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Abstract. Consider the interchange process on a connected graph G = (V, E) on
n vertices. I.e. shuffle a deck of cards by first placing one card at each vertex of
G in a fixed order and then at each tick of the clock, picking an edge uniformly at
random and switching the two cards at the end vertices of the edge with probability
1/2. Well known special cases are the random transpositions shuffle, where G is the
complete graph, and the transposing neighbors shuffle, where G is the n-path. Other
cases that have been studied are the d-dimensional grid, the hypercube, lollipop
graphs and Erdős-Rényi random graphs above the threshold for connectedness.

In this paper the problem is studied for general G. Special attention is focused
on trees, random trees and the giant component of critical and supercritical G(N, p)
random graphs. Upper and lower bounds on the mixing time are given. In many
of the cases, we establish the exact order of the mixing time. We also mention the
cases when G is the hypercube and when G is a bounded-degree expander, giving
upper and lower bounds on the mixing time.

1. Introduction

Card shuffling has, for several decades now, been one of the major playgrounds
for developing methods for the study of mixing rates for Markov chains. One of the
first card shuffling techniques to be studied was the random transpositions shuffle,
where at each (discrete) time, two positions in the deck are chosen uniformly at
random and the cards at those positions are switched with probability 1/2. (Strictly
speaking, this is the lazy version of the random transpositions shuffle.) If the deck
consists of n cards and starts out from a fixed permutation, then an easy coupon
collector’s argument shows that the mixing time in total variation is at least n log n.
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Diaconis and Saloff-Coste (1993) proved that this is also sufficient, not only in total
variation, but also in L2. Matthews (1988) later proved, via a strong uniform time
argument, that this is also sufficient in separation. Hence the total variation norm
exhibits a sharp threshold at time n log n and hence τmix = (1 + o(1))n log n.

Another shuffle that was studied in the early days, is the transposing neighbors
shuffle, where at each time a position i ∈ [n−1] in the deck is chosen uniformly and
the card in that position is switched with the card in position i+1 with probability
1/2. Aldous (1983) showed that the mixing time is at most of order n3 log n and at
least of order n3. Much later Wilson (2004) introduced an important technique for
lower bounding mixing time. This allowed him, among other things, to establish
that the true order of mixing for transposing neighbors is n3 log n. Wilson also
considered neighbor transpositions on a grid and on the hypercube, proving that
the order of mixing on the

√
n×√

n grid is n2 log n and that the order of the mixing
time on Zd

2 is at least n log2 n, where n = 2d. Wilson conjectured that n log2 n is
the correct order of mixing on the hypercube. We partially confirm this by showing
that mixing time is O(n log3 n).
Remark on notation. Consider two expressions f(n) and g(n) as n → ∞. We will
adopt the notation f(n) = o(g(n)) when f(n)/g(n) → 0. Writing f(n) = O(g(n))
means that that for some constant C < ∞, f(n) ≤ Cg(n) for all n. We write
f(n) = Ω(g(n)) for g(n) = O(f(n)) and f(n) = ω(g(n)) for g(n) = o(f(n)).
We will also use the abbreviation ”whp” for ”with high probability”. I.e. as a
parameter, which is understood from the context, tends to ∞, an event that occurs
with probability 1 − o(1) is said to occur whp.

In the light of the above, it appears natural to consider neighbor transposition
shuffling on a general connected n-vertex graph G = (V, E), i.e. the card shuffle
that at each time chooses uniformly at random an edge e ∈ E and with probability
1/2 switches the two cards at the end vertices of e. Indeed, this general setup was
considered by Aldous and Fill (2002), Chapter 14, but their analysis did not go
further than what we have already mentioned, in terms of analyzing the process on
particular G’s with respect to mixing time. Aldous and Fill introduced the name
interchange process for neighbor transposition shuffling on general graphs. The
interchange process has attracted a fair amount of interest in recent years. The
most prominent result is perhaps the proof by Caputo, Liggett and Richthammer
in Caputo et al. (2010) of the Aldous spectral gap conjecture (see e.g. David Aldous
homepage), which states in our setting, that the spectral gap of the interchange
process on G equals the spectral gap of simple random walk on G times n for all
G. It is not clear if this has any direct relation to the mixing time results in this
paper. As will be seen in our main result, Theorem 1.4 below, the relation between
the mixing times of the interchange process and of random walk is usually not the
same as for the spectral gap. Indeed, much of our work will go into proving that in
many cases mixing time for the interchange process exceeds the mixing time (and
the spectral gap) of simple random walk by a factor n logn. More on this will follow
in the remark after Theorem 1.4.

A recent contribution was given by Erikshed (2011). He considered the inter-
change process on lollipop graphs with Θ(n) vertices in the clique as well as in the
handle and proved that τmix = Θ(n4 log n). The following result establishes that
this is the highest possible order of mixing for the interchange process on any graph.
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Proposition 1.1. Consider the interchange process on G = (V, E). Let m = |E|
and ρ be the radius of G. Then

τmix ≤ (1 + o(1))8mρn logn.

Erikshed also considered the interchange process on the Erdős-Rényi G(n, p)
random graph for p > log n/n, the threshold for connectedness. He proved that
whp τmix = Ω(n log n) and when np = Ω(nδ), δ > 0, then this is the true order of
mixing.

In this paper, we consider shuffling on many other graphs. The following general
result will be our main tool for lower bounding mixing time.

Proposition 1.2. Assume that 1− γ, γ = o(1/n), is the second largest eigenvalue
for the motion of a single card under the interchange process on G. Let ξ : V → R

be a corresponding eigenvector with ‖ξ‖2 = 1 and assume that ‖ξ‖1 ≥ na for some
a > 0. Then

τmix = Ω(γ−1 log n).

The proof builds on Wilson’s technique, introduced in Wilson (2004) (and de-
veloped further in Wilson (2003); Jonasson (2006a,b)). As in Wilson’s technique,
we use the eigenvector to construct a test function, but since we will not know
the precise form of the eigenvector, we bound the variance of the test function in
a different way. The condition that the L1-norm of the second eigenvector is not
too low is a mild restriction. An eigenvector corresponding to the second largest
eigenvalue of the single-card chain, is also known as a Fiedler vector of the graph
Laplacian, L(G) (in honor of the pioneering work of Fiedler, Fiedler (1973, 1975))
among graph theorists. The Fiedler vector has turned out to be of significance in
graph theory, most prominently in graph partitioning. Intuitively, the L1-norm of
a Fiedler vector should be of order

√
n and I conjecture that it is at least of order

na for all graphs. However, even though many facts about the structure of Fiedler
vectors are known, see e.g. Bıyıkoğlu et al. (2007), I have not been able to find a
result of this kind. Nevertheless, it is easy to establish the required lower bound on
the L1-norm in most of our applications;

Lemma 1.3. Let G = (V, E) be an n-vertex connected graph. Suppose that ξ :
[n] → R is an eigenvector of L(G) corresponding to an eigenvalue κ = O(n−b) for
some b > 0 (i.e. ξ is an eigenvector for the random walk of a single card under the
interchange process on G, corresponding to the eigenvalue 1−κ/2m) and such that
‖ξ‖2 = 1. Then ‖ξ‖1 = Ω(na) for some a > 0.

Our main result is the following, giving (bounds for) the mixing time on several
different graphs. Here τmix denotes the mixing time in terms of total variation and
τ̂ is the convergence time in L2. The precise definitions will appear in Section 2.

Theorem 1.4. Consider the interchange process on G = (V, E). Set n := |V |.
(a) Let d = Θ(log n) and let G be the first d generations of a rooted r-regular

tree (i.e. when V consists of all vertices within distance d of a distinguished
vertex of an r-regular tree), 3 ≤ r = Θ(1). Then

Ω(n2 log n) = τmix ≤ τ̂ = O(n2 log2 n).

This also goes whp when G is the first d generations of a supercritical
Galton-Watson tree, with finite variance offspring distribution, conditioned
to survive.
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(b) Let G be a uniform random (labelled) tree on n vertices. Then whp τmix

and τ̂ are both Θ(n5/2 log n). This also goes whp for the d = Θ(n1/2) first
generations of the incipient infinite tree of a critical Galton-Watson process
whose offspring distribution has finite variance.

(c) Let G be the giant component of a G(N, (1 + ε)/N) graph, where N =
Θ(n3/2) and ε = O(N−1/3). Then whp τmix and τ̂ are both Θ(n5/2 log n).

(d) Let G be the giant component of a G(N, (1 + ε)/N) graph where N = ε−1n
and ω(N−1/3) = ε = o(1). Then whp

τmix = Θ(nε−3 log2(ε2n) log n).

The same thing holds for τ̂ .
(e) Let G be the giant component of a G(N, (1 + ε)/N) graph where N = Θ(n)

and ε = Θ(1), Then whp τmix and τ̂ are both Θ(n log3 n).
(f) When G is a bounded degree expander, then Ω(n log n) = τmix ≤ τ̂ =

O(n log3 n).
(g) When G = Zd

2 , d = log2 n, then Ω(n log2 n) = τmix ≤ τ̂ = O(n log3 n).

Remark. In (b)-(e), the mixing time of the interchange process on G is of the
order n log n times the mixing time of random walk on G, (see Benjamini et al.
(2006); Ding et al. (2012, 2009); Fountoulakis and Reed (2008); Nachmias and
Peres (2008) for the mixing time of random walk on these graphs). I believe this
to be true for (a) as well. On the other hand, in (f) the true mixing time appears
to be n log n which is Θ(n) times the mixing time for random walk. In (g), the
mixing time for random walk is d log d, so the ratio between the two mixing times
is between Θ(n logn/ log log n) and Θ(n log2 n/ log log n). It would be interesting
to know what possible relationships one can have between the two mixing times. It
would also be interesting to compare mixing times for the interchange process with
mxing times for the symmetric exclusion process on the same graphs, for which
new results can be found in Oliveira (2009).

The rest of the paper is organized as follows: the basic concepts are introduced
in Section 2 and the proofs are given in Section 3.

2. Preliminaries

Let S be a finite set and ν a signed measure on S with ν(S) = 0 and let π be a
probability measure on S. For p ∈ [1,∞), the Lp-norm of ν with respect to π as

‖ν‖p =
(

∑

i∈S

∣

∣

∣

ν(i)

π(i)

∣

∣

∣

p

π(i)
)1/p

.

The total variation norm of ν is given by

‖ν‖TV =
1

2

∑

i∈S

|ν(i)| = max
A⊆S

ν(A).

By Cauchy-Schwarz, 2‖ν‖TV = ‖ν‖1 ≤ ‖ν‖2.
When {Xt} is an irreducible aperiodic Markov chain on S, with stationary dis-

tribution π, we define the mixing time as

τmix = min
{

t : ‖P(Xt ∈ ·) − π‖TV ≤ 1

4

}

.
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The convergence time in L2 is given by

τ̂ = min
{

t : ‖P(Xt ∈ ·) − π‖2 ≤ 1

2

}

.

It follows that τmix ≤ τ̂ .
All upper bounds in this paper rely on the comparison technique of Diaconis

and Saloff-Coste (1993). Let {Xt} and {Yt} be two random walks on Sn generated
by the symmetric probability measures µ and µ0 respectively. Let E and E0 be
the supports of µ and µ0 respectively. For each y ∈ E0, choose a representation
y = x1x2 . . . xk, xi ∈ E and k odd, and write |y| = k. For each x ∈ E and y ∈ E0,
let N(x, y) be the number of times that x appears in the chosen representation of
y. Define

A∗ = max
x∈E

1

µ(x)

∑

y∈E0

|y|N(x, y)µ0(y).

Then the following is a special case of Lemma 5 of Diaconis and Saloff-Coste (1993)

Lemma 2.1. The distance in L2 from stationarity of {Xt} and {Yt} respectively
relate in the following way.

‖P(Xt ∈ ·) − π‖2
2 ≤ n!e−bt/A∗c + ‖P(Ybt/A∗c ∈ ·) − π‖2

2.

The most important consequence of the lemma is that, provided that τ̂0 =
Ω(n log n),

τ̂ = O(A∗τ̂0),

where τ̂ and τ̂0 are the convergence times in L2 of the two chains. Of course,
one also needs a chain {Yt} to compare with for which τ̂0 is known. When it
comes to card shuffling, the by far most common chain to compare with is the
random transpositions shuffle. The following sharp result is due to Diaconis and
Shahshahani (1981).

Lemma 2.2. Let {Yt} be the random transposition shuffle. There exists a constant
C < ∞ such that for t = bn(log n + c)c,

‖P(Yt ∈ ·) − π‖2
2 ≤ Ce−2c.

Before starting with the proofs, recall the extremal characterization of eigenval-
ues. For our purposes it suffices to recall the special case when A is the symmetric
transition matrix of an irreducible aperiodic Markov chain on the finite state space
S. Then with κ2 denoting the second largest eigenvalue of A, we have for the
spectral gap γ := 1 − κ2

γ = min
{

ξT (I − A)ξ :
∑

v∈S

ξ(v) = 0, ‖ξ‖2 = 1
}

and a vector ξ for which the minimum is attained is eigenvector for κ2. In this
paper this will be applied on the case where A is the transition matrix for the
motion of a single card under neighbor transpositions on G = (V, E). The neighbor
transpositions shuffle on G is the random walk on the symmetric group Sn of
permutations of n cards, whose state changes from time t to time t + 1 in the
following way. An edge e ∈ E is chosen uniformly at random, independently of
choices made at other times. Then, by another independent choice, the state at
time t + 1 is the composition of the state at time t with (i j), where i and j are
the cards at the end vertices of e at time t, with probability 1/2 and identical with
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the state at time t with probability 1/2. This entails that any given single card
makes a random walk on V with the behavior that given that the card is at vertex
u at time t, it will at time t + 1 be at u with probability 1 − du/(2|E|) and at v
with probability 1/(2|E|) for each neighbor v of u. Hence, when A is the transition
matrix for the single card random walk, we have

ξT (I − A)ξ =
1

2m

∑

v

ξ(v)
(

dvξ(v) −
∑

u∼v

ξ(u)
)

=
1

2m

∑

{u,v}∈E

(ξ(u) − ξ(v))2

where dv is the degree of vertex v and u ∼ v denotes that {u, v} ∈ E.

3. Proofs

Proof of Proposition 1.1. This is a straightforward application of Lemma 2.1
and Lemma 2.2. Let {Xt} be the interchange process on G and let {Yt} be the
random transpositions shuffle. Let y = (u v) ∈ E0 be an arbitrary transposition.
Let w0w1 . . . wr be a shortest path between u and v (where w0 = v and wr = v).
Then

(u v) = (w0 w1)(w1 w2) . . . (wr−2 wr−1)(wr−1 wr)(wr−2 wr−1) . . . (w0 w1).

Hence |y| ≤ 2r − 1 < 2ρ and N(x, y) ≤ 2. Since µ(x) = 1/(2m) for any x ∈ E,
x 6= id, Lemma 2.1 entails that τ̂ ≤ (1 + o(1))8mρτ̂0), which by Lemma 2.2 is
(1 + o(1))8mρn log n). �

Proof of Proposition 1.2. Let X0 be a fixed starting state and let ξ : V → R

be an eigenvector corresponding to the eigenvalue 1 − γ with
∑

v ξ(v)2 = 1. This
means that if Xt is the state of the deck and X i

t is the position of card i at time t,
then

E[ξ(X i
t+1)|Xt] = (1 − γ)ξ(X i

t ).

Let φ(Xt) =
∑

i ξ(X i
t ) where the sum is taken over the i’s for which ξ(X i

0) >
0. Then φ is an eigenvector for (the transition matrix of) {Xt}. By assumption
φ(X0) ≥ na. We claim that the terms are negatively correlated. Indeed, writing
∆i = ξ(X i

t) − ξ(X i
t−1), we have

E[∆i∆j |Xt−1] ≤ 0

since either ∆i or ∆j is 0 unless card i and card j are adjacent in Xt and the edge
between them gets chosen for the update, in which case ∆i∆j ≤ 0. Note also that
E[∆i|Xt−1] = −γξ(X i

t−1). Hence

E[ξ(X i
t )ξ(X

j
t )] = E[E[(ξ(X i

t−1) + ∆i)(ξ(X
j
t−1) + ∆j)|Xt−1]]

≤ (1 − 2γ)E[ξ(X i
t−1)ξ(X

j
t−1)].

By induction,

E[ξ(X i
t )ξ(X

j
t )] ≤ (1 − 2γ)tξ(X i

0)ξ(X
j
0).

Similarly

E[ξ(X i
t)]E[ξ(Xj

t )] = (1 − γ)2tξ(X i
0)ξ(X

j
0) ≥ (1 − 2γ)tξ(X i

0)ξ(X
j
0).
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Hence Cov(ξ(X i
t ), ξ(X

j
t )) ≤ 0. Using this we have that

Var(φ(Xt)) ≤
∑

i

E[ξ(X i
t)

2] < 1.

Since, by assumption, E[φ(Xt)] = (1 − γ)tφ(X0) = Ω(na−b) for t := bγ−1 log n,
0 < b < a, Chebyshev’s inequality entails that

P(φ(Xt) <
1

2
na−b) = o(1).

On the other hand, if X∞ denotes a deck at uniformity, we have Var(φ(X∞)) < 1
and E[φ(X∞)] = 0 and hence

P(φ(X∞) >
1

2
na−b) = o(1).

�

Proof of Lemma 1.3. Assume for contradiction that ‖ξ‖1 = O(na) for all a > 0.
Then maxv ξ(v) = Ω(n−a) for all a > 0 (assuming that we have chosen ξ so that
maxv ξ(v) ≥ −minv ξ(v)). By assumption and the extremal characterization of
eigenvalues

O(n−b) =
∑

u∼v

(ξ(u) − ξ(v))2

so in particular maxu∼v |ξ(u) − ξ(v)| = O(n−b/2). Then, if v0 is chosen so that
ξ(v0) = Ω(n−b/8), all vertices v within distance n3b/8/2 of v0 have ξ(v) ≥ n−b/8/2.
If the diameter of G is less than n3b/8/2, this implies that ξ(v) > 0 for all ξ, a
contradiction since

∑

v ξ(v) must be 0. If the diameter is at least n3b/8/2, then we

have ‖ξ‖1 ≥ n3b/8/2 · n−b/8/2 = nb/4/4, a contradiction. �

Proof of Theorem 1.4(a). The upper bounds follow immediately from Proposi-
tion 1.1.

For the lower bounds, consider first the binary tree. Define η : V → R by
η(v) = 0 when v is the root, η(v) = 1 − 2−k when v is at distance k from the
root, in the left third of the tree, η(v) = −(1− 2−k) for vertices at distance k from
the root, in the right third of the tree and η ≡ 0 on the middle third. Expressed
differently, η(v) is the electric potential at v when we apply the potential +1 to the
leafs of the left third of the tree and −1 to the vertices of the right third and regard
all edges as unit resistors.

Then
∑

v η(v) = 0 and
∑

v η(v)2 = Θ(n). Also, since η is harmonic off the leafs,
dvη(v) − ∑

u∼v η(u) = 0 when v is not a leaf. For leafs v, we have

η(v)
(

dvη(v) −
∑

u∼v

η(u)
)

<
4

2d
<

8

n
.

Hence

γ ≤ nΘ(1/n)

mΘ(n)
= Θ(1/n2).

Plugging this into Proposition 1.2 and using Lemma 1.3 gives

τmix = Ω(n2 log n)

as desired.
We omit the analogous proof for r > 3, so let now G be a supercritical Galton-

Watson tree conditioned on survival, where µd = Θ(n) and µ > 1 is the expectation
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of the offspring distribution. Let u be a vertex with at least two children whose
progeny survives, in the first generation where such a vertex exists. Let u1 and u2

be two arbitrarily chosen such children of u and let A1 and A2 be the sets leafs in
the progeny of u1 and u2 respectively. Let η(v), v ∈ V , be the electric potential in
v, with boundary condition η ≡ +1 on A1 and η ≡ −1 on A2. Using well-known
facts about Galton-Watson processes, we have whp that, |A1| = Θ(µd) = Θ(n),
|A2| = Θ(n) and that the effective resistance between A1 and A2 is Θ(1). Hence
the total current flowing through edges incident to vertices of A1 and A2, is Θ(1),
i.e. the sum of the absolute potential differences over these edges is Θ(1). Since η
is harmonic off A1 ∪ A2, we get

∑

v

η(v)
(

dvη(v) −
∑

u∼v

η(u)
)

= Θ(1).

We cannot, however, plug this into Proposition 1.2, since typically
∑

v η(v) is not
0. However replacing η with φ := η−η, does not change the expression. Also, since
|Ai| = Θ(n), it is clear that

∑

v φ(v)2 = Θ(n). As above, this gives γ = Θ(1/n2)
and hence, by Proposition 1.2 and Lemma 1.3,

τmix = Ω(n2 log n).

�

Proof of Theorem 1.4(b). Let first G = (V, E) be the first d generations of the
incipient infinite tree of a critical Galton-Watson process. It is well-known that
whp, G contains Θ(d2) vertices, i.e. d = Θ(n1/2).

The upper bound on τmix now follows from Proposition 1.1.
Let A be the set of leafs at distance d from the root. By Fujii and Kumagai

(2008), Proposition 1.1 and Croydon and Kumagai (2008), Lemma 3.1, it follows
that whp the effective resistance between the root and A is Θ(n1/2). Let u be
a vertex closest to the root for which at least two children are connected to A.
Pick arbitrarily two such children, u1 and u2 and let Ai be the set of vertices of
A which are in the progeny of ui, i = 1, 2. Whp |Ai| = Θ(d), see e.g. Croydon
and Kumagai (2008), Proposition 2.6, (since the finite variance condition on the
offspring distribution makes sure that the survival probability up to generation d of
the unconditioned Galton-Watson process is Θ(1/d)), and the effective resistance
between A1 and A2 is at least Θ(d). Apply the potential +1 to A1 and −1 to A2 and
let η(v) be the potential at v, v ∈ V . Letting φ = η − η, we get

∑

v φ(v)2 = Θ(n)
and

∑

v

(

dvφ(v) −
∑

u∼v

φ(u)
)

= Θ(1/n1/2)

since the total current flowing into A2 is Θ(n−1/2). Hence γ = Θ(1/n5/2), so by
Proposition 1.2,

τmix = Ω(n5/2 log n).

Now we turn to the random tree, G, on n vertices. It is well-known that the
diameter of G is whp Θ(n1/2), so the upper bound again follows from Proposition
1.1.

By Aldous and Pitman (1998), Proposition 1, the law of G is identical to the
law of the Galton-Watson tree with Poisson(1) offspring distribution, conditioned
to contain exactly n vertices. Let d = Cn1/2. Whp G contains Θ(n1/2) vertices
at distance d from the root for small enough C. Fix u, u1 and u2 as above, such
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that u is a vertex closest to the root for which at least two children are connected
to level d. Continue to mimic the above argument, letting Ai be the set of vertices
at level d in the progeny of ui. Define η and φ as above. Then

∑

v φ(v)2 = Θ(n)
whp and by Luczak and Winkler (2004), G is stochastically dominated by the
incipient infinite cluster of the same Galton-Watson process. (Indeed, it is shown in
Luczak and Winkler (2004) that the trees conditioned on having exactly n vertices,
n = 1, 2, . . ., is stochastically increasing in n. This is shown for binomial(k, 1/k)
offspring distribution for any k, so the Poisson(1) offspring distribution follows as
a limiting case.) Hence it follows that the effective resistance between A1 and A2

is whp Θ(n1/2). The proof is now completed by an appeal to Proposition 1.1. �

Proof of Theorem 1.4 (c). Let G = (V, E) be the giant component of the Erdős-
Rényi random graph G(N, (1 + ε)/N), ε = O(1/N1/3). It is a classical result that
whp |V | = Θ(N2/3). It is also known that G is a tree, uniformly distributed among
all trees on V , with a probability bounded away from 0 and 1. It is easy to see that
if G is not a tree, then it contains whp only O(1) cycles. (For detailed results on the
giant component and random walks on the giant component for these parameters,
see Nachmias and Peres (2008).) Hence the results follow from the proof of (b)
with only very minor modifications. �

Before the proof of (d) and (e), we introduce a random graph model due to Ding
et el. Ding et al. (2009) (for ε = o(1/N1/4)) and Ding et al. (2010) (extended version
for ε = o(1)) and further explored in Ding et al. (2012). The model is contiguous to
the giant component of the G(N, (1 + ε)/N) model, ω(1/N1/3) = ε = o(1), in the
sense that any whp property for one is also whp for the other. The model is given
by a three-step procedure as follows. Here µ is the conjugate of 1 + ε, i.e. µ < 1
and µe−µ = (1 + ε)e−(1+ε).

(1) Let Γ be a normal random variable with mean 1 + ε − µ and variance
1/(εn). Let Du, u ∈ [N ], be iid Poisson(Γ) random variables, conditioned
that

∑

u:Du≥3 Du is even. Let Mk, k = 1, 2, . . ., be the number of u such

that Du = k and M =
∑

k≥3 Mk. Select a random multigraph, H , on
M vertices uniformly among all multigraphs with Mk vertices of degree k,
k ≥ 3.

(2) Let K be the multigraph obtained from H by replacing each edge e ∈ E(H)
with a path of independent geometric(1− µ) length.

(3) Attach to each vertex v ∈ V (K) an independent Galton-Watson tree with
Poisson(µ) offspring distribution (with v as its root).

Note that the variance of the normal distribution in (1) is of smaller order than
the square of the mean, so whp Γ = Θ(ε). This entails that H contains whp Θ(ε3N)
vertices and edges and hence K has whp ε2N vertices.

Proof of Theorem 1.4(d). This proof is fairly long, so we split into four parts:
lower bound (general), lower bound for ε−1 of polynomial order, lower bound for
ε−1 of subpolynomial order and upper bound.

Lower bound. Write F for the graph constructed from (1)-(3) above. We start
with the lower bound. Write µ = 1 − δ and note that δ = (1 + o(1))ε. Let also

k0 = ε−1 log(ε3N/a)
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where a is a constant independent of N and ε. Consider a Poisson(µ) tree. Let Zr

be the size of the r’th generation and T the total size of such a tree. Condition
now on that such a tree survives for at least k generations, by conditioning on the
backbone of the tree, i.e. the leftmost path of length k, P = v0v1 . . . vk from the root
to generation k. (To properly make sense of the word ”leftmost”, associate with
each vertex, v, of a Poisson(µ) tree, an independent Poisson process of intensity
µ on the unit interval and let v have one child per point of this process. Then
order the children from left to right according to the positions of their respective
Poisson points.) Then from each vi on the backbone, an independent tree emanates,
having Poisson(µ) offspring in all but the first generation, for which the offspring
is Poisson(µ(1 − Xi)), where Xi is the position in the unit interval of the Poisson

point associated with vi. Let Z
(i)
r be the size of generation r and T (i) the total size

of the tree emanating from vi, including vi so that T =
∑k

r=0 T (i). Then

E[Z(i)
r |P ] = (1 − Xi)µ

r

and

E[T (i)|P ] = (1 − Xi)

∞
∑

r=0

µr =
1 − Xi

δ
.

Since P is whp such that Xi is less than, say, 2/3 for more than half the i’s, we get
whp

E[Zk|P ] =
k

∑

i=0

E[Z
(i)
k−i|P ] = Θ(1/δ) (3.1)

and hence E[T |P ] = Θ(k/δ). By (3.1)

P(Zk > 0) =
E[Zk]

E[Zk|Zk > 0]
=

Θ((1 − δ)k)

Θ(1/δ)
= Θ

(

δ(1 − δ)k
)

which is at least C/(ε2N) for any large C if k = k0 and the constant a in the
definition of k0 is small enough. Since there are whp Θ(ε2N) vertices in K, at
least two of the trees, attached to K in step (3) above, will whp survive for k0

generations.
Also, by the standard formula for the variance of the generation sizes of a Galton-

Watson tree (modified for the first generation), whp,

Var(Z(i)
r |P ) ≤ µr

δ
.

Using that

Cov(Z(i)
r , Z(i)

s |P ) ≤ (Var(Z(i)
r |P )Var(Z(i)

s |P ))1/2 ≤ µr/2µs/2

δ
,

we get

Var(T (i)|P ) ≤ 1

δ2

so that

Var(T |P ) ≤ k0

δ2
.

Hence by Chebyshev’s inequality, we have whp

T = Θ(k0/δ) = Θ(ε−2 log(ε3N)).

Now pick uniformly at random, two attached trees that survive up to generation
k0 and fix in each of them a leaf at distance at least k0 from the root of it’s
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tree. Apply the potential +1 to one of these leafs and −1 to the other. Let η(v),
v ∈ V (F ), be the resulting potential at v and, again, φ = η − η. By the above
considerations,

∑

v φ(v)2 = Ω(ε−2 log(ε3N)). We also get that
∑

v

η(v)
(

dvη(v) −
∑

u∼v

η(u)
)

= Θ(1/k0).

Plugging into the extremal characterization of the second eigenvalue gives, for the
random walk of a card,

γ−1 = Ω
(

nε−3 log2(ε2n)
)

since whp n = εN .

Lower bound for ε−1 of polynomial order. Since we here assume that ε−1 =
Ω(na) for some a > 0, we appeal to Lemma 1.3. By Proposition 1.2, it then follows
that

τmix = Ω
(

nε−3 log2(ε2n) log n
)

,

establishing the desired result.

Lower bound for ε−1 of subpolynomial order. Here more work is needed,
since unfortunately, I have not been able to establish the required condition on
the L1-norm of the second eigenvector in Proposition 1.2. Nevertheless, a lower
bound of Θ(nε−3 log2(ε2n) log n) = Θ(nε−3 log3 n) can be established, using other
arguments. Note that by the above construction, F contains Θ(nε) = Ω(nb), b < 1,
trees attached in (3). By the above arguments, whp, at least, say n2/3 of these trees
will survive up to generation αε−1 log n and contain at least αε−2 log n vertices,
provided that α is taken sufficiently small. For each such tree, Ti, i = 1, . . . , n2/3,
pick a vertex h = hi half way (or half way plus 1/2) between the root, r = ri, of the
tree and a leaf, l = li, most distant from r. Consider the random walk performed
by the card, c = ci, that starts in h. For vertices u ∈ Ti, let τu be the first time that
c visits u. By the correspondence between random walks and electrical networks,
P(τl < τr) = 1/2. Hence, the probability that c walks to l and back to h at least
k times before it visits r, is 2−k > 2n−1/3 for k = (1/3) logn. Write A = Ai for
this event. Note also for later, that the probability that c visits l more than 2 log n
times before it visits r is o(1/n), so whp this will not happen for any card in the
deck.

Conditioned on A, each of the k return trips to l takes an independent time,
which is the sum of the time taken to reach l and the time to go from l back to h.
The conditional expectation of the first of these terms is affected by the fact that
we condition on hitting l before r. The distribution of the second term however, is
unaffected by conditioning on A, since a random walk from l must necessarily visit
h before it visits r. Hence the expected time of a return trip is bounded from below
by Elτh (in standard notation). By the hitting time formula from Haiyan and Fuji
(2004), the tree version of Tetali’s Tetali (1991) general hitting time formula, an
exact expression for Elτh is

Elτh = m
(

d(l, h) + 2
∑

x∈P

|E(Gx)|d(x, h)
)

.

Here d(u, v) is the distance between u and v, P is the set of vertices of the unique
path between l and h and Gx is component containing x of the graph obtained
from F by removing the neighbors in P of x. From the above arguments, it follows
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that whp a non-vanishing fraction of the vertices in x ∈ P have |E(Gx)| ≥ βε−1

(for sufficiently small β) and are at distance ≥ (α/3)ε−1 log n from h. Hence, whp,

Elτh = Θ(mε−3 log2 n).

This entails that El[τr|A] = Θ(nε−3 log3 n) (since m = Θ(n) whp). We also have

Varh(τr|Ai) =
1

3
logn Var(C(h, l)|τl < τr)) + Varvi

(τr)

where C(u, v) is the commute time between u and v, i.e. the time taken for a return
trip from u to v and back. Let h∗ be the vertex which maximizes EC(x, l) over
x ∈ Ti. Here it is important to point out that here and in what follows until the
order of Varh(τr|A) is established, we consider the random walk restricted to Ti.
Let b = EC(h∗, l)/EC(h, l) which is of constant order, since the effective resistance,
i.e. distance, between h and l is of maximal order in Ti. We get

P(C(h, l) ≥ kbEC(h, l)|τl < τr) ≤ 2P(C(h, l) ≥ kEC(h∗, l)) ≤ 2 · 2−k/2

since each round of 2EC(h∗, l) has, by Markov’s inequality, a probability of at least
1/2 to finish the return trip. Hence

Varh(C(h, l)|τl < τr) ≤ Eh[C(vi, l)
2|τl < τr] = O(n2ε−6 log4 n).

In the same way, this also goes for the term Varh(τr), so summing up gives

Varvi
(τr|Ai) = O(n2ε−6 log5 n).

By the above consideration, whp, Ai will occur for at least n1/3 of the Ti’s. Let S
be the sum of the τri

’s from the trees Ti for which Ai occurs. Then (whp)

ES = Θ(n4/3ε−3 log3 n)

and, since the Ai’s are negatively correlated (dependent only in that when a card
moves in one attached tree, no card in another attached tree can move at the same
time; in continuous time we would have had full independence)

Var(S) = O(n7/3ε−6 log5 n).

Thus S ≥ B0n
4/3ε−3 log3 n whp, by Chebyshev’s inequality, for a suitable constant

B0. However, each term τri
of S is, whp as noted above, the sum of at most 2 log n

independent C(h, l) conditioned on τl < τr (plus an extra unconditioned τri
at the

end). Each such C(h, l) is by the above arguments also bounded in distribution
from above by EC(h∗, l) times an independent geometric(1/2) number. By the
Chernoff bound, this means that P(τri

≤ 6 lognEC(h∗, l)) = 1 − o(1/n), i.e. whp

no τri
exceeds 6 lognEC(h∗, l) ≤ B1nε−3 log3 n for a constant B1. Hence at least

(B0/B1)n
1/3 of the terms of S must be at least B0nε−3 log3 n. This means that at

time B0nε−3 log3 n whp Θ(n1/3) cards ci will be in the same attached tree as they
started in. At stationarity, the expected number of such cards is less than 1. This
proves that

τmix ≥ B0nε−3 log3 n

as desired.

Upper bound. Consider first the random multigraph, H , constructed in (1). By
a result of Broder et al. (1999), on any bounded-degree graph n0-vertex expander,
one can choose paths between each pair (i, j), 1 ≤ i < j ≤ n0, of vertices. such that
no edge is used by more than Bn0 log n0 of these paths, where B is some constant.
Now we want to apply this to H . It is well-known that H is whp an expander.
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However, it is not bounded-degree. On the other hand, if we replace each vertex
v of H , with dv greater than, say, D, with a ddv/De-vertex expander and divide
the edges to v equally and uniformly at random among these neighbors (modulo
integer considerations), we still whp have an expander with O(n) vertices. In the
sequel, we assume that H has these low congestion paths and condition on that
event.

Now extend H to K and then to F according to (2) and (3) above. Let each
edge of H be associated with one of its end vertices and let each vertex v1 of F be
associated with the vertex of H , that the edge in H from which v1, or the attached
tree containing v1, arose, is associated with. Let Xv, v ∈ V (H), be the number
of vertices of F that are in this way associated with v. Construct paths between
each pair (u1, v1) of vertices of F by concatenating the path chosen above between
u and v, with the shortest paths between u1 and u and v1 and v, where u and
v are the vertices of H that u1 and v1 are associated with, respectively. Let Le

be the number of such paths that contain e, e ∈ E(K). Fix an e ∈ E(K) and
let P1, . . . , PA, A ≤ BM log M , be an enumeration of the chosen paths of H that
contain e. For convenience, define arbitrarily for each Pi, one of Pi’s end vertices
as the start vertex and the other as the end vertex. Let ui and vi be Pi’s start and
end vertex respectively. Then

Le ≤
A

∑

i=1

Xui
Xvi

. (3.2)

Each Xv is a sum of at most dv independent random variables, Yj(v), where each
Yj(v) is the sum of an independent geometric(δ) number of independent random
variables having the distribution of T , the total size of a Poisson(1 − δ) Galton-
Watson tree. Here j ranges over E(v), the set of edges of H associated with v.
Hence

Le ≤
A

∑

i=1

∑

j∈E(ui)

∑

k∈E(vj)

Yj(ui)Yk(vi).

By Cauchy-Schwarz,

Le ≤
(

A
∑

i=1

∑

j∈E(ui)

∑

k∈E(vi)

Yj(ui)
2
)1/2( A

∑

i=1

∑

j∈E(ui)

∑

k∈E(vi)

Yk(vi)
2
)1/2

. (3.3)

In each of the two sums on the right hand side of (3.3), each Yj(v) may appear
with multiplicity, arising from that the corresponding Xv may appear several times
in (3.2). It follows that the multiplicity is bounded by 2|E(H)| which in turn is
bounded whp by 8M . Fix one of the right hand side sums arbitrarily. Let Sl,
l = 1, . . . , 8M be the set of Yj(v)’s that appears in the fixed sum with multiplicity
at least l. Then the Sl’s are decreasing and our fixed sum can be written in a more
neat form as

8M
∑

l=1

∑

i∈Sl

Z2
i (3.4)

where Z1, . . . , Z8M are iid with the distribution of Yj(v). To bound the size of the
Zj’s we need to control the total size T of an attached tree and sums of independent
T ’s. The following is standard and can be found e.g. in Jagers (1975).
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By the usual encoding of a Galton-Watson process into a random walk, it follows
that T has the distribution of the time of the first visit to 0 of a simple random
walk, starting from 1 and with step distribution Poisson(1 − δ) − 1. Hence the

sum Z =
∑W

r=1 Tr, where the Tr’s are independent and distributed as T , has the
distribution of the first visit to 0, starting from W . The Zi’s in (3.4) have this
form, with W being geometric(δ). After jδ−2 steps of such a random walk, the
position of the walker has expectation W − jδ−1 and standard deviation less than√

jδ−1. By the Central Limit Theorem, the probability that the walker at this time

is above the x-axis, is bounded by e−(
√

j−δW/
√

j)2+/2. Hence

P(Z ≥ jδ−2|W ) ≤ e−(
√

j−δW/
√

j)2+/2 ≤ e−(
√

j−δW/
√

j)2+/4 ≤ eδW/2−j/4.

Taking expectations gives

P(Z ≥ jδ−2) ≤ E[eδW/2]e−j/4.

The probability generating function of W is δ/(1−s(1−δ)). Plugging in s = eδ/2 =
(1 + o(1))(1 + δ/2), gives

P(Z ≥ jδ−2) ≤ (1 + o(1))2e−j/4 < e1−j/4. (3.5)

Next we turn to the sum
∑

l

∑

i∈Sl
Z2

i . Fix a large integer s0. For |Sl| ≤ s0, we

have by (3.5) that the probability that Zj ≥ s0δ
−2 for any j ∈ Sl is bounded by

s0e
1−s0/4. Hence, for such l, we have

∑

j∈Sl
Z2

j ≤ s3
0δ

−4 with probability at least

1 − s0e
1−s0/4.

Consider now s := |Sl| ≥ s0 + 1. Order the Zi’s in Sl: Z(1) ≥ . . . ≥ Z(s). We
have

P(Z(r) ≥ jδ−2) ≤ P(Bin(s, e1−j/4) ≥ r) ≤ srer−rj/4

r!
< s−3

whenever j ≥ 4((1+3/r) log s−log r+2). Hence Z(r) ≤ 4δ−2((1+3/r) log s−log r+

2) for all r = 1, . . . , s with probability at least 1 − s−2. Hence, with probability at
least 1 − s−2, by standard integral approximation,

∑

j∈Sl

Z2
j ≤ 16δ−4

s
∑

r=1

(

(1 +
3

r
) log s − log r + 2

)2

< (160s + O(log3 s))δ−4

< 161sδ−4

provided that s0 is large enough. The probability that this holds for all s = s0 +
1, . . . , 8M is hence at least 1 − ∑∞

s=s0+1 s−2 > 1 − 1
s0

. Summing up in (3.5), using

(3.4) and noting that there are whp O(M log M) terms in each of the sums on the
right hand side of (3.3), we get

Le ≤
∑

l:|Sl|≤s0

s3
0δ

−4 +
∑

l:|Sl|>s0

161|Sl|δ−4 ≤
(

s4
0 + 161

8M
∑

l=1

|Sl|
)

δ−4

= O(δ−4M log M) = Θ(ε−2n log(ε2n))

with probability at least 1− 2(s0e
−s0 + 1/s0), i.e. with probability arbitrarily close

to 1 on choosing s0 sufficiently large. This bounds the number of paths connecting
all pairs of vertices of F that an edge of K can appear in. It remains to check
in how many paths an edge of an attached tree can appear. However, given an
attached tree, the edge that must be used most frequently is one which is incident
to the vertex of K. This edge is used in less than tn paths, where t is the size
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of the attached tree. By the above, the largest tree has whp size Θ(ε−2 log(ε2n)),
so no edge of an attached tree is used by more than Θ(ε−2n log(ε2n)) times. By
the above, we also know that whp the longest path in F is of order ε−1 log(ε2n).
Altogether, whp

A∗ = Θ(ε−3 log2(ε2n)).

Plugging this into the comparison lemma gives whp

τmix ≤ τ̂ = O(nε−3 log2(ε2n) log n)

as desired. �

Proof of Theorem 1.4(e). This part is essentially a simplification or the proof of
part (d). It is easy to show that the giant component G = (V, E) of G(N, (1+ε)/N)
whp contains Ω(n2/3) sticks (i.e. induced paths with one end vertex having degree
1) of length at least α log n if the constant α is taken small enough. See e.g.
Fountoulakis and Reed (2008). Letting these sticks play the role of the attached
trees Ti, in the lower bound part in the proof of (d), establishes that

τmix = Ω(n log3 n).

Now turn to the upper bound. The construction (1)-(3) above does not in this case
exactly generate a graph contiguous to G. There is however, a characterization
of G, due to Benjamini et al. Benjamini et al. (2006) that works equally well for
our purposes. According to Theorem 4.2 of Benjamini et al. (2006), there is an
α ∈ (0, 1) such that whp G contains a subgraph B such that

(i) B is an α-expander (i.e. for any W ⊂ V with |W | ≤ n/2, the number of
edges connecting W to V is at least α|W |).

(ii) Letting Di denote the connected components of G \ B and E′(Di) the
set of edges with at least one endpoint in Di, the number of i for which
|E′(Di)| ≥ k is bounded above by n(1 + ε)e−αk, k = 1, 2, . . ..

(iii) Each v ∈ B is connected to no more than 1/α different Di’s

Using (i), we have as above that all vertex pairs of B can be joined by paths in
B in such a way that no edge of B is used in more than O(n log n) paths. Then,
by (ii) and (iii), extending this to joining all pairs of G with paths such that no
edge of G is used more than O(n log n) times, goes through in a much simplified
form, without most of the calculations involved. Plugging this into the comparison
technique is done exactly as before and yields

τmix = O(n log3 n).

�

Proof of Theorem 1.4(f). Here an appeal to Broder et al. (1999), establishing
that all pairs of vertices can be joined by paths so that no edge is used more
than O(log n) times, goes directly into the comparison technique, giving τmix =
O(n log3 n).

The lower bound follows exactly as the standard argument for the random trans-
positions shuffle: after time time (1/2−a)n logn whp at least na/2 cards have never
bee moved and are hence in their starting positions. However at stationarity, the
expected number of such cards is 1, so the stationary probability for this event is
o(1). �
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Proof of Theorem 1.4(g). The lower bound was proved by Wilson (2004). In-
deed, with ξ(v) = ξ(v1, . . . , vd) = 2v1−1, ξ becomes an eigenvector to an eigenvalue
of order 1/(n logn) for the walk of a single card. Thus Proposition 1.2 establishes
the lower bound.

For the upper bound, we again use the comparison technique, comparing with the
random transpositions shuffle. Since there are Θ(n2) pairs of vertices, the diameter
of Zd

2 is d and the number of edges in Zd
2 is Θ(nd), any automorphism invariant rule

for assigning representations of arbitrary transpositions via shortest paths will have
that any edge appears in Θ(n) of these paths. Now use the comparison technique
as before. �
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