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Department of Computing Science
Chalmers University of Technology
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Abstract

We describe how multimodal gram-
mars for dialogue systems can
be written using the Grammatical
Framework (GF) formalism. A
proof-of-concept dialogue system
constructed using these techniques
is also presented. The software
engineering problem of keeping
grammars for different languages,
modalities and systems (such as
speech recognizers and parsers) in
sync is reduced by the formal re-
lationship between the abstract and
concrete syntaxes, and by generat-
ing equivalent grammars from GF
grammars.

1 Introduction

We are interested in building multilingual
multimodal grammar-based dialogue systems
which are clearly recognisable to users as the
same system even if they use the system in
different languages or in different domains
using different mixes of modalities (e.g. in-
house vs in-car, and within the in-house do-
main with vs without a screen for visual inter-
action and touch/click input). We wish to be
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able to guarantee that the functionality of the
system is the same under the different condi-
tions.

Our previous experience with building such
multilingual dialogue systems is that there is
a software engineering problem keeping the
linguistic coverage in sync for different lan-
guages. This problem is compounded by the
fact that for each language it is normally the
case that a dialogue system requires more than
one grammar, e.g. one grammar for speech
recognition and another for interaction with
the dialogue manager. Thus multilingual sys-
tems become very difficult to develop and
maintain.

In this paper we will explain the nature of
the Grammatical Framework (GF) and how it
may provide us with a solution to this prob-
lem. The system is oriented towards the writ-
ing of multilingual and multimodal grammars
and forces the grammar writer to keep a col-
lection of grammars in sync. It does this
by using computer science notions of abstract
and concrete syntax. Essentially abstract syn-
tax corresponds to the domain knowledge rep-
resentation of the system and several concrete
syntaxes characterising both natural language
representations of the domain and representa-
tions in other modalities are related to a single
abstract syntax.

GF has a type checker that forces con-
crete syntaxes to give complete coverage of



the abstract syntax and thus will immediately
tell the grammar writer if the grammars are
not in sync. In addition the framework pro-
vides possibilities for converting from one
grammar format to another and for combining
grammars and extracting sub-grammars from
larger grammars.

2 The Grammatical Framework and
multilingual grammars

The main idea of Grammatical Framework
(GF) is the separation of abstract and concrete
syntax. The abstract part of a grammar defines
a set of abstract syntactic structures, called
abstract terms or trees; and the concrete part
defines a relation between abstract structures
and concrete structures.

As an example of a GF representation, the
following abstract syntax tree represents a
possible user input in our example dialogue
system.
GoFromTo

(PStop Chalmers)

(PStop Valand)

The English concrete syntax relates the query
to the string
I want to go from Chalmers

to Valand

The Swedish concrete syntax relates it to the
string
Jag vill åka från Chalmers

till Valand

The strings are generated from the tree in
a compositional rule-to-rule fashion. The
generation rules are automatically inverted to
parsing rules.

The abstract theory of Grammatical Frame-
work (Ranta, 2004) is a version of depen-
dent type theory, similar to LF (Harper et
al., 1993), ALF (Magnusson and Nordström,
1994) and COQ (Coq, 1999). What GF adds
to the logical framework is the possibility of
defining concrete syntax. The expressive-
ness of the concrete syntax has developed into

a functional programming language, similar
to a restricted version of programming lan-
guages like Haskell (Peyton Jones, 2003) and
ML (Milner et al., 1997).

The separation between abstract and con-
crete syntax was suggested for linguistics in
(Curry, 1963), using the terms “tectogram-
matical” and “phenogrammatical” structure.
Since the distinction has not been systemati-
cally exploited in many well-known grammar
formalisms, let us summarize its main advan-
tages.

Higher-level language descriptions The
grammar writer has a greater freedom in de-
scribing the syntax for a language. As illus-
trated in figure 1, when describing the abstract
syntax he/she can choose not to take certain
language specific details into account, such as
inflection and word order. Abstracting away
smaller details can make the grammars sim-
pler, both to read and understand, and to cre-
ate and maintain.

Multilingual grammar writing It is possi-
ble to define several different concrete syntax
mappings for one particular abstract syntax.
The abstract syntax could e.g. give a high-
level description of a family of similar lan-
guages, and each concrete mapping gives a
specific language instance, as shown in fig-
ure 2.
This kind of multilingual grammar can be
used as a model for interlingual translation
between languages. But we do not have to
restrict ourselves to only multilingual gram-
mars; different concrete syntaxes can be given
for different modalities. As an example, con-
sider a grammar for displaying time table in-
formation. We can have one concrete syntax
for writing the information as plain text, but
we could also present the information in the
form of a table output as a LATEX file or in Ex-
cel format, and a third possibility is to output
the information in a format suitable for speech
synthesis.



Abstract linguistic description Language specific details
(inflection, word order)

Figure 1: Higher-level language descriptions

Language 1

Abstract linguistic description · · ·

Language n

Figure 2: Multilingual grammars

Several descriptional levels Having only
two descriptional levels is not a restriction;
this can be generalized to as many levels as
is wanted, by equating the concrete syntax of
one grammar level with the abstract syntax of
another level. As an example we could have
a spoken dialogue system with a semantical, a
syntactical, a morphological and a phonologi-
cal level. As illustrated in figure 3, this system
has to define three mappings; i) a mapping
from semantical descriptions to syntax trees;
ii) a mapping from syntax trees to sequences
of lexical tokens; and iii) a mapping from lex-
ical tokens to lists of phonemes.
This formulation makes grammars similar to
transducers (Karttunen et al., 1996; Mohri,
1997) which are mostly used in morpholog-
ical analysis, but have been generalized to di-
alogue systems by (Lager and Kronlid, 2004).

Grammar composition A multi-level
grammar as described above can be viewed
as a “black box”, where the intermediate
levels are unknown to the user. Then we
are back in our first view as a grammar
specifying an abstract and a concrete level
together with a mapping. In this way we can
talk about grammar composition, where the
composition G2 ◦ G1 of two grammars is
possible if the abstract syntax of G2 is equal
to the concrete syntax of G1.

If the grammar formalism supports this, a

composition of several grammars can be pre-
compiled into a compact and efficient gram-
mar which doesn’t have to mention the inter-
mediate domains and structures. This is the
case for e.g. finite state transducers, but also
for GF as has been shown by (Ranta, 2005).

Resource grammars The possibility of
separate compilation of grammar composi-
tions opens up for writing resource grammars
(Ranta, 2005). A resource grammar is a fairly
complete linguistic description of a specific
language. Many applications do not need the
full power of a language, but instead want to
use a more well-behaved subset, which is of-
ten called a controlled language. Now, if we
already have a resource grammar, we do not
even have to write a concrete syntax for the
desired controlled language, but instead we
can specify the language by mapping struc-
tures in the controlled language into structures
in the resource grammar, as shown in figure 4.

3 Extending multilinguality to
multimodality

Parallel multimodality Parallel multi-
modality is a straightforward instance of
multilinguality. It means that the concrete
syntaxes associated with an abstract syntax
are not just different natural languages, but
different representation modalities, encoded
by language-like notations such as graphic



Semantics Syntax Morphology Phonology

Figure 3: Several descriptional levels

Controlled syntax Resource syntax Object language

Figure 4: Using resource grammars

representation formalisms. An example of
parallel multimodality is given below when a
route is described, in parallel, by speech and
by a line drawn on a map. Both descriptions
convey the full information alone, without
support from the other.

This raises the dialogue management is-
sue of whether all information should be pre-
sented in all modalities. For example, in the
implementation described below all stops are
indicated on the graphical presentation of a
route whereas in the natural language presen-
tation only stops where the user must change
are presented. Because GF permits the sup-
pression of information in concrete syntax,
this issue can be treated on the level of gram-
mar instead of dialogue management.

Integrated multimodality Integrated mul-
timodality means that one concrete syntax
representation is a combination of modalities.
For instance, the spoken utterance “I want
to go from here to here” can be combined
with two pointing gestures corresponding to
the two “here”s. It is the two modalities in
combination that convey the full information:
the utterance alone or the clicks alone are not
enough.

How to define integrated multimodality
with a grammar is less obvious than paral-
lel multimodality. In brief, different modality
“channels” are stored in different fields of a
record, and it is the combination of the differ-
ent fields that is sent to the dialogue system
parser.

4 Proof-of-concept implementation

We have implemented a multimodal route
planning system for public transport net-
works. The example system uses the Göte-
borg tram/bus network, but it can easily be
adapted to other networks. User input is han-
dled by a grammar with integrated speech
and map click modalities. The system uses a
grammar with parallel speech and map draw-
ing modalities. The user and system gram-
mars are split up into a number of modules in
order to simplify reuse and modification.

The system is also multilingual, and can be
used in both English and Swedish. For every
English concrete module shown below, there
is a corresponding Swedish module. The sys-
tem answers in the same language as the user
made the query in.

In addition to the grammars shown below,
the application consists of a number of agents
which communicate using OAA (Martin et
al., 1999). The grammars are used by the
Embedded GF Interpreter (Bringert, 2005) to
parse user input and generate system output.

4.1 Transport network
The transport network is represented by a set
of modules which are used in both the query
and answer grammars. Since the transport
network is described in a separate set of mod-
ules, the Göteborg transport network may be
replaced easily. We use cat judgements to de-
clare categories in the abstract syntax.
abstract Transport = {
cat
Stop;



}

The Göteborg transport network grammar
extends the generic grammar with construc-
tors for the stops. Constructors for abstract
syntax terms are declared using fun judge-
ments.
abstract Gbg = Transport ** {
fun
Angered : Stop;
AxelDahlstromsTorg : Stop;
Bergsjon : Stop;
...

}

4.2 Multimodal input
User input is done with integrated speech and
click modalities. The user may use speech
only, or speech combined with clicks on the
map. Clicks are expected when the user
makes a query containing “here”.

Common declarations The QueryBase

module contains declarations common to all
input modalities. The Query category is used
to represent the sequentialization of the mul-
timodal input into a single value. The Input

category contains the actual user queries,
which will have multimodal representations.
The Click category is also declared here,
since it is used by both the click modality and
the speech modality, as shown below.
abstract QueryBase = {
cat
Query;
Input;
Click;
fun
QInput : Input -> Query;

}

Since QueryBase is language neutral and
common to the different modalities, it has a
single concrete syntax. In a concrete module,
lincat judgements are used to declare the lin-
earization type of a category, i.e. the type of
the concrete representations of values in the
category. Note that different categories may
have different linearization types. The con-
crete representation of abstract syntax terms

is declared by lin judgements for each con-
structor in the abstract syntax.

Values in the Input category, which are in-
tended to be multimodal, have records with
one field per modality as their concrete rep-
resentation. The s1 field contains the speech
input, and the s2 field contains the click input.
Terms constructed using the QInput construc-
tor, that is sequentialized multimodal queries,
are represented as the concatenation of the
representations of the individual modalities,
separated by a semicolon.
concrete QueryBaseCnc of QueryBase = {
lincat
Query = { s : Str };
Input = { s1 : Str; s2 : Str };
Click = { s : Str };
lin
QInput i = { s = i.s1 ++ ";" ++ i.s2 };

}

Click modality Click terms contain a list of
stops that the click might refer to:
abstract Click = QueryBase ** {
cat
StopList;
fun
CStops : StopList -> Click;
NoStop : StopList;
OneStop : String -> StopList;
ManyStops : String -> StopList -> StopList;

}

The same concrete syntax is used for clicks
in all languages:
concrete ClickCnc of Click = QueryBaseCnc ** {
lincat
StopList = { s : Str };
lin
CStops xs = { s = "[" ++ xs.s ++ "]" };
NoStop = { s = "" };
OneStop x = { s = x.s };
ManyStops x xs = { s = x.s ++ "," ++ xs.s };

}

Speech modality The Query module adds
basic user queries and a way to use a click to
indicate a place.
abstract Query = QueryBase ** {
cat
Place;
fun
GoFromTo : Place -> Place -> Input;
GoToFrom : Place -> Place -> Input;
PClick : Click -> Place;

}



This module has a concrete syntax using
English speech. Like terms in the Query cat-
egory, Place terms are linearized to records
with two fields, one for each modality.
concrete QueryEng of Query = QueryBaseCnc ** {
lincat
Place = {s1 : Str; s2 : Str};
lin
GoFromTo x y = {
s1 = ["i want to go from"] ++ x.s1

++ "to" ++ y.s1;
s2 = x.s2 ++ y.s2

};
GoToFrom x y = {
s1 = ["i want to go to"] ++ x.s1

++ "from" ++ y.s1;
s2 = x.s2 ++ y.s2

};
PClick c = { s1 = "here"; s2 = c.s };

}

Indexicality To refer to her current loca-
tion, the user can use “here” without a click,
or omit either origin or destination. The sys-
tem is assumed to know where the user is
located. Since “here” may be used with or
without a click, inputs with two occurrences
of “here” and only one click are ambiguous.
A query might also be ambiguous even if it
can be parsed unambiguously, since one click
can correspond to multiple stops when the
stops are close to each other on the map.

These are the abstract syntax declarations
for this feature (in the Query module):
fun
PHere : Place;
ComeFrom : Place -> Input;
GoTo : Place -> Input;

The English concrete syntax for this is
added to the QueryEng module. Note that
the click (s2) field of the linearization of an
indexical “here” is empty, since there is no
click.
lin
PHere = { s1 = "here" ; s2 = [] };
ComeFrom x = {
s1 = ["i want to come from"] ++ x.s1;
s2 = x.s2

};
GoTo x = {
s1 = ["i want to go to"] ++ x.s1;
s2 = x.s2

};

Tying it all together The TransportQuery
module ties together the transport network,
speech modality and click modality modules.
abstract TransportQuery

= Transport, Query, Click ** {
fun
PStop : Stop -> Place;

}

4.3 Multimodal output
The system’s answers to the user’s queries are
presented with speech and drawings on the
map. This is an example of parallel multi-
modality as the speech and the map drawings
are independent. The information presented
in the two modalities is however not identical,
as the spoken output only contains informa-
tion about where to change trams/buses. The
map output shows the entire path, including
intermediate stops.

Abstract syntax for routes The abstract
syntax for answers (routes) contains the infor-
mation needed by all the concrete syntaxes.
All concrete syntaxes might not use all of the
information. A route is a non-empty list of
legs, and a leg consists of a line and a list of
at least two stops.
abstract Route = Transport ** {
cat
Route;
Leg;
Line;
Stops;
fun
Then : Leg -> Route -> Route;
OneLeg : Leg -> Route;
LineLeg : Line -> Stops -> Leg;
NamedLine : String -> Line;
ConsStop : Stop -> Stops -> Stops;
TwoStops : Stop -> Stop -> Stops;

}

Concrete syntax for drawing routes The
map drawing language contains sequences
of labeled edges to be drawn on the map.
The string “drawEdge (6, [Chalmers, Vas-
aplatsen]); drawEdge (2, [Vasaplatsen, Gron-
sakstorget, Brunnsparken]);” is an example
of a string in the map drawing language de-
scribed by the RouteMap concrete syntax.



The TransportLabels module extended by
this module is a simple concrete syntax for
stops.
concrete RouteMap of Route

= TransportLabels ** {
lincat
Route, Leg, Line, Stops = { s : Str } ;
lin
Then l r = { s = l.s ++ ";" ++ r.s };
OneLeg l = { s = l.s ++ ";" };
LineLeg l ss =
{ s = "drawEdge" ++ "(" ++ l.s ++ ","

++ "[" ++ ss.s ++ "]" ++ ")" };
NamedLine n = { s = n.s };
ConsStop s ss = { s = s.s ++ "," ++ ss.s };
TwoStops x y = { s = x.s ++ "," ++ y.s };

}

English concrete syntax for routes In the
English concrete syntax we wish to list only
the first and last stops of each leg of the route.
The TransportNames module gives English
representations of the stop names by replacing
all non-English letters with the corresponding
English ones in order to give the speech rec-
ognizer a fair chance.
concrete RouteEng of Route

= TransportNames ** {
lincat
Route, Leg, Line = { s : Str } ;
Stops = { start : Str; end : Str };
lin
Then l r = { s = l.s ++ "." ++ r.s } ;
OneLeg l = { s = l.s ++ "." };
LineLeg l ss =
{ s = "Take" ++ l.s ++ "from" ++ ss.start

++ "to" ++ ss.end };
NamedLine n = { s = n.s };
ConsStop s ss = { start = s.s;

end = ss.end };
TwoStops s1 s2 = { start = s1.s;

end = s2.s };
}

5 Related Work

Johnston (1998) describes an approach to
multimodal parsing where chart parsing is ex-
tended to multiple dimensions and unification
is used to integrate information from different
modalities. The approach described in this pa-
per achieves a similar result by using records
along with the existing unification mechanism
for resolving discontinuous constituents. The
main advantages of our approach are that it

supports both parsing and generation, and that
it does not require extending the existing for-
malism.

6 Conclusion

GF provides a solution to the problems named
in the introduction to this paper. Abstract syn-
tax can be used to characterise the linguistic
functionality of a system in an abstract lan-
guage and modality independent way. The
system forces the programmer to define con-
crete syntaxes which completely cover the ab-
stract syntax. In this way, the system forces
the programmer to keep all the concrete syn-
taxes in sync. In addition, since GF is oriented
towards creating grammars from other gram-
mars, our philosophy is that it should not be
necessary for a grammar writer to have to cre-
ate by hand any equivalent grammars in dif-
ferent formats. For example, if the grammar
for the speech recogniser is to be the same as
that used for interaction with dialogue man-
agement but the grammars are needed in dif-
ferent formats, then there should be a com-
piler which takes the grammar from one for-
mat to the other. Thus, for example, we have
a compiler which converts a GF grammar
to Nuance’s format for speech recognition
grammars. The idea of generating context-
free speech recognition grammars from gram-
mars in a higher-level formalism has been de-
scribed by Dowding et al. (2001), and imple-
mented in the Regulus system (Rayner et al.,
2003).

Another reason for using GF grammars has
to do with the use of resource grammars and
cascades of levels of representation as de-
scribed in section 2. This allows for the hid-
ing of grammatical detail from language and
the precise implementation of modal interac-
tion for other modalities. This enables the
dialogue system developer to reuse previous
grammar or modal interaction implementa-
tions without herself having to reprogram the
details for each new dialogue system. Thus



the dialogue engineer need not be a gram-
mar engineer or an expert in multimodal in-
terfaces.
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