and
4 in the supplementary material for a larger set of 〈n(z)h(z, R,
0)〉 plots32). The complex pattern around the central particle at
the origin arises from a compromise between a planar layer-
ing of particles between the surfaces and a spherical layering
induced by the particle. As anticipated based on S(q⊥, q‖), we
observe a sequence of local ordering in 〈n(z)h(z, R, 0)〉, with
the fluid alternating between a periodic density pattern when
the central particle penetrates layers that are in a quite ordered
state and a more isotropic, bulk-like density pattern when the
layers are in a more disordered (i.e., frustrated) state.

We note that the strong anisotropy observed for surface
separations close to an integer multiple of the particle diam-
eter [Figs. 6(a), 6(c), and 6(e)] is much less developed for L
> 3.0σ . The plot for L = 4.0σ (see Videos 3 and 4 in the
supplementary material32) shows only slightly more struc-
ture than that for L = 3.5σ , Fig. 6(f). Similarly, the corre-
sponding S(q⊥, q‖) plots in Fig. 2 (and Video 1 in the sup-
plementary material32) become more bulk-like for L > 3.0σ

[cf. Fig. 1(c)], with the distinct peaks around (q⊥, q‖)
∼ (± πσ−1, ±2πσ−1) becoming strongly suppressed and the
lobes at larger scattering vectors becoming nearly isotropic.
Intriguingly, recent theoretical work on the diffusivity in con-
fined hard-sphere fluids has revealed a similar slit-width de-
pendence, with the oscillatory behavior of the diffusion coeffi-
cients as a function of slit width being strongly suppressed for
L > 3σ .9, 10 On a microscopic level, the diffusivity depends
on the local density of the confined fluid; more ordered flu-
ids have a larger free volume and hence a larger diffusivity.9

However, more theoretical work is needed in order to for-
mally connect the 〈n(z)h(z, R, 0)〉’s of Fig. 6 to the findings of
Refs. 9 and 10.

We also observe a subtle, yet important, difference in
Fig. 6 between the local density correlation 〈n(z)h(z, R, 0)〉
of the disordered fluids, which leads to the qualitatively dif-
ferent behavior of the peaks in S(q⊥, q‖) as discussed above,
namely, the peaks located at (q⊥, q‖) ∼ (0, ±2πσ−1) for sep-
arations L ≈ 1.60σ − 1.70σ , which are split into two peaks
each with nonzero q⊥ for other surface separations. In Figs.
6(d) and 6(f), L = 2.55σ and 3.50σ , we observe spatial corre-
lations between particles in neighboring layers, similar to the
sixfold correlations observed for L = 1.05σ , 2.05σ , and 3.00σ

[Figs. 6(a), 6(c), and 6(d)], but less pronounced (keep in
mind that the present system exhibits planar symmetry). For
L = 1.60σ [Fig. 6(b)], on the other hand, the peaks are
smeared out in the z direction, which leads to the peaks in
S(q⊥, q‖) at zero q⊥.

C. Anisotropic local density

The local correlation function 〈n(z)h(z, R, 0)〉, which is an
ensemble average over all particles in the slit, can be decom-
posed into underlying local densities n(r1)g(r1, r2) for various
particle positions r2 [see the Appendix and Eq. (A3) below for
the relationship between these kinds of entities]. To facilitate
the understanding of the meaning of 〈nh〉 we here present the
function ng for a few cases (in Ref. 17 some other plots of this
function can be found for a somewhat lower bulk density).
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Due to planar symmetry, we have n(r1)g(r1, r2) ≡ n(z1)g(z1,
z2, R12) where R12 = |R12| and R12 = (x1 − x2, y1 − y2), so
R12 denotes the in-plane projection of |r1 − r2|. In graphical
representations of this function, it is convenient to let the z
axis go through the particle center, i.e., we select r2 = (0, 0,
z2). Then the function n(z1)g(z1, z2, R12) states the density at
a point r1 = (R12, z1) = (x1, y1, z1), when a particle is located
at (0, 0, z2). Again, we plot for clarity also negative values
of R12, i.e., in the following plots R12 is to be interpreted as
a coordinate along a straight line in the xy plane through the
origin.

In Fig. 7, we show examples of the local density
n(z1)g(z1, z2, R12) for the reduced slit width L = 2.05σ . In
these plots, the particle is positioned (a) in contact with one
surface at z2 = −1.025σ , (b) at the density minimum at
z2 = −0.475σ , and (c) in the slit center at z2 = 0 (a den-
sity maximum). For more particle positions z2, we refer to
Video 5 in the supplementary material.32 The anisotropy in
local density depends strongly on the particle position z2, or
more specifically on the packing conditions for other particles
given a particle at z2. Most notably, in Figs. 7(a) and 7(b) the
particle density in the wedge-like section formed between the
particle and the nearby wall is strongly enhanced, resulting
in a local number density of up to 18.0σ−3 and 22.9σ−3, re-
spectively. The excluded volumes of the particle and the wall
meet there and form a section where other particles can come
in but not pass through. Particles will remain there for a rel-
atively long time because when they try to escape they will
usually be pushed in again by collisions with the surround-
ing particles. We note that similar local density enhancements
have also been observed in binary hard-sphere mixtures and
discussed in terms of depletion interactions.21 The enhance-
ment in the local density n(z1)g(z1, z2, R12) relative to the
singlet density n(z1) is given by the pair-distribution function
g(z1, z2, R12). In the inner part of the wedge-like section for
these two cases g reaches 3.2 and 4.1, respectively. For com-
parison, the maximum value of the local density in Fig. 7(c),
where no such wedge-like sections induced by overlapping
excluded volumes exist, is a factor of ∼3 smaller compared to
those of Figs. 7(a) and 7(b).

The consequences of the penetration of the central parti-
cle into the particle layers between the walls as seen in Fig. 7
are also apparent in 〈n(z)h(z, R, 0)〉 of Fig. 6(c). In particular,
the sixfold correlations mentioned above are readily observed
when the particle position z2 is close to a density maximum
like in Fig. 7(c). Note that the large peaks in 〈n(z)h(z, R, 0)〉
for z = 0 originate from n(z1)g(z1, z2, R12) with z1 = z2 for var-
ious particle positions z2. A major contribution to these peaks
comes from the case with the particle in contact with a wall,
Fig. 7(a), i.e., from the main density peaks at the wall which
we discussed above. A substantial contribution also comes
from cases like z2 = 0, Fig. 7(c); in this case from the den-
sity peaks at z1 = 0.

In the general case, a detailed quantitative analysis of lo-
cal order in confined fluids based on n(r1)g(r1, r2) may be
a huge task, simply because of the large number of indepen-
dent variables, r1 and r2. As we have seen, there is a strong
variation in both (i) n(r1)g(r1, r2) with r1 and r2 and (ii) the
probability of finding a particle at r2 [which is proportional to

FIG. 7. Local density n(z1)g(z1, z2, R12) at coordinate (R12, z1) around a
particle in the slit between two hard surfaces, when the particle is located
on the z axis at coordinate z2. Data are shown for the reduced slit width
L = 2.05σ and three different particle positions: (a) in contact with one sur-
face, (b) at the density minimum, and (c) in the slit center. The gray region
depicts the excluded volume around the particle.

n(r2)]. This applies even when these functions can be calcu-
lated without undue effort. Analysis of 〈n(r)h(r, 0)〉 is in this
respect more convenient. Nevertheless, the explicit analysis
of pair distributions is important for determining other prop-
erties of the system, such as the net force acting on a particle
at various positions in the confined space.17
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IV. CONCLUSION

The ensemble-averaged local density correlation func-
tion 〈n(z)h(z, R, 0)〉, as introduced and studied in this pa-
per, exhibits two notable advantages. First, the local density
n(z1)g(z1, z2, R12) is a multidimensional quantity, which de-
pends on two positions relative to the confining surfaces;
one of the positions is occupied by a particle and the other
gives the position where the particle density is measured.
In contrast, 〈n(z)h(z, R, 0)〉 is an ensemble average over all
particles in the slit, which means that unlikely particle con-
figurations are effectively filtered out. In essence, we have
coarse-grained out one spatial dimension in 〈n(z)h(z, R, 0)〉
compared to n(z1)g(z1, z2, R12), which greatly facilitates
the analysis of pair distributions in confined fluids. Second,
〈n(z)h(z, R, 0)〉 is directly accessible in x-ray scattering exper-
iments, thereby allowing a quantitative comparison between
experiment and theory in terms of the microscopic structure
at the pair-distribution level. We foresee extensive studies of
〈n(z)h(z, R, 0)〉 for different particle-wall and particle-particle
interaction potentials.

This study focuses on a simple model system—the ex-
tensively studied hard-sphere fluid confined between smooth
and hard planar surfaces. However, the main finding reported
here, a packing-frustration-induced alternating sequence of a
strongly anisotropic, periodically modulated versus a more
isotropic local order, is expected to be a general phenomenon.
As mentioned in the Introduction, the hard-sphere fluid
confined between hard surfaces can be regarded as a good
approximation for entropy-dominated fluids: First, the pair
distributions of simple dense fluids exhibiting short-ranged
particle-particle interactions are dominated by the excluded
volume of the core region, which is contained in the present
model. Second, short-ranged particle-wall interactions are
dominated by the excluded volume at the interface, which
is again included in the model. Further support for the gen-
erality of the observed ordering phenomenon is given by
the following two examples: (i) anisotropic local densities
n(z1)g(z1, z2, R12) resembling those presented in Fig. 7 have
previously been reported for confined Lennard-Jones fluids18

and (ii) signatures in S(q⊥, q‖) of local ordering, similar to
those presented in Fig. 2, have been experimentally observed
in a system of charged colloidal particles confined between
charged surfaces.28 We, therefore, expect the local ordering-
disordering phenomenon as observed here to be an intrinsic
property of a large class of dense simple fluids under spatial
confinement.

Finally, we return to the computational effort alluded to
in the Introduction. In this work, we have determined the
anisotropic pair-distribution functions and the structure fac-
tor by application of integral-equation theory. In principle,
these functions could also be evaluated directly from particle
configurations obtained by grand-canonical Monte Carlo33 or
molecular dynamics40 simulations. However, even with the
computing power presently available, one would need im-
practicably long simulations in order to obtain a reasonable
statistical accuracy for the entire n(r1)g(r1, r2). Alternatively,
one can determine the pair distributions point-wise in simula-
tions using the Widom insertion method, provided the fluid is

not so dense that this method becomes too inefficient. Such a
Monte Carlo approach has previously been compared with an
integral-equation theory, similar to the one used here, in the
case of inhomogeneous electrolytes;41 for the corresponding
amount of pair-distribution data of essentially equal accuracy,
the integral-equation approach was found to be many thou-
sands times more efficient in CPU time than the simulations.

For the present work, the computations of all results pre-
sented were carried out in less than 10 h of CPU time (see
Sec. II for details). This included calculations of pair corre-
lations and density profiles for all surface separations from L
= 15.00σ to 1.00σ with a resolution �L = 0.05σ . Only a
small fraction of these results is presented here. Hence, we
see no genuine computational barriers precluding studies of
confined fluids, or more generally inhomogeneous fluids, at
the pair-distribution level. Similar conclusions were drawn in
a recent computational study of electrolytes confined between
two dielectric planar surfaces.22
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APPENDIX: ANISOTROPIC STRUCTURE FACTOR

The experimentally accessible anisotropic structure fac-
tor of Refs. 28 and 29 is given by

S(q) = 1 + 1

M

∫ ∫
n(r1)n(r2)h(r1, r2)eiq·(r1−r2)dr1dr2,

(A1)
where M denotes the total number of particles in the confin-
ing slit (M = NA, where A is the area of the wall surface).
In a more intuitive picture, S(q) probes the local density cor-
relation around a particle, averaged over all particles in the
slit. Formally, this is obtained by averaging over all possible
positions r2 across the confining channel, weighted with the
probability density p(r2) = n(r2)/M of finding the particle at
position r2. In practice, this is readily achieved by fixing the
coordinate system 0 in Eq. (A1) on the particle at position r2,
leading to

S(q) = 1 +
∫

〈n(r)h(r, 0)〉eiq·rdr, (A2)

where 〈 · 〉 is the average with respect to the probability den-
sity p and r = r12 = r1 − r2 is the position vector that starts
from the particle center. The functions n and h have here been
redefined and written with respect to the particle-centered co-
ordinate system, i.e., n(r + r2) ⇒ n(r) and h(r + r2, r2)
⇒ h(r, 0). The ensemble-averaged local density correlation
function can alternatively be written as

〈n(r)h(r, 0)〉 =
∫ (L−z−|z|)/2

−(L+z−|z|)/2
w(z2)n(z + z2)

×h(z + z2, z2, R)dz2, (A3)
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where the functions in the integrand are written with respect
to the coordinate system with origin at the midplane of the slit,
w(z2) = n(z2)/N is the appropriate weight function, r = (R,
z), and R = |R|. We note that the available space perpendicular
to the confining surfaces equals 2L rather than L, since the
largest possible out-of-plane distance between two particles
is L in both positive and negative directions.
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