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Abstract – First passage time theory is used to analyze the dissociation behavior of doublets of
colloidal particles. The first passage time distribution for particles interacting via a DLVO potential
is determined numerically. For strongly attractive particles the distribution becomes broad such
that the mean first passage time becomes a poor measure of the dynamics. In spite of this, use
can be made of the mean in a matching condition, which allows for reproducing distributions for
strongly attractive doublets by a semi-analytical solution for particles interacting only through
surface adhesion. The smallest eigenvalue in the analytical solution, which governs the long-time
asymptotic behavior of the first passage time distribution, is identified analytically for strongly
attractive pairs of particles. In addition, in this limit the distribution is shown to asymptote to
an exponential distribution, which means the dissociation process can be simply captured by an
on-off model, without sacrificing the effect of the surface chemistry, with a constant probability for
dissociation. This probability is simply related to the surface adhesive parameter and the separation
distance at which the pair of particles ceases to be considered a doublet.

Introduction. – Dissociation of colloidal clusters, including the redispersion of ag-
gregated colloids [1], detachment of particles from surfaces and other larger particles [2],
dispersion of dry solids to form colloidal species [3], is of wide-ranging importance. Some
examples where colloidal dissociation plays an important role include drug release from
tablet formulations [4] and subsurface transport of contaminants, filtration, bioremediation,
water treatment, and erosion [5–8], and there are substantial savings to be made related to
transportation and storage by having redispersible polymer latices [9]. However, whereas
the initial stage of colloidal aggregation, i.e. the dimerization of initially disperse particles,
is well understood [10,11], the same cannot be said for the correspondingly basic step of the
reverse process – the dissociation of pairs of colloidal particles.

In this work we are concerned with how the dissociation kinetics depends on the inter-
action potential between particles within a first passage time description of the dynamics.
With particles pairs being trapped initially in a potential well one may expect that the dis-
sociation kinetics should be a sensitive probe of the potential [12]. Here we will show that,
for all but the shortest times, the dissociation dynamics of reversibly aggregated doublets
can be captured quantitatively by mapping onto a simple system characterized by surface
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adhesion, which suggests that the details of the potential are in fact relatively unimportant
for this type of process.

First passage time theory. – Following Chan and Halle [12], we focus on dissociation
of particle pairs caught in the secondary minimum of a DLVO potential comprising screened
Coulomb and non-retarded van der Waals interactions [13]. Redispersion of colloidal aggre-
gates usually proceeds by dilution or dialysis to change the electrolyte and particle concen-
trations [1]. In this work we envision an experiment in which a reversibly aggregated pair of
colloidal particles is placed in a solvent with a prescribed ionic strength at infinite dilution.
In other words, the doublet is initially held together by a finite attraction and we then ask for
its lifetime. This situation can be modeled by first passage time theory [14], which deals with
diffusive motion of particles to a region of space, like a binding site, a boundary, or, as in this
case, a particular separation distance beyond which the particles no longer are considered a
doublet. For a pair of colloidal particles the appropriate statistical description is furnished
by the two-particle Smoluchowski equation, which is simplified by introducing the survival
probability Σ(τ |x) and first passage time distribution ̺(τ |x) = − ∂

∂τ
Σ(τ |x) [12,14], where τ

is time and x is the initial separation distance made dimensionless with the diameter and
relative diffusion coefficient. These describe the probability that a pair of particles, initially
at separation x, by time τ remain associated and dissociate for the first time, respectively.

Neglecting hydrodynamic interactions, the survival probability satisfies the following
adjoint Smoluchowski equation

∂

∂τ
Σ(τ |x) =

1

x2
eβu(x) ∂

∂x

(

x2e−βu(x) ∂Σ(τ |x)

∂x

)

(1)

where u(x) is the interaction potential and β = (kBT )−1. Numerical solutions of eq. 1
for Σ(τ |x), satisfying a no-flux boundary condition at a short separation xa and an ab-
sorbing boundary condition at a larger separation xb, are readily generated by implicit
finite-difference schemes [2]. Moreover, the mean first passage time can be expressed in
closed form as [12, 14, 15]

τ̄ =

∫ xb

x

dss−2eβu(s)

∫ s

xa

dtt2e−βu(t) (2)

but sometimes it is easier to determine τ̄ from the numerical solution to eq. 1 as the first
moment of the first passage time distribution, i.e. τ̄ =

∫

∞

0 τ̺(τ |x)dτ .
In fig. 1 first passage time distributions are shown for a series of DLVO potentials corre-

sponding to 1, 2, and 3 mM of monovalent salt. As the salt concentration is increased the
range of the repulsive part of the DLVO potential is progressively shortened and the depth
of the secondary minimum grows. The first passage time distributions have been determined
by starting the particles from an initial separation distance corresponding to the secondary
DLVO minimum and the particles are taken to be dissociated when they first reach a sepa-
ration where the potential is -1 kBT . The first passage time distribution starts from zero at
short times, which reflects the fact that particles cannot dissociate instantaneously. It grows
to reach a maximum from which it decays as it becomes increasingly likely that particles
have had sufficient time to escape from the potential well. As the well depth is made deeper
through the addition of salt the distribution becomes broader. For a DLVO minimum of
about 14 kBT the first passage time distribution is stretched over five decades in time. It
follows that for such broad distributions the mean first passage time provides an inadequate
description of the particle release dynamics [16], though this is often assumed because it
affords a simplified analysis [12]. In addition, for deep potentials the initial condition is not
particularly important. Assigning starting positions farther apart for the 3 mM case, i.e. the
deepest potential in fig. 1, leads to almost no change in the first passage time distribution
unless the particle pair is started off about half-way up the well. For such relatively wide
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Fig. 1: First passage time distribution as a function of time τ for varying ionic strengths, 1, 2,
and 3 mM, corresponding to the interaction potentials shown in the inset. The first passage time
distributions shown as solid lines employed an initial separation distance corresponding to the
secondary minimum of the DLVO potential, whereas the ones shown as dashed curves were started
from x = 1.0107, 1.0129, and 1.0160 (shown by arrows in the inset) all at 3 mM salt concentration.

separations the short-time dynamics changes; the distribution acquires a peak, which cor-
responds to a finite probability of the doublet separating without first having explored the
minimum of the potential. The long-time dynamics, however, remain the same regardless
of the starting separation.

Mapping onto surface-adhesive model. – For some simple potentials analytical
or semi-analytical solutions of eq. 1 can be obtained. A square-well interaction, with well
depth ǫ and dimensionless range λ, is such a case. Separation of variables applied to eq. 1
leads to an equation that conforms to Sturm-Liouville form and the following orthogonality
condition for two different eigenvalues is found

eβǫ

∫ λ

1

x2vm(x)vn(x)dx +

∫ xb

λ

x2vm(x)vn(x)dx = 0 (3)

The eigenvectors vm(x) are given by zeroth-order spherical Bessel functions of the first and
second kind and form part of the solution

Σ(τ |x) =

∞
∑

m=1

γme−α2

m
τvm(x) (4)
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involving the eigenvalues αm. The constants γm are determined by imposing the initial
condition Σ(0|x) = 1, corresponding to the particle pair initially being separated by distance
x. The square-well interaction can be further simplified by applying the limiting procedure
of Baxter [17], in which simultaneously λ → 1 and ǫ → ∞ while maintaining a finite second
virial coefficient. For this surface-adhesive interaction the structure of the solution is the
same as for the square-well model in eq. 4, but the characteristic equation governing the
eigenvalues simplifies to

tan [αm(xb − 1)] =
12τsαm

12τs − α2
m

(5)

where τs = limǫ→∞,λ→1 e−βǫ/(12(λ−1)) is the stickiness parameter. The eigenvalues in the
above were analytically bracketed and identified numerically by bisection.
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Fig. 2: First passage time distribution as a function of time τ for varying ionic strengths, as also
shown in fig. 1 (lines). Shown also (symbols) are first passage time distributions for the semi-
analytical solution of the Baxter model with τs determined so as to match the mean first passage
time, which results in, form top to bottom, τs = 0.133, 0.00505, and 0.000300. The absorbing
boundary condition has been applied at x = 1.0705 in both models.

Small values of τs imply strong adhesive interactions between spheres and for such situa-
tions the first passage time distribution from the semi-analytical solution in eqs. 4 and 5 take
on the same qualitative features as seen for the DLVO potential in fig. 1. This behavior sug-
gests that use can be made of the simpler Baxter solution through a mapping procedure. For

the Baxter potential the mean first passage time is given by τ̄ = 1
6

(

x2
b − 1

)

+ 1−xb

3xb

(

1 − 1
4τs

)

,

where the starting separation has been set to x = 1 and the last term in parenthesis is recog-
nized as the reduced second virial coefficient for the Baxter potential. Given the parameters
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of the DLVO potential, the mean first passage time is determined from eq. 2. The DLVO
case is now mapped onto the Baxter model by determining τs so that the mean first pas-
sage time for the DLVO potential is matched by the Baxter result. This mapping leads to
the results shown in fig. 2. Aside from the shortest-time dynamics the distribution for the
DLVO doublet can be described quantitatively through this simple mapping. This holds
even though the mean first passage time, being a single parameter, cannot be considered
anything but a poor measure of the escape dynamics at the higher salt concentrations. For
these strongly attractive Baxter doublets the first passage time dynamics is fully dominated
by the smallest non-zero root of eq. 5, which decreases towards zero as the adhesion is
increased. The second smallest eigenvalue, on the other hand, is bounded from below by
π(xb −1)−1. In addition, for strong adhesion, i.e. for small τs, the left-hand side of eq. 5 can
be linearized so that the following asymptotic expression for the smallest eigenvalue follows

α2
1 =

12τsxb

xb − 1
(6)

Furthermore, in this limit the survival probability tends to Σ(τ |1) ≈ e−α2

1
τ and the first pas-

sage time distribution behaves as ̺(τ |1) ≈ α2
1e

−α2

1
τ . This result furnishes a near analytical

prediction, free of adjustable parameters, of the dissociation process, which becomes more
accurate the deeper the potential well.

A Simple Algorithm for Peptization (ASAP). – Physically, exponential distribu-
tions such as these are waiting time distributions of Poisson processes in which the dynamics
is characterized by a constant probability. A stochastic realization of the long-time asymp-
totic dynamics for the strongly attractive particles can be constructed by taking particle
pairs as being in one of two states, either associated or dissociated. In this simple algorithm
ntot initial doublets are subjected to a sequence of detachment attempts. Each attempt will
be governed by a probability p for detachment. After the first attempt, which is taken as a
random number between 0 and 1 being smaller than p, ntotp clusters will have dissociated.
The ntot(1 − p) intact clusters will yield ntotp(1 − p) dissociated clusters by the second
attempt. After the ith attempt, ntot(1 − p)i−1p clusters will dissociate for the first time.
Next, the following identifications are made

p = α2
1∆τ τ = i∆τ (7)

where α1 is the smallest eigenvalue of the characteristic equation in eq. 5 and a time step
∆τ has been associated with the sequence of attempts. For small ∆τ the distribution
ntot(1 − p)i−1p asymptotes to ntotα

2
1∆τe−α2

1
τ . It follows that the exponential distribution

can be quantitatively reproduced by this simple two-state model if a sequence of random
numbers are generated and the instance i is recorded when the first random number below
p occurs. This is repeated ntot times to generate a histogram comprising the number of
detachments at a particular time i∆τ , which is brought in quantitative agreement with
theory by dividing the number of detachments n(τ) by ntot and ∆τ .

The result of applying this algorithm is shown in fig. 3, where it is compared to the first
passage time distribution from the numerical solution of eq. 1 for a 10 kBT -deep DLVO
potential. As seen, the two-state model, which incorporates the mapping of the DLVO
potential onto the Baxter model based on matching of the mean, in this case τ̄ = 0.522,
captures the solution quantitatively except for the short lag period at the earliest times.
When sampling such slowly decaying dynamics it is more natural to use logarithmic binning
in time. Figure 4 shows an example where the first passage time distribution has been
determined by Brownian dynamics simulation [4]. The mean first passage time has been
determined from which a stickiness parameter follows and the lowest eigenvalue is determined
either numerically (eq. 5) or analytically (eq. 6). A time step ∆τ is selected, in this case
four orders of magnitude larger than in the simulation, and the detachment probability in
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Fig. 3: First passage time distribution for the DLVO potential shown in the inset as obtained
numerically by solving eq. 1 (line) and from the two-state stochastic model (symbols) with τs =
0.01022, which results in α

2

1 = 1.919, and ∆τ = 1 · 10−4.

eq. 7 is determined. The distribution in fig. 4 has been sampled logarithmically along the
time axis and because of this it becomes the linearly sampled distribution scaled by τ [18],
which is the reason the distributions in figs. 3 and 4 appear different. For the same reason
the discrepancy at very short times, seen in fig. 3, cannot be observed in fig. 4.

Conclusions. – In summary, for strongly associated particle pairs distributions of first
passage times become broad and simply considering the mean does not do the dissociation
dynamics justice. The dynamics for all but the shortest times is insensitive to the details of
the potential, but it remains sensitive to an overall measure of the attraction. This property
can be exploited to capture the dynamics quantitatively by a surface-adhesive model by
requiring that the mean first passage time be matched. For strong attractions the first
passage time distribution tends to an exponential distribution, which allows for formulating
a simple coin-flip model for the dissociation dynamics. This is expected to be valuable as a
starting point for developing simplified algorithms for dissociation of more complex clusters.
However, experiments [19] and computer simulations [4, 20] show that in such cases cluster
reorganizational moves need to be incorporated.
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Fig. 4: Comparison between the first passage time distribution for the same DLVO potential as in
fig. 3, this time determined by Brownian dynamics simulation (symbols) and the two-state model
described in the text (line).

Note that this is a preprint. For the published version, see EPL 104, 18005 (2013), doi:
10.1209/0295-5075/104/18005, available at http://iopscience.iop.org/0295-5075/104/1/18005/article.
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