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Abstract

Objective: Predicting the risk of future events is an essential part of health economic simulation models. In pursuit of this
goal, the current study aims to predict the risk of developing first and second acute myocardial infarction, heart failure, non-
acute ischaemic heart disease, and stroke after diagnosis in patients with type 2 diabetes, using data from the Swedish
National Diabetes Register.

Material and Methods: Register data on 29,034 patients with type 2 diabetes were analysed over five years of follow up
(baseline 2003). To develop and validate the risk equations, the sample was randomly divided into training (75%) and test
(25%) subsamples. The Weibull proportional hazard model was used to estimate the coefficients of the risk equations, and
these were validated in both the training and the test samples.

Results: In total, 4,547 first and 2,418 second events were observed during the five years of follow up. Experiencing a first
event substantially elevated the risk of subsequent events. There were heterogeneities in the effects of covariates within as
well as between events; for example, while for females the hazard ratio of having a first acute myocardial infarction was 0.79
(0.70–0.90), the hazard ratio of a second was 1.21 (0.98–1.48). The hazards of second events decreased as the time since first
events elapsed. The equations showed adequate calibration and discrimination (C statistics range: 0.70–0.84 in test
samples).

Conclusion: The accuracy of health economic simulation models of type 2 diabetes can be improved by ensuring that they
account for the heterogeneous effects of covariates on the risk of first and second cardiovascular events. Thus it is important
to extend such models by including risk equations for second cardiovascular events.

Citation: Ahmad Kiadaliri A, Gerdtham U-G, Nilsson P, Eliasson B, Gudbjörnsdottir S, et al. (2013) Towards Renewed Health Economic Simulation of Type 2
Diabetes: Risk Equations for First and Second Cardiovascular Events from Swedish Register Data. PLoS ONE 8(5): e62650. doi:10.1371/journal.pone.0062650

Editor: Rudolf Kirchmair, Medical University Innsbruck, Austria

Received December 20, 2012; Accepted March 25, 2013; Published May 9, 2013

Copyright: � 2013 Ahmad Kiadaliri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: A.A.K. received funds from the Health Ministry of Iran to perform this research as a part of his PhD thesis. An unrestricted educational grant from Novo
Nordisk Ltd is gratefully acknowledged. The Health Economics Programme (HEP) at Lund University receives core funding from FAS (dnr. 2006-1660), a
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Introduction

Health economic simulation models (HESMs) are used to assist

resource allocation decisions in different medical fields including

diabetes [1–5]. These models are built on a combination of

mathematical equations and computer software, and reflect key

aspects of disease progression [6]. They are used to quantify the

lifetime benefits and costs of alternative technologies and

interventions [7].

One essential task of an HESM is to predict the risk of

developing future events based on the demographic and clinical

characteristics of patients, which in turn determine the expected

costs and quality of life associated with different health states. To

predict the risk of future events, either HESM-specific risk

equations are developed [1] or equations from other studies are

used [2–5]. For the latter case, a recent systematic review [8]

showed that HESMs of diabetes usually use results from the

Framingham cohort study [9], the UK Prospective Diabetes Study

(UKPDS) [10] and the Diabetes Control and Complications Trial

(DCCT) [11].

However, there are potential limitations in using these studies to

provide data for HESMs [8]. First, the UKPDS and DCCT were

randomised controlled trials, which implies that their results might

not be generalisable to patients with diabetes in routine clinical
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practice. For example, validations of UKPDS equations in other

settings have indicated that the cardiovascular risks are overesti-

mated [12]. Second, the patients from these trials belonged to

older cohorts, and might not be representative of current people

with diabetes, as factors such as treatment patterns have changed

since these trials were conducted. Third, the Framingham study

was conducted in the USA and included only a small number of

patients with diabetes (n = 337), which raises questions over the

accuracy and generalisability of its results to these patients and to

other settings [13]. Fourth, while some HESMs [14–16] have used

the results of the DCCT for people with type 2 diabetes, this trial

was conducted among patients with type 1 diabetes, who have

different characteristics than those with type 2 diabetes. For

example, the role of hyperglycaemia on the risk of cardiovascular

disease (CVD) mortality might be more profound among type 1

than type 2 diabetic patients [17]. Fifth, although repeated

occurrence of CVD is a well-known feature of type 2 diabetes

progression [18,19], early HESMs failed to include the risk of

recurrent events [1,14–16,20,21]; this might bias the results on

costs and benefits of treatments [22]). Thus, inclusion of the risk of

recurrent events in the HESM improves the accuracy and

robustness of the results.

Moreover, due to the lack of data, some newer HESMs that

have incorporated the risk of subsequent events have either made

naive assumptions about the risk of these events (e.g. the same risk

for the first and second events), or used the results of trials and

studies including only a small number of participants with diabetes

(e.g., the risk of recurrent myocardial infarction and recurrent

stroke in the CORE Diabetes Model [4]).

To overcome these limitations, in this study we used data on

history of CVD events among a large sample of people with type 2

diabetes from the Swedish National Diabetes Register (NDR), to

estimate the risk of developing first and second events of four CVD

events: acute myocardial infarction (AMI), heart failure (HF), non-

acute ischemic heart disease (NAIHD), and stroke. We took

advantage of the fact that NDR contains regular individual-level

registration on outcomes and risk factors in patients with diabetes

in routine clinical practice.

Materials and Methods

The Swedish National Diabetes Register
The Swedish National Diabetes Register (NDR) was established

to enable follow-up of quality indicators and benchmarking against

national guidelines, among other reasons [23]. All patients are

informed (written information, oral if needed) about this quality

registry. It includes individual-level demographic and clinical data

on adult individuals aged $18 years who have provided verbal

informed consent to participate (there is no requirement by

Swedish law or the ethics review board that the approval to

participate must be in writing). Participation in the NDR is not

compulsory and patients are offered to be excluded if requested

orally or in writing. Data are reported to the NDR from all

hospital diabetes outpatient clinics and primary health care centres

at least once a year. The study was approved by the Ethical

Review Board of the University of Gothenburg.

Explanatory variables
The variables used in the analysis were age, gender, diabetes

duration, smoking, systolic and diastolic BP, HbA1c, total-to-HDL

cholesterol ratio (TC/HDL), LDL cholesterol, history of events

before diagnosis, albuminuria, and BMI (kg/m2). The level of

HbA1c was measured via high-performance liquid chromatogra-

phy (HPLC) with the Mono-S method, following national

standards in Sweden. All HbA1c values were transformed to the

National Glycohemoglobin Standardization Program (NGSP)

standard levels using the formula HbA1c (NGSP) = (0.9236HbA1c

[Mono-S]) +1.345 [24]. BP, as standard for the NDR, was given as

the mean value of two readings (Korotkoff 1–5 [25]) in the supine

position according to national guidelines. A smoker was defined as

an individual who smoked at least one cigarette per day, or used a

pipe daily, or had stopped smoking within the previous 3 months.

The proportion of missing data in the database ranged from

0.6% for HbA1c to 11% for LDL cholesterol. Table S1in File S1

shows the frequency of missing values for the variables included in

the analysis. The method of last observation carried forward was

applied to impute the missing values.

Participants
In total, 29,034 individuals with type 2 diabetes in the NDR met

the general inclusion criteria for the study: (1) 30–75 years old at

diagnosis; (2) no missing values on explanatory variables at

baseline (year 2003). To develop and validate the risk equations,

the sample was randomly divided into two distinct subsamples:

training (n = 21,775) and test (n = 7,259) samples. Using informa-

tion in the NDR on history of CVD events, we excluded from the

training sample the patients who experienced their first event after

diagnosis and before 1st January 2004 for first-event equations.

Patients with two events after diagnosis and before 1st January

2004 were excluded from the samples for the second events. The

definition of type 2 diabetes was treatment with only diet or oral

hypoglycaemic agent (OHA), or treatment with insulin alone or in

combination with OHA and age $40 years at onset of diabetes.

Follow up and definition of endpoints
For first-event equations, all patients were followed from 1st

January 2004 until first event or withdrawal (due to death or other

reasons), or until the censoring date of 31st December 2008 was

reached. For second-event equations, patients were followed from

the date of first event until the second event or withdrawal (due to

death or other reasons), or until the censoring date. Endpoints

were defined as follows:

1. AMI: non-fatal or fatal (ICD-10 code I21) or sudden death

(ICD-10 codes R96.0 and R96.1).

2. HF: fatal or nonfatal (ICD-10 code I50).

3. NAIHD: fatal or nonfatal (ICD-10 codes I22, I24.8, and I24.9)

including stable and unstable angina (ICD-10 codes I20.0,

I20.1, I20.8, and I20.9).

4. Stroke: fatal or non-fatal (ICD-10 codes I61, I63, I64, and

I67.9).

Statistical analysis
The Prentice, Williams, and Peterson gap time model [26] was

applied to estimate the hazard ratios of first and second CVD

events in separate equations. Weibull proportional hazards

regression was used to estimate the risk of developing these events

after diagnosis of diabetes. Time since diagnosis and time since

first event were used as time scales in the analysis for first and

second event, respectively.

The linearity of the continuous variables was checked using

design variables and residual plots [27]. The non-linear relation-

ships were fitted using linear splines [28]. Linear continuous

covariates were treated as mean-centred values in the equations

(Table S2 in File S1). Except for sex, age at diagnosis, duration of

diabetes at the time of first event, and history of events before

Risk Equations for First and Second CVD Events
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diagnosis, the explanatory variables were treated as time-

dependent and annual values were used in estimations. The final

equation for each event was selected by backward selection

processes from the full model, containing all covariates including

plausible interactions. The maximum likelihood ratio test was used

to test the significance of the covariates (with the 5% level used as

the limit of significance).

To examine the dependency between complications, time-

varying covariates showing the history of other complications were

also included in the equations. These covariates were set to 0 until

an event happened and 1 from that point onwards. We recorded

these events if they occurred prior to the first event in question.

Version 11 of the STATA software package [29] was used to

estimate the equations.

Validation
The performance of the equations was evaluated in both

training and test samples. The discrimination ability of the

equations was evaluated using Harrell’s C statistics [30], where a

value closer to one shows a better discrimination. Calibration of

risk equations was assessed by a modified Hosmer-Lemeshow X2

test [31]. In this case, the observed and predicted numbers of

events were grouped by 10 deciles of predicted risk scores. The

predicted number of events for each subject was calculated using

the method proposed by Gronnesby and Borgan [32]. For this, the

martingale residuals for subject i were subtracted from the

observed number of events for subject i.

Results

Table 1 shows baseline characteristics of patients in both

subsamples. No significant differences were found between the two

samples at baseline. Tables 2 and 3 show the coefficients of the

estimated first-event and second-event models. Older age at

diagnosis was generally related to a higher risk of having both first

and second events during the follow up. Longer duration of

diabetes at the time of the first event was generally associated with

higher risk of a second event.

The shape parameter for the first event was higher than one in

all equations, implying that the risk of having a first event

increased with duration of diabetes. However, this parameter was

less than one for second events, implying that as more time passed

since the first event, the risk of experiencing a second event

decreased. The results for each event are presented below.

Risk equations
1) AMI. A total of 1,084 first and 411 second AMI events

were recorded based on 80,010 and 5,969 person-years, respec-

tively. One-unit increases in HbA1c and TC/HDL were

associated with 9% and 19% higher risk of having a first AMI,

respectively. The hazard ratio of a 10-unit difference in systolic BP

was 1.08. Patients with microalbuminuria had a 24% higher risk of

a first AMI. These covariates were not independent predictors of

second AMI. While the hazard ratio for a first AMI event was 0.79

(0.70–0.90) for females compared with males, it was 1.21 (0.98–

1.48) for a second AMI event, all else being equal. Macroalbu-

minuria was associated with 77% and 73% higher risk of

experiencing a first and second AMI event, respectively. LDL

was a significant predictor of both AMI events, but its effect was

lower for females than males for the second AMI. The risks of first

and second AMI events were 64% and 35% higher for smokers

than non-smokers, respectively. The risks of first and second AMI

event after diagnosis were 2.11 and 2.16 times higher among

patients with a history of AMI before diagnosis. Experiencing HF

before the first AMI elevated the risks of first and second AMI

during follow up.

2) HF. During the follow up, 1,366 first and 947 second HF

events were found based on 82,378 and 2,715 person-years,

respectively. There were nonlinear relationships between HbA1c

and systolic BP and risk of a first HF event. BMI, TC/HDL, and

macroalbuminuria were associated with a higher risk of having a

first HF event, but showed no independent association with a

second event. The risk of a first HF after diagnosis was 5.5 times

higher for patients with a history of HF before diagnosis. The risks

of the first and second HF events were lower for females than

males, but the difference for the first event decreased over time.

The associations between microalbuminuria and the risk of first

Table 1. Baseline clinical and demographic characteristics of patients in training and test subsamples.

Variable Males Females

Training sample Test sample Training sample Test sample

Number of patients N 12578 4238 9197 3021

Age at diagnosis Mean 6 SD 55.3669.28 55.3369.24 57.1569.55 56.8969.66

Diabetes duration,(years) Mean 6 SD 8.9267.14 9.0267.08 9.0267.17 9.1567.37

HbA1c (%) Mean 6 SD 7.3461.18 7.3861.21 7.3761.18 7.4261.20

BMI (kg/m2) Mean 6 SD 28.8464.44 28.8164.51 29.6765.55 29.6865.49

Systolic BP (mmHg) Mean 6 SD 141.47617.51 141.21617.61 143.76618.66 143.83618.62

Diastolic BP (mmHg) Mean 6 SD 78.8569.40 78.7069.36 77.1169.38 77.3669.26

TC/HDL Mean 6 SD 4.2361.29 4.2061.29 3.9561.25 3.9661.27

LDL cholesterol (mmolL21) Mean 6 SD 2.8660.88 2.8360.90 3.0060.93 2.9960.91

Smokers % 15.07 15.41 14.11 14.30

Macroalbuminuria % 7.09 6.96 4.03 3.78

Microalbuminuria % 20.16 20.41 13.80 13.67

There were no statistically significant differences between training and test samples.
Abbreviation: BP, blood pressure; TC/HDL, total to HDL cholesterol ratio.
doi:10.1371/journal.pone.0062650.t001
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HF, and smoking and the second HF, both changed with elapsed

time since diagnosis and first event. The highest rate of baseline

hazard for the second event was seen during the first year after the

first event.

3) Stroke. During the follow up, 993 first and 314 second

stroke events were observed based on 82,232 and 4,127 person-

years, respectively. There was a nonlinear relationship between

HbA1c and the risk of a first stroke. Ten-unit increases in systolic

and diastolic BP were associated with 7% and 12% higher risk of

first stroke. A one-unit increase in TC/HDL was related to a 12%

higher risk of first stroke. The hazard ratios of macroalbuminuria

and microalbuminuria for first stroke were 1.49 and 1.29,

respectively. Patients with a history of AMI and/or HF showed

higher risk of a first stroke during follow up. The associations

between these covariates and risk of second stroke were not

statistically significant. Smoking was associated with first and

second stroke events, although the association with a second event

decreased over time. Patients with a history of stroke before

diagnosis had 2.6 and 2.2 times higher risk of first and second

stroke after diagnosis, respectively.

4) NAIHD. In total, 1,104 first and 746 second NAIHD

events were recorded based on 76,174 and 4,089 person-years,

respectively. A one-unit increase in HbA1c was associated with a

6% higher risk of a first NAIHD. Patients with a BMI of 30 had a

10% higher risk of a first NAIHD event after diagnosis than

patients with a BMI of 25. There was a nonlinear association

between diastolic BP and the risk of a first NAIHD event. TC/

HDL and microalbuminuria were associated with higher risk of a

first NAIHD event after diagnosis. The associations between

smoking and macroalbuminuria with the risk of a first NAIHD

event changed over time (implying an interaction term between

smoking and time). The risk of a first NAIHD event was 4.3 times

higher among patients with a history of NAIHD before diagnosis.

These covariates were not independent predictors of a second

Table 2. Parameter estimates of the risk equations for first and second AMI and HF events.

AMI HF

First event Second event First event Second event

N 18526 2019 19051 1646

Female 20.2318 0.1887a 20.4697 20.1224

Age at diagnosis 0.0541 0.0254 0.0896 0.0207

HbA1c Continuous 0.0829 0.0579

#7b 20.2424

.7b 0.1864

Systolic BP Continuous 0.0079

#140b 20.0186

.140b 0.0050

LDL 0.1161 0.1745

TC/HDL 0.1712 0.1146

BMI 0.0631

Macroalbuminuria 0.5719 0.5478 0.7841

Microalbuminuria 0.2176 0.6932

Smoking 0.4938 0.2987 0.3402 0.3402

AMI historyc 0.7469 0.7704

HF historyc 1.6988

HF before first eventd 0.6151 0.3386

Duration at first event 0.0566 0.0268

Female * LDL 20.2155

Time since first event .1 year 21.6960

Female * time since diagnosis 0.0172

Microalbuminuria * time since
diagnosis

20.0202

Smoking * time since first event .1
year

20.4124

Constant 27.8187 22.5755 25.3260 0.2870

P (shape parameter) 2.0537 0.7916 2.5986 0.8149

All covariates are significant at the 5% level.
Weibull proportional hazards regression with the Prentice, Williams, and Peterson gap time model was used for estimation.
Abbreviations: HF, heart failure; AMI, acute myocardial infarction; TC/HDL, total to HDL cholesterol ratio.
a. Significant at the 10% level, but significant interaction with LDL;
b. applied as splines in the equation;
c. history of event before diagnosis of type 2 diabetes;
d. HF before first AMI.
doi:10.1371/journal.pone.0062650.t002
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NAIHD event. Sex was associated with both first and second

NAIHD events, but in different directions. The effect of

macroalbuminuria on the risk of a second NAIHD event differed

between males and females. The baseline hazard of a second

NAIHD event was higher during the first three years after the first

NAIHD event.

Validation
Table 4 shows the calibration and discrimination of the

equations in training and test subsamples. Harrell’s C statistics

for first events ranged from 0.76 to 0.84 in the training sample and

0.75 to 0.85 in the test sample, which implies satisfactory

discrimination. Calibration by means of comparing the predicted

and observed number of events in ten deciles of risk score

demonstrated reasonable performance in both training and test

subsamples (non-significant p-values). Supplemental Figure S1

shows the observed and predicted number of first events for 10

deciles of risk scores in the test subsample. In addition, the

equations for second events showed reasonable discrimination in

both training (0.74–0.84) and test (0.70–0.84) subsamples. Only

the equation for first HF had poor calibration (significant p-value)

in the test subsample. Supplemental Figure S2 shows the observed

and predicted number of second events for 10 deciles of risk scores

in the test subsample.

Example of use of the estimated risk equations
The importance of allowing different risk estimates for first and

second events can be illustrated with an example. Using the risk

equations for the first and second AMI, we predicted the risk of

first and second AMI over 5 years for a non-smoking 58-year-old

male with diabetes duration 10 years, total cholesterol 4.3 mmol/l,

HDL cholesterol 1.0 mmol/l, LDL cholesterol 2.0 mmol/l,

HbA1c 8.0%, systolic BP 150 mmHg, macroalbuminuria, no

history of previous AMI before diagnosis, and no HF during 5

Table 3. Parameter estimates of the risk equations for first and second stroke and NAIHD events.

Stroke NAIHD

First event Second event First event Second event

N 18992 1513 17726 1790

Female 20.2278 0.0388a

Age at diagnosis 0.0727 0.0288 0.0299

HbA1c Continuous 0.0580

#7b 20.1714

.7b 0.1614

Systolic BP 0.0063

Diastolic BP Continuous 0.0113

#80b 20.0130

.80b 0.0028

TC/HDL 0.1121 0.1705 0.0935

BMI 0.0183

Macroalbuminuria 0.3970 0.6346 20.3725

Microalbuminuria 0.2551 0.1937

Smoking 0.4010 0.8806 0.5724

Stroke historyc 0.9654 0.7675

NAIHD historyc 1.4576

HF before first stroke 0.1826

AMI before first stroke 0.3692

Duration at first event 0.0518

Female * macroalbuminuria 0.5990

Time since first event .3 years 20.3295

Smoking * time since diagnosis 20.0675

Smoking * time since first event 20.2326

Macroalbuminuria * time since
diagnosis

20.0300

Constant 27.1089 22.4119 25.4122 20.5534

P (shape parameter) 2.0965 0.8865 1.6704 0.4380

All covariates are significant at the 5% level.
Weibull proportional hazards regression with the Prentice, Williams, and Peterson gap time model was used for estimation.
Abbreviations: NAIHD, non-acute ischaemic heart disease; HF, heart failure; AMI, acute myocardial infarction; TC/HDL, total to HDL cholesterol ratio.
a. not significant, but significant interaction with macroalbuminuria;
b. applied as splines in the equation;
c. history of event before diagnosis of type 2 diabetes.
doi:10.1371/journal.pone.0062650.t003
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years of follow-up. To keep our example simple, the values of risk

factors were assumed to remain constant during these 5 years.

With these figures, the 5-year first AMI risk was calculated as 1- exp

{[-exp (27.8187+(0.571961))+(0.08296(827.27))+(0.00796(1502

140.92))+(0.17126(4.323.89))+(0.11616(222.77))+(0.05416(58210

256.02))]6(15 2.0537210 2.0537)} = 7.32%

For a second event, we assumed that the patient had a first AMI

in the 10th year after diagnosis. The risk of having an AMI (second

AMI event) during the 5 years following the first AMI (i.e. from

11th to 15th year after diagnosis) was calculated as 12 exp {[2exp

(22.5755+(0.547861))+(0.17456(222.54))+(0.02546(58210256.64))

+(0.0566*(10210))]6(5 0.7916)} = 29.09%

In this example, 7 out of 100 patients without any event after

diagnosis will experience a first AMI during the 11th to 15th years

after diagnosis. However, 29 out of 100 patients with a first AMI in

the 10th year after diagnosis will experience a second AMI during

the same period. Figure 1 shows the cumulative hazard of an AMI

event over 5 years for these two events.

Discussion

There is a lack of data on first and subsequent events in

representative samples of patients with type 2 diabetes in routine

clinical practice. As a result, the risk equations generally used in

HESMs of type 2 diabetes suffer from several limitations, limiting

their generalisability. To address these limitations, we estimated

separate risk equations for first and second major CVD events for

type 2 diabetes patients, using a large high-quality nationwide

population-based database from Sweden. The results indicated

heterogeneities in the effects of covariates within same CVD event

(i.e., first and second events) and between different CVD events.

Moreover, experiencing a first event substantially elevated the risk

of a second event. The model validation indicated that the

estimated equations performed well in training and test subsam-

ples.

The risk equations in this study have several advantages

compared with existing risk equations for HESMs. Firstly, our

estimations reflect current routine practice and are based on a

large sample (n = 29,034) from a national diabetes registry with no

exclusion criteria regarding history of events before diagnosis. We

estimated the event-specific equations for four major CVD events

from a single database. This has two main advantages: it avoids

the need to synthesise evidence from different (and sometimes

heterogeneous) samples, and it captures the potential heteroge-

neous effect of covariates on different events. Secondly, by

allowing time-varying risk factors and incorporating the history

of other events, we were able to take the dependency between

events into account. Moreover, allowing time-varying risk factors

also accounts for potential progression of disease and other aspects

including lifestyle factors that may influence the risk of CVD

events. The effects of experiencing events before diagnosis on

subsequent events after diagnosis were included, thus avoiding the

increase in sample selection bias that comes from excluding

patients with prior events. In addition, the randomly selected test

sample in the validation analysis had a large number of patients

(n = 7259), which strengthens the analysis.

We found that while the risks of first events increased with

increasing time since diagnosis, the risks of second events

decreased with increasing time since first event. One explanation

for this is that patients who have experienced a first event will get

more treatment and care [33]. In addition, this implies that the

initial time after a first event is the most hazardous period for

patients to have a subsequent event; this aspect should be

incorporated into the HESM. The associations between the risk

factors and first CVD events were in the same direction as those

found in previous studies [34–36], which implies that patients with

type 2 diabetes share many similar features. Moreover, we found

that gender, age at diagnosis, smoking, and duration of diabetes at

the time of the first events were the most important predictors of

second events. The results indicated that CVD events are not

independent, and experiencing one event increases the risk of

having others. This highlights the importance of taking into

account the dependency between events, as recommended by the

American Diabetes Association [6].

An updated analysis [37] of UKPDS data showed that the

effects of covariates are not constant between the first and second

events, which is in line with our findings. This illustrates how the

accuracy of an HESM could be increased by taking the

heterogeneity between the risk of first and subsequent events into

account. Failure to account for heterogeneity might lead to an

underestimation of the costs and an overestimation of patients’

utilities. Moreover, if an intervention is effective for preventing the

occurrence of recurrent events, an economic analysis including

only the first event might lead to biased results.

To demonstrate how the results of the current study might lead

to more accurate conclusions, we considered two examples.

Although females were less susceptible to a first AMI event, they

were more vulnerable for a second AMI event. Thus, if only the

Table 4. Performance of equations for the first and second events in training and test subsamples.

Training sample Test sample

C statistics (95% CI) HL X2a (P-value) C statistics (95% CI) HL X2 (P-value)

AMI First event 0.78 (0.76–0.79) 7.30 (0.51) 0.79 (0.77–0.82) 16.33 (0.04)

Second event 0.76 (0.74–0.79) 8.77 (0.36) 0.79 (0.74–0.84) 12.04 (0.15)

HF First event 0.84 (0.82–0.85) 9.58 (0.30) 0.84 (0.82–0.86) 12.31 (0.14)

Second event 0.84 (0.83–0.85) 6.11 (0.64) 0.84 (0.82–0.85) 22.67 (,0.01)

Stroke First event 0.80 (0.78–0.82) 11.22 (0.19) 0.79 (0.76–0.82) 11.61 (0.17)

Second event 0.74 (0.71–0.77) 8.09 (0.43) 0.70 (0.64–0.75) 9.99 (0.27)

NAIHD First event 0.76 (0.74–0.78) 6.02 (0.65) 0.75 (0.72–0.78) 5.86 (0.66)

Second event 0.78 (0.77–0.80) 3.76 (0.88) 0.77 (0.74–0.80) 14.07 (0.08)

Abbreviations: NAIHD, non-acute ischaemic heart disease; HF, heart failure; AMI, acute myocardial infarction.
a. Hosmer-Lemeshow X2 statistics.
doi:10.1371/journal.pone.0062650.t004
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first event is taken into consideration, treating females would

appear to be less cost-effective; however, if the higher risk of

second events is then considered, the previous conclusion might be

incorrect. Another example is that while BMI was not associated

with the risk of AMI and stroke events, it was an independent

predictor of first HF and NAIHD. This shows how specific-event

equations may lead to more accurate results than estimating one

equation for all events pooled as ‘‘CVD events’’ [38–40].

The results of the current study should be interpreted in light of

some limitations. As we used register-based data, the possibility of

error in the recording of data including ICD-10 codes may be a

source of information bias. Moreover, the non-compulsory nature

of participation in the NDR is a potential source of selection bias

if, for example, older or sicker patients are less willing to

participate. However, it is estimated that the NDR currently

covers more than 90% of all patients in hospital outpatient clinics

and almost 80% of all patients in primary care in Sweden [41],

and so selection bias is not likely to be a significant problem in our

analysis.

To summarise, the current study provides separate risk

equations for the first and second events to improve the accuracy

and robustness of HESMs. Moreover, these equations are crucial

steps in developing HESMs for type 2 diabetes in Sweden.

Although these equations performed well in the test subsample,

future research should validate them in other populations, in order

to evaluate the feasibility of transferring them to other settings.
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