
A Polynomial Time Extension of
Parallel Multiple Context-Free Grammar

Peter Ljunglöf

Department of Computing Science,
Göteborg University and Chalmers University of Technology,

SE-412 96 Göteborg, SWEDEN,
peb@cs.chalmers.se

Abstract. It is already known that parallel multiple context-free gram-
mar (PMCFG) [1] is an instance of the equivalent formalisms simple lit-
eral movement grammar (sLMG) [2,3] and range concatenation grammar
(RCG) [4,5]. In this paper we show that by adding the single operation of
intersection, borrowed from conjunctive grammar [6], PMCFG becomes
equivalent to sLMG and RCG. As a corollary we get that PMCFG with
intersection describe exactly the class of languages recognizable in poly-
nomial time.

The layout of this paper is as follows. The first section contains definitions of the
basic grammar formalisms we are interested in. The second section introduces the
intersection operation for PMCFG. The third section contains the main result of
the paper – that PMCFG extended with the intersection operation is equivalent
to simple LMG and RCG. The fourth and last section is a small discussion of
the results.

1 GCFG, PMCFG, sLMG and RCG

1.1 Generalized Context-Free Grammar

Generalized context-free grammar (GCFG) was introduced by Pollard in the 80’s
as a way of formally describing head grammar [7]. There are several definitions
of GCFG in the literature; Seki et al [1] use a definition similar to Pollard’s orig-
inal, while others [8,9,10] more cleanly separates between abstract and concrete
syntax. However, the latter definitions use the term GCFG for only the abstract
part of the grammar, and the term context-free rewriting system for the abstract
grammar together with the concrete interpretation function. While Pollard im-
posed no restriction on the concrete linearization type, other definitions restrict
them to be tuples of strings. Here we use the definition from [11], which is close
to the original definition.

Definition 1 (GCFG, abstract part). The abstract grammar of a GCFG is
a tuple (C, S,F ,R), where C and F are finite sets of categories and function

symbols respectively, S ∈ C is the starting category, and R ⊆ C × F × C∗ is a
finite set of context-free syntax rules. For each function symbol f ∈ F there is
an associated context-free syntax rule:

A→ f [B1, . . . , Bδ]

The arity of the rule is δ, and in general we write δf for the arity of the rule
f . The tree rewriting relation t : A is defined as f(t1, . . . , tδ) : A whenever
t1 : B1, . . . , tδ : Bδ. We say that a tree t is valid (for a given category A) if t : A.

Example 1. The abstract grammar of a simple fragment of English might look
like the following,

S → sp[NP, VP]
S → st[NP, VP]

VP → vp[V, NP]
NP → np[D, N]
D → some[]
D → most []
N → cat []

NP → fish[]
V → eat []
V → catch[]

The idea is that the grammar should be able to handle both normal word order
(‘most cats eat fish’), and topicalized sentences (‘it is fish that most cats eat ’).

Definition 2 (GCFG, concrete part). To each category A is associated a
linearization type A◦, which is not further specified. To each function symbol f
is associated a partial linearization function f◦, taking as many arguments as
the abstract syntax rule specifies:

f◦ ∈ B◦
1 × · · · ×B◦

δ → A◦

The linearization [[·]] of syntax trees is defined as,

[[f(t1, . . . , tδ)]] = f◦([[t1]], . . . , [[tδ]])

if the application is defined. Note that the definition imposes no restrictions on
the linearization types or the linearization functions; this is left to the actual
grammar formalism. For our purposes it is enough to view a linearization type
as the set of all its possible linearization values.

To be able to define the language of a grammar as a set of strings, we demand
that the linearization type of the starting category is S◦ = Σ∗. The language of
a grammar G then becomes:

L(G) = { [[t]] | t : S }

1.2 Parallel Multiple Context-Free Grammar

Parallel multiple context-free grammar (PMCFG) [1,12] were introduced in the
late 80’s by Kasami, Seki et al. as a very expressive formalism, incorporating lin-
ear context-free rewriting systems and other mildly context-sensitive formalisms,
but still with a polynomial parsing algorithm.

Definition 3 (PMCFG). PMCFG is an instance of GCFG, with the following
restrictions on linearizations:

– Linearization types are restricted to tuples of strings. In other words, each
PMCFG grammar defines a linearization arity d(C) for each category C.
The linearization types can then be defined as C◦ = (Σ∗)d(C).

– The only allowed operations in linearization functions are tuple projections
and string concatenations. In other words, each PMCFG linearization func-
tion is of the form,

f◦ (〈x1,1, . . . , x1,d1〉 , . . . , 〈xδ,1, . . . , xδ,dδ
〉) = 〈α1, . . . , αd〉

where each αi is a sequence of variables xj,k and constant strings.

Example 2. The concrete syntax of the example English grammar might look
like follows:

s◦p (x, 〈y1, y2〉) = x y1 y2

s◦t (x, 〈y1, y2〉) = ‘it is’ y2 ‘that ’ x y1
vp◦(x, y) = 〈x, y〉
np◦(x, y) = x y

most◦ = ‘most ’
cat◦ = ‘cats’
fish◦ = ‘fish’
eat◦ = ‘eat ’

catch◦ = ‘catch’

Note that verb phrases have to consist of two discontiuous phrases, for the top-
icalization to function.1

1.3 Subclasses of PMCFG

A PMCFG where each variable xi,j occurs in its linearization is called noneras-
ing. If no variable xj,k occurs twice in a linearization the grammar is called a
linear MCFG (LMCFG or just MCFG). A nonerasing and linear grammar (i.e. if
each variable occurs exactly once in its linearization), is called a linear context-
free rewriting system (LCFRS). The following lemma states that LMCFG and
LCFRS are equivalent formalisms [1]:
1 If the example seems strange, there are other languages (such as German or Swedish)

where discontinuous verb phrases are more natural.

Lemma 1. Any PMCFG grammar can be converted into an equivalent noneras-
ing grammar. Furthermore, linearity is preserved by the conversion.

1.4 Literal Movement Grammar and Range Concatenation
Grammar

Literal movement grammar (LMG; [2,3]), and its relative range concatenation
grammar (RCG; [4,5]), are grammar formalisms based on predicates over string
tuples. A grammar is a collection of clauses for predicates, very similar to Horn
clauses and the programming language Prolog. We here define the general for-
malism of LMG, and then two equivalent subclasses, RCG and simple LMG
(sLMG). We assume given a finite set Σ of terminal tokens, and an infinite
supply of logical variables x1, x2, . . . ∈ Var.

Definition 4 (predicate). A predicate is a term A(α1, . . . , αn), where each
αi ∈ (Σ ∪ Var)∗ is a concatenative sequence of terminals and logical variables.

Definition 5 (clause). A clause is of the form φ ` ψ1, . . . , ψm where each
of φ, ψ1, . . . , ψm are predicates. A clause can be instantiated by substituting a
string for each variable in the clause.

A literal movement grammar consists a finite number of clauses together with
a designated start predicate. To define the language of a lmg grammar G, we
define a rewriting relation ⇒G on sequences of instantiated predicates,

Γ1, φ, Γ2 ⇒G Γ1, ψ1, . . . , ψm, Γ2

whenever φ ` ψ1, . . . , ψm is an instantiation of a clause in G. The language of
a grammar is then,

L(G) = { w ∈ Σ∗ | S(w) ⇒∗
G ε }

where S is the start predicate in G.

Example 3. The example grammar looks like follows in LMG format:

S(x y1 y2) ` NP(x), VP(y1, y2)
S(‘it is’ y2 ‘that ’ x y1) ` NP(x), VP(y1, y2)

VP(x, y) ` V(x), NP(y)
NP(x y) ` D(x), N(y)

D(‘most ’) ` ε
N(‘cats’) ` ε

NP(‘fish’) ` ε
V(‘eat ’) ` ε

V(‘catch’) ` ε

A possible instantiation of the second clause is:

S(‘it is fish that most cats eat ’) ` NP(‘most cats’), VP(‘eat ’, ‘fish’)

LMG is a very general, Turing-complete, grammar formalism. To get a recogniz-
able subclass of LMG, one can consider two possibilities; to restrict the definition
of clause instantiation, or to put syntactic restrictions on the form of the predi-
cates.

Definition 6 (RCG). A range concatenation grammar (RCG) is an LMG with
a restricted form of clause instantiation. A clause can only be instantiated by
substrings of the given input string; i.e. if φ ` ψ1, . . . , ψm is an instantiation of
a clause, then all arguments to φ, ψ1, . . . , ψm are substrings of the input.

By only allowing instantiations by substrings of the input we assure that all
strings in a RCG can be replaced by pairs of input positions, called ranges.2

This has the effect that RCG parsing is polynomial in the length of the input
string.

Example 4. If the input string is ‘b a c h’, then for the following clauses,

A(bac) ` B(b), C(c)
A(bach) ` B(b), C(ch)
A(back) ` B(b), C(ck)

the first two are RCG instantiations of the clause A(x a z) ` B(x), C(z); but
not the third.

Definition 7 (sLMG). A simple LMG (sLMG) is an LMG where each clause
obeys the following three syntactic restrictions:

– Non-combinatorial (NC): The arguments of each ψi are variables.
– Bottom-up nonerasing (BNE): All variables in each ψi also occur in φ.
– Bottom-up linear (BL): No variable occurs more than once in φ.

Strictly speaking, bottom-up linearity is not a necessary condition, as the fol-
lowing lemma states:

Lemma 2. Any LMG clause can be converted to an equivalent bottom-up linear
(BL) clause. Furthermore, the conversion preserves NC and BNE.

Proof (taken from [2,3]). Assume that the clause in question is φ ` ψ1, . . . , ψm,
and that there is a variable x occurring twice in φ. Replace one occurrence by a
new variable x′, and add a call to the bottom-up linear predicate Eq(x, x′), with
the following definition:

Eq(ε, ε) ` ε
Eq(s x, s y) ` Eq(x, y) (for each s ∈ Σ)

The new clause φ ` ψ1, . . . , ψm, Eq(x, x′) is equivalent to the original, since the
predicate call Eq(x, x′) says that x and x′ are equal strings.

The conversion preserves NC, since the predicate Eq(x, x′) is non-combina-
torial. Furthermore, is preserves BNE, since the only variable that is introduced
on the left-hand side (x′) is also introduced on the right-hand side. ut
2 Boullier [4,5] defines RCG directly on ranges, but our definition is equivalent.

Both formalisms sLMG and RCG are equivalent, since they describe exactly
the class of languages recognizable in polynomial time [2,3,4,5,13]. Note that
sLMG/RCG are closed under intersection; if S1 and S2 are the start predicates
of G1 and G2, then S(x) ` S1(x), S2(x) defines the intersection of the languages
L(G1) and L(G2).

1.5 PMCFG is an Instance of sLMG/RCG

Assume given the following PMCFG rule:

A→ f [B1, . . . , Bδ]
f◦(x1,1, . . . , x1,n1 ;

. . . ;
xδ,1, . . . , xδ,nδ

) = α1, . . . , αn

By lemma 1, we can assume that the linearization is nonerasing. Furthermore, it
is straightforward to convert a nonerasing PMCFG grammar into an equivalent
sLMG grammar, as shown in [2,3]. Each rule above is converted to the clause:

A(α1, . . . , αn) ` B1(x1,1, . . . , x1,n1),
. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

Note that this clause is NC (since each of the xi,j is a variable) and BNE (since
f◦ is nonerasing), and therefore the clause is sLMG.

2 The Intersection Operation

There is an extension of context-free grammar called conjunctive grammar [6],
where the right-hand sides of rules are extended with a new intersection operator.
A conjunctive context-free rule is written:

A→ α1 & . . . &αn

where αi ∈ (N ∪ Σ)∗. The informal interpretation is that A can be rewritten
to w ∈ Σ∗ iff all αi can be rewritten to w. This operation can be directly
transformed to PMCFG linearizations.

Definition 8 (intersection). The intersection operation is a partial lineariza-
tion operation with the definition; φ1 &φ2 is calculated to φ1 iff φ1 = φ2.

This definition can be made formal by lifting the linearization types to sets of
linearization values; where the unit set denotes the existence of a linearization
and the empty set denotes an undefined linearization. String concatenation, tuple
forming and tuple projection are straightforwardly lifted to this domain. The
definition of the intersection operation then simply becomes set intersection.

We call PMCFG extended with the intersection operation conjunctive PM-
CFG. The following laws for intersections of linearizations are simple conse-
quences of the formal definition:

φ&φ = φ

α (β1 &β2) γ = (α β1 γ) & (α β2 γ)

The second law says that we can push out an intersection to a row, which is used
in the equivalence proof later.

Example 5. In our running example, we have introduced discontinuous verb
phrases to handle topicalization. Groenink [2,3] suggests to handle verb phrase
coordination by using conjunction on the verb component of the verb phrase. In
PMCFG format, this looks like follows:

VP → coord [VP, VP]
coord◦(〈x1, x2〉 , 〈y1, y2〉) = 〈x1 ‘and ’ y1, x2 & y2〉

By combining two verb phrases with the same object, we can form a coordinated
verb phrase:

coord◦(〈‘catch’, ‘fish’〉 , 〈‘eat ’, ‘fish’〉) = 〈‘catch and eat ’, ‘fish’〉

which in turn can be used to form sentences like ‘many cats catch and eat fish’,
or the topicalized version ‘it is fish that many cats catch and eat ’.

2.1 A Strict Extension of PMCFG

Theorem 1. The class of languages recognized by conjunctive PMCFG gram-
mars is closed under intersection.

Proof. Let G1 and G2 be two grammars (with no common categories or function
symbols) recognizing the languages L(G1) and L(G2) respectively. Let G contain
all rules from G1 and G2 plus the following single rule for the new starting
category S:

S → f [S1, S2]
f◦(x, y) = x& y

It is trivial to see that G recognizes all and only those strings that are recognized
by both G1 and G2. ut

Corollary 1. The intersection operation is a strict extension of PMCFG.

The corollary follows from the fact that PMCFG is not closed under intersection
[1], a property it shares with context-free grammars.

2.2 Language-Theoretic Implications

Closedness under intersection has some less desirable properties, which conjunc-
tive PMCFG inherits from conjunctive grammar [6]:

– The following decision problems are undecidable: emptiness, finiteness, reg-
ularity, context-freeness, inclusion and equivalence. This is because these de-
cision problems are undecidable for finite intersections of context-free gram-
mars, see e.g. [14].

– Conjunctive PMCFG is not closed under homomorphism. This follows from
the fact that any recursively enumerable language L can be described by
h(L1 ∩ L2), for some homomorphism h and context-free languages L1, L2,
see e.g. [15].

2.3 Usefulness of Intersection

Conjunctive PMCFG is not only closed under intersection, but the closure is
also modular, i.e. it preserves the structure of the underlying grammar conjuncts.
This makes it useful for modular grammar engineering, as already noted in [4,5].
Intersection might also be useful for modeling secondary/tertiary structures of
biological sequences, as has been investigated in [16]. For purely linguistic phe-
nomena, [2,3] contains a suggestion of how to use intersection to describe verb
coordination, as shown in example 5.

3 Conjunctive PMCFG Describes the Polynomial
Languages

In this section we show that conjunctive PMCFG, or to be more exact, non-
erasing conjunctive PMCFG, is equivalent to sLMG and RCG. The following
theorem is a direct consequence of lemmas 3, 4 and 5 below:

Theorem 2. Nonerasing conjunctive PMCFG is equivalent to sLMG and RCG.

Since it is already known that sLMG and RCG exactly describe the class of
languages recognizable in polynomial time, we get the same result for nonerasing
PMCFG extended with intersection.

Corollary 2. The class of languages recognizable by nonerasing conjunctive PM-
CFG is exactly the class of languages recognizable in polynomial time.

3.1 Conjunctive PMCFG is an instance of sLMG/RCG

Lemma 3. Any nonerasing conjunctive PMCFG can be converted to an equiv-
alent sLMG.

Proof. Since intersections can be pushed out, we can assume that the PMCFG
rules are of the form,

A→ f [B1, . . . , Bδ]
f◦(〈x1,1, . . . , x1,n1〉 ,

. . . ,

〈xδ,1, . . . , xδ,nδ
〉) = 〈α1,1 & . . . &α1,c1 ,

. . . ,

αn,1 & . . . &αn,cn
〉

where each αi,j is a sequence of strings and variables, as above. Translate this
to the sLMG clause,

Â(α1,1 & . . . &α1,c1 ;
. . . ;

αn,1 & . . . &αn,cn
) ` B1(x1,1, . . . , x1,n1),

. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

where the left-hand side is just syntactic sugar for a predicate with arity c1 +
· · ·+ cn. The clause is NC (since each of the xi,j is a variable) and BNE (since
f◦ is nonerasing), and therefore it is sLMG. Finally, add coercion clauses for
Â(. . .), implementing the intersections:

A(x1, . . . , xn) ` Â(x1 & . . . &x1 ; . . . ; xn & . . . &xn)

The resulting sLMG grammar is equivalent to the original PMCFG grammar.
ut

Example 6. The following is the result of translating the PMCFG rule for verb
coordination in example 5, into sLMG/RCG:

V̂P(x1 ‘and ’ y1 ; x2 & y2) ` VP(x1, x2), VP(y1, y2)

VP(x, y) ` V̂P(x ; y& y)

After simplifying away V̂P, we get the same clause as in Groenink’s original
example [2,3]:

VP(x ‘and ’ y, z) ` VP(x, z), VP(y, z)

3.2 sLMG/RCG is an Instance of Conjunctive PMCFG

We say that a clause φ ` ψ1, . . . , ψm is top-down nonerasing (TNE) if all vari-
ables in φ also occur in some ψi.

Lemma 4. Any LMG clause can be converted to an equivalent top-down non-
erasing (TNE) clause. Furthermore, the conversion preserves NC and BNE.

Proof. Assume that the clause in question is φ ` ψ1, . . . , ψm, and that there is
a variable x in φ not occurring in any of ψ1, . . . , ψm. Add a call to the top-down
nonerasing predicate Str(x), with the following definition:

Str(ε) ` ε
Str(s x) ` Str(x) (for each s ∈ Σ)

The new clause φ ` ψ1, . . . , ψm, Str(x) is equivalent to the original, since the
predicate Str(x) only says that x is a string.

The conversion preserves NC, since the predicate Str(x) is non-combinatorial.
Furthermore, it preserves BNE, since no variable is introduced. ut

Lemma 5. Any top-down nonerasing sLMG can be converted to an equivalent
nonerasing conjunctive PMCFG.

Proof. A sLMG clause is of the following form:

A(α1, . . . , αn) ` B1(x1,1, . . . , x1,n1),
. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

If the variables xi,j all are distinct, it is equivalent to the PMCFG rule:

A→ f [B1, . . . , Bδ]
f◦(〈x1,1, . . . , x1,n1〉 ,

. . . ,

〈xδ,1, . . . , xδ,nδ
〉) = 〈α1, . . . , αn〉

However, in sLMG, the variables in the right-hand side of a clause need not be
distinct. Assume therefore that xi′,j′ = xi,j = x. Now, introduce a new variable
x′ to replace x as xi′,j′ ; and replace each occurrence of x in the right-hand side
with the conjunction (x&x′).

The resulting rule is a syntactically correct conjunctive PMCFG rule, and
equivalent to the given sLMG clause. Furthermore, it is nonerasing since the
original clause is TNE. ut

Example 7. The resulting clause from the previous example,

VP(x ‘and ’ y, z) ` VP(x, z), VP(y, z)

is converted to the following conjunctive PMCFG rule:

VP → f [VP, VP]
f◦(〈x, z〉 , 〈y, z′〉) = 〈x ‘and ’ y, z& z′〉

4 Discussion

The results in this and earlier papers [1,2,3,4,5,11,17] give some insights into the
nature of the class of polynomial time recognizable languages. We can now try
to describe what kind of constructions are necessary (and sufficient) to be able
to describe any polynomial language, apart from ordinary string concatenation.

Multiple constituents Parse time complexity is directly related to the max-
imal number of discontinuous constitutents in a grammar [2,3,4,5,11,17].
Therefore there should be some way of coding discontinuous constitutents
in a grammar, be it with string tuples as in the formalisms discussed in this
paper, or with some kind of ingenious coding.

Reduplication The exponentially growing language a2n

is polynomially recog-
nizable, and we see no other (simple) way of describing that language but
to use string duplication – there can only be a finite number of multiple
constituents in a grammar, and an intersection cannot be used to duplicate
strings.

Intersection As noted by Boullier [4,5], the intersection of two polynomially
parsable languages is also polynomially parsable – simply recognize for each
language in turn. And since formalisms with multiple constituents and redu-
plication (e.g. PMCFG) are not closed under intersection, we have to intro-
duce intersection as an explicit operation.

Suppose we design a new grammar formalism having some construction which
cannot be decomposed into these constructions. Then our conjecture is that the
formalism cannot be parsable in polynomial time.

One such construction which we have already come across is erasing PMCFG
grammars – the possibility to erase linearization information of parts of the
syntax tree, as discussed in section 1.3. Without the intersection operation, any
erasing grammar can be transformed into an equivalent nonerasing grammar.
But for conjunctive PMCFG, it is not clear whether erasing syntax rules can be
transformed away. Either it is possible, in which case any conjunctive PMCFG
is polynomially parsable; or it is not possible, in which case conjunctive PMCFG
is not polynomial in general.

References

1. Seki, H., Matsumara, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88 (1991) 191–229

2. Groenink, A.: Mild context-sensitivity and tuple-based generalizations of context-
free grammar. Linguistics and Philosophy 20 (1997) 607–636

3. Groenink, A.: Surface without Structure — Word order and tractability issues in
natural language analysis. PhD thesis, Utrecht University (1997)

4. Boullier, P.: A cubic-time extension of context-free grammars. Grammars 3 (2000)
111–131

5. Boullier, P.: Range concatenation grammars. In: 6th International Workshop on
Parsing Technologies, Trento, Italy (2000) 53–64

6. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6 (2001) 519–535

7. Pollard, C.: Generalised Phrase Structure Grammars, Head Grammars and Natural
Language. PhD thesis, Stanford University (1984)

8. Weir, D.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania, Philadelphia, PA (1988)

9. Becker, T.: HyTAG: A New Type of Tree Adjoining Grammars. PhD thesis,
Universität des Saarlandes (1994)

10. Chiang, D.: Constraints on strong generative power. In: 39th Meeting of the
Association for Computational Linguistics. (2001) 124–131

11. Ljunglöf, P.: Expressivity and Complexity of the Grammatical Framework. PhD
thesis, Göteborg University (2004)

12. Kasami, T., Seki, H., Fujii, M.: Generalized context-free grammars and multiple
context-free grammars. IEICE Transactions J71-D-I (1988) 758–765

13. Bertsch, E., Nederhof, M.J.: On the complexity of some extensions of RCG parsing.
In: 7th International Workshop on Parsing Technologies. (2001) 66–77

14. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley (1979)

15. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland/Elsevier (1975)

16. Chiang, D.: Evaluating Grammar Formalisms for Applications to Natural Lan-
guage Processing and Biological Sequence Analysis. PhD thesis, University of
Pennsylvania (2004)

17. Satta, G.: Recognition of linear context-free rewriting systems. In: 30th Meeting
of the Association for Computational Linguistics, Newark, Delaware (1992) 89–95

	A Polynomial Time Extension of Parallel Multiple Context-Free Grammar
	Peter Ljunglöf

