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Abstract

We examine how corpus-based techniques commonly used to
identify collocations and collostructions can be used to distin-
guish between spatial descriptions that are sensitive to geomet-
ric and functional meaning components and whether preposi-
tional functional knowledge can be recovered from instances
of preposition use from text corpora.
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Introduction
Spatial descriptions with prepositions such as ‘The flowers
are in the vase’ are not only referring to geometric proper-
ties of the scene - the arrangement of objects related by the
preposition in the Euclidean space - but are also sensitive to
some aspects of our world knowledge about these objects, for
example the way they interact with each other (Herskovits,
1986). Thus, it is normally not the case that the flowers
are entirely contained in the vase but only their stalks are.
Furthermore, the contribution of the geometrical and world
knowledge component to the meaning of spatial descriptions
in not equal with every preposition. For example, (Coventry,
Prat-Sala, & Richards, 2001) show in the experiments with
human observers of images of a man in the rain holding an
umbrella where the umbrella is providing a varying degree of
protection from the rain that ‘above’ is more sensitive to the
geometrical component than ‘over’ and ‘over’ is more sensi-
tive to the object function component than ‘above’. Descrip-
tions of ‘the umbrella is over a man’ were considered accept-
able even in cases where the umbrella was held horizontally
but was providing protection from the rain.

Most previous work on generating spatial descriptions
grounds the descriptions in contextual models that are either
assumed a-priori (Dale & Haddock, 1991) or that are gen-
erated from sensor-data (Regier & Carlson, 2001; Dobnik,
2009; J. D. Kelleher & Costello, 2009) using functions that
focus solely on the geometric properties of the scene and
ignore the functional component of spatial semantics. This
is primarily because (i) it is not always straightforward to
identify components of functional knowledge a preposition
is sensitive to (Garrod, Ferrier, & Campbell, 1999); and (ii)
it is challenging to automatically recover and represent such
knowledge for every object that we would relate in a descrip-
tion. We would have to develop a complex ontology of object

properties and then associate spatial prepositions (either man-
ually or automatically) with rules (see for example (Garrod
et al., 1999, p.170)) that pick out certain properties of ob-
jects that are relevant in their interaction or for the relation
defined by the preposition. In this paper we take a different,
less expensive approach. Assuming that a preposition selects
for some functional semantic component and that both argu-
ments of this preposition are sensitive to this component we
should be able to capture it probabilistically by examining ex-
amples of description use in a corpus of text without precisely
identify what this component is.

In this paper we describe two corpus studies related to the
identification of prepositions that are sensitive to functional
knowledge. In the first study we examine whether one can
tell whether a particular preposition is more sensitive to func-
tional than geometric knowledge or vice versa and therefore
attempt to replicate the results of the aforementioned psycho-
logical studies. Having this information during generating
descriptions of spatial scenes we can then decide which com-
ponent - the geometric or the functional one - should be ap-
plied for a particular preposition, or ideally in a combined
model, given more weight. For grounding spatial descrip-
tions in scene geometry any of the existing models such as
(Regier & Carlson, 2001) may be used. However, a model
of functional knowledge must be built from corpus. For this
we use methods that are common in computational distribu-
tional semantics in the analysis of collocations or collostruc-
tions (Stefanowitsch & Gries, 2003). A part of the novelty
of our approach is that we apply corpus knowledge extraction
techniques to generating grounded descriptions of scenes.

Spatial descriptions
As stated before spatial descriptions occur as particular con-
structions consisting of a spatial preposition, for example ‘in’,
which typically takes two arguments, a Figure and Ground
(Talmy, 1983): ‘flowers’ and ‘vase’. Ground is the object
whose location is already known and is therefore integrated in
the conversation common ground wheres Figure is the object
whose location is under discussion and which is consequently
resolved by relating it to the ground. Spatial descriptions may
contain simple prepositions such as ‘in’ or composite prepo-
sitions such as ‘on the left side of’ and alike.

To obtain semantic representations of the form Preposi-
tion(Figure,Ground) we processed our corpora (see below)



with Stanford CoreNLP tools1 from which we used depen-
dency parses (Marneffe, MacCartney, & Manning, 2006).2

Unfortunately, the resulting dependency parses are not yet
quite what we require nor do prepositions occur in the same
dependencies each time. For example, even simple construc-
tions such as (1) ‘The flowers in the vase’ and (2) ‘The flowers
are in the vase’ result in different dependencies parses:

root(ROOT-0, flowers-2) root(ROOT-0, are-3)
det(flowers-2, The-1) det(flowers-2, The-1)
det(vase-5, the-4) nsubj(are-3, flowers-2)
prep in(flowers-2, vase-5) det(vase-6, the-5)

prep in (are-3, vase-6)

A series of rules was designed to rewrite these variations into
single predicates such as in(flowers,vase). Finally, composite
spatial descriptions display a considerable structural variation
which may be reflected in their dependency parses, for exam-
ple ‘on the left side of’, ‘on the left of’ and ‘on left of’. Such
composite descriptions were rewritten as single prepositions
‘on left side of’ and ‘on left of’ where definite articles were
left out. The nominal arguments of spatial prepositions were
taken as single word expressions as identified by the depen-
dency parser. Their adjectival (or sometimes adverbial) mod-
ifiers and determiners were not taken into account. All words
were stemmed and converted to lower case. For each corpus
we then obtained frequency counts over the resulting tokens.

Identifying functional and geometric spatial
descriptions

Entropy of figure and ground pairs
We hypothesise that prepositions that are sensitive either to
geometric or functional knowledge could be distinguished by
examining the entropy (Shannon, 1948; Manning & Schütze,
1999, p.61) of their nominal arguments. Entropy is both sen-
sitive to the frequency of tokens and the number of types cor-
responding to such tokens. It is low if the number of cate-
gories is small and their frequencies are high. This is what
we expect of prepositions that impose functional constraints
on their arguments as these refer to a more restricted set of sit-
uations where such functional constraints hold. On the other
hand, geometrically sensitive prepositions are not governed
by such constraints but mostly by geometrical scene arrange-
ments and the entropy of their figure and ground pair tokens is
expected to be higher. Of course, there will also be constraints
on the number of objects that can be reasonably related in ge-
ometric space or simply the tendencies to prefer certain ob-
jects in a particular corpus but we expect that such constraints
will be less prominent than the functional constraints.

To calculate entropy we use the standard equation

H(X) =−∑
x∈X

p(x)log2 p(x).

1http://nlp.stanford.edu/software/corenlp.shtml
2http://nlp.stanford.edu/software/lex-parser.shtml We use col-

lapsed dependencies with processed coordinating conjunctions.

To make figures comparable the entropy values have been
normalised by the maximum attainable entropy −log2(n)
where n is the size of the set (X).

General newspaper text
In our first experiment we selected a collection of period-
ical texts (52,510,070 sentences) from the British National
Corpus (BNC). Overall 406 preposition types were automat-
ically extracted. However, our analysis focused on 6 hand
picked prepositions that based on the results in the litera-
ture we felt would be an interesting set to examine with re-
spect to the functional versus geometric semantics. The first
to prepositions we included in our analysis were the prepo-
sitions ‘above’ and ‘over’. The motivation here being that
clearly the semantics of these prepositions do overlap, how-
ever, at the same time the literature would suggest that ‘over’
is more sensitive to functional effects then ‘above’, see for ex-
ample (Coventry et al., 2001). We also included ‘on’ and ‘in’
and the composite prepositions that they prefix, for example
‘in the left side of’ or ‘on the right of’. The literature sug-
gest that ‘on’ and ‘in’ have have a functional character in the
same way as ‘over’ (Garrod et al., 1999) while the composite
variants are likely to be geometrically defined (J. Kelleher &
Ross, 2010). Although the results were promising we identi-
fied a number of issues that impacted on the study including:
(a) our choice of corpus was problematic because it consisted
of newspaper texts and therefore functional prepositions also
have many other non-spatial uses, for example temporal uses
such as ‘in/over three days’; and (b) the number of tokens
for some subject-object type were low (a single occurrence)
in spite of corpus size and consequently, in these cases, the
entropy was dominated simply by frequency. Consequently,
we decided to rerun our methodology on more appropriate,
spatially focused, datasets, in particular datasets of image de-
scriptions.

Descriptions of images
The IAPR TC-12 Benchmark corpus (Grubinger, Clough,
Müller, & Deselaers, 2006)3 contains 20,000 images and their
corresponding linguistic descriptions. We only use the text
part of this corpus, the descriptions from complete English
annotations entered under the <description> xml tag. This
contains a description of the scene on the photograph, for
example in 25251.eng we find ‘four adults are sitting and
playing with small children on a carpet on a red floor; four
children are sitting at a table in the foreground; a dark blue
wall and a wooden shelf with many toys on it in the back-
ground;’. As demonstrated by this example, sentences (sep-
arated by semi-colons for convenient parsing) contain a high
count of spatial prepositions and therefore this corpus is par-
ticularly suitable for our task.

We also use the linguistic descriptions from the 8K Image-
Flickr dataset (Rashtchian, Young, Hodosh, & Hockenmaier,
2010)4 which contains 8108 images. Each image is accom-

3http://imageclef.org/photodata
4http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html



panied by simple sentences describing entities and actions in
images. Each sentence is written by a different annotator.
The authors of the corpus assessed the annotations and en-
sured their quality. For example ‘The three children are play-
ing on the rails’, ‘Three children climb on a livestock fence’
and ‘Three children stand and climb on a fence.’, etc. All sen-
tences thus describe the same scene in a single sentence but
from a slightly different describer’s viewpoint.

From a manual analysis of examples from both corpora we
get an impression that IAPR TC-12 Benchmark corpus gives
us more examples of prepositional use that we are looking for
than the 8K ImageFlickr dataset since because in the IAPR
TC-12 Benchmark corpus the annotators seem more likely to
describe relations between objects on the picture (we hypoth-
esis that this is because they can use many sentences) whereas
in 8K ImageFlickr corpus, being restricted to a single sen-
tence, they describe events that are taking place in the pic-
ture which our dependency rewrite rules cannot capture com-
pletely. For the analyses described below we merged both
corpora and treated them as a single corpus to obtain prepo-
sition, figure and ground counts. Note that only words that
have been extracted successfully are used in the calculations
of the statistical measures and hence the success of extraction
only has an effect on the number of examples extracted and
does not bias the measures calculated.

Entropy results
We processed the combined IAPR TC-12 Benchmark and
8K ImageFlickr corpus using the same process as we de-
scribed earlier: Stanford CoreNLP analysis with stopwords
excluded and all items stemmed and written to lowercase;
followed by the application of our hand-crafted rewrite rule
to standardise the analysis of prepositions into single predi-
cates and to merge composite spatial descriptions. This pro-
cess extracted extracted 98 preposition types, including both
simple and composite prepositions, with a total of 96,512 to-
ken occurrences. The list was manually checked and types
that were not prepositions but were identified as such by the
automatic processing were excluded. Similarly we also ex-
cluded all prepositions that could not have a spatial usage,
for example ’with’. This resulted in a list of 77 preposition
types (54,428 token occurrences). The entropy of preposition
figure-ground arguments is biased by low token counts of the
latter. For example, if a preposition occurs only with one
figure-ground argument type which also has a token count
1 (at gray bottom of, in different front of, on front of) , the
entropy is 0. If a preposition occurs, say with two or more
figure-ground argument types where each type has a single
token count (to left of (2), alongside (4) and close to (5)),
the entropy is 1.5 Clearly, such cases are not very informa-
tive of a preposition’s figure-ground selection properties and
all prepositions which occur with less than 10 figure-ground

5Many of these were composite spatial relations that were cre-
ated by us by merging dependency relations. No doubt tweaking the
rules further would provide more optimal compositions with better
token counts.

tokens were removed from the dataset. There were 34 such
cases or 108 token occurrences. Note that here we consider
and count both figure and ground as token pair and as a result
the counts are lower than if figure and ground were counted
independently. This is because we assume that a functional
spatial relation is defined between both a figure and a ground.
Finally, we end up with 43 preposition types (54,320 token
occurrences) for which we calculate normalised entropies of
their figure ground pairs as shown in Table 1.

According to experimental studies (Garrod et al., 1999;
Coventry et al., 2001) prepositions ‘in’, ‘on’ and ‘over’ have
been identified as being influenced by a functional compo-
nent and we hypothesised that this should reflect in the lower
entropy of their figure and ground arguments. Examining Ta-
ble 1 the prediction seems to be confirmed as these prepo-
sitions are ranked as 3, 10 and 6 respectively, thus in the
top quarter of the preposition list. Also, (Coventry et al.,
2001) contrast the functional ‘over’ (rank 6) with the geomet-
ric ‘above’ (rank 23) which are ranked considerably differ-
ently. Unfortunately, we lack experimental results to confirm
that other prepositions that occur with these prepositions are
influenced by a functional component. What we can gener-
alise from Table 1 and the preceding observation is that not
all spatial descriptions are equally selective of their figure and
ground arguments, those with lower entropy are more selec-
tive then those with higher entropy. Such selectiveness may
be linked to the requirement of a functional semantic compo-
nent between the figure and ground arguments. We can there-
fore not make a clear-cut distinction between functional and
geometric descriptions but we can make conclusions about
their tendencies. In terms of natural language generation the
figures in Table 1 could be used in determining the weight the
geometric and functional model should be given while gener-
ating a description with a particular preposition.

A well known difficulty of a shallow-corpus based ap-
proach to natural language semantics is that it is not straight-
forward to distinguish between the effects of other relations
existent in the text that may be at play simultaneously. For ex-
ample, the above selectional tendencies of prepositions could
be an artefact of a bias in the corpus; for example, the cor-
pus may be biased towards a certain kind of description or
because the annotators prefer to use one preposition over
another. Although both factors were reasonably minimised
in our case by using specialist corpora we did notice that
’on left side of’ which comes on the top with rank 1 is pos-
sibly because of an annotator bias towards this description:
the same description is repeated in several consecutive sen-
tences. On the other hand, such bias may be annotators func-
tional knowledge about the preposition usage and hence the
annotator bias and functional knowledge may not be straight-
forwardly distinguishable.

We hypothesised that only simple prepositions are func-
tional but their composite variants are geometric. We as-
sumed this is because their components such as ‘side’, ‘front’



Rank Preposition FG-T Tks Norm FG ent
1 on left side of 5 31 0.35448
2 underneath 31 74 0.65535
3 in 7584 34846 0.6714
4 onto 49 86 0.79109
5 down 83 142 0.81099
6 over 440 736 0.83106
7 at 1393 2726 0.83148
8 on top of 61 87 0.83409
9 against 50 68 0.85171
10 on 4897 10085 0.852
11 on side of 46 63 0.87644
12 into 78 110 0.88426
13 around 156 220 0.89393
14 at bottom of 13 16 0.89445
15 on back of 9 11 0.89489
16 through 179 245 0.89738
17 in front of 1278 1938 0.90998
18 after 28 35 0.91088
19 behind 318 437 0.91235
20 at top of 46 59 0.91715
21 before 25 30 0.91848
22 under 167 220 0.92096
23 above 145 190 0.9228
24 to 114 138 0.94187
25 between 129 153 0.9508
26 below 13 14 0.96248
27 towards 66 74 0.96354
28 near 608 692 0.97035
29 by 87 95 0.97195
30 across 76 81 0.97906
31 along 119 127 0.98112
32 next to 168 178 0.98384
33 outside of 29 30 0.98641
34 outside 70 73 0.98672
35 inside 58 60 0.98871
36 beneath 10 10 1
37 out of 11 11 1
38 amidst 13 13 1
39 past 13 13 1
40 out 15 15 1
41 among 21 21 1
42 toward 33 33 1
43 beside 34 34 1

Table 1: Prepositions ranked by the normalised entropy
(Norm FG ent) of their figure-ground (FG) arguments. FG-T
shows the number of the figure-ground types that a preposi-
tion occurs with, Tks is the number of figure-ground tokens
which is also equal to the preposition tokens. The total num-
ber of tokens is 54,320.

and ‘bottom’ appear to introduce a geometric frame.6 How-
ever, this is not confirmed by Table 1 where the compos-
ite relations tend to rank equally high as their simple vari-
ants. Furthermore, it even appears that composite spatial
relations cluster with their simple variants. For example,
‘on left side of’ (1), ‘onto’ (4), ‘on top of’ (8), ‘on side of’
(11) and ‘on back of’ (15) are close to ‘on’ (10). Slightly less
well, ‘into’ (12) and ‘in front of’ (17) cluster with ‘in’ (3)
and ‘at bottom of’ (14), ‘at top of’ (20) cluster with ‘at’ (7)
in the same half of the table. On the other hand, in the bottom
half of the table we get ‘outside of’ (33), ‘outside’ (34), ‘out
of’ (37) and ‘out’ (40); ‘next to’ (32), ‘by’ (29) and ‘near’
(28); ‘towards’ (27), ‘across’ (30), ‘along’ (31) and ‘to’ (24).
‘amidst’ (38) is close to ‘among’ (41). Antonyms also appear
to have similar ranks. For example, ‘under’ (22), ‘above’ (23)
and ‘below’ (26); ‘over’ (6) pairs with ‘underneath’ (2) at the
top of the list but not ‘beneath’ (36); ‘outside of’ (33), ‘out-
side’ (34) and ‘inside’ (35); ‘after’ (18) and ‘before’ (21).
Overall, it appears that the entropy of a preposition’s argu-
ments does reflect semantic similarity between prepositions.

To further test the relationship between composite and non-
composite prepositions we separated them into two lists pre-
serving their ranking order and calculated Pearson’s correla-
tion coefficient on their normalised entropies of figure-ground
tokens. There are only 9 composite spatial descriptions
(‘on left side of’, ‘on top of’, ‘on side of’, ‘at bottom of’,
‘on back of’, ‘in front of’, ‘at top of’, ‘outside of’, and
‘out of’) and so only the first 9 corresponding simple prepo-
sitions were considered in the calculation (‘underneath’, ‘in’,
‘onto’, ‘down’, ‘over’, ‘at’, ‘against’, ‘on’, and ‘into’). There
is high correlation between the lists 0.80476, p = 0.00587
confirming that the correlation is statistically significant.
Given that the lists were built by preserving the order of items
from the original ranking list shown in Table 1 this shows that
composite relations are equally distributed along the entropy
spectrum with non-composite ones; and since we only con-
sider the items up to ‘into’ from the original list, the compos-
ite preposition correlate highly with the simple prepositions
from the first half of the list. Thus, they show a functional
character.

Although in the aggregate there is a high correla-
tion between composite and non-composite spatial prepo-
sitions, if we focus our analysis on a particular non-
composite preposition and its variants we see that this cor-
relation breaks down. Correlating the entropies of the list
(‘on left side of’, ‘on top of’, ‘on side of’, ‘at bottom of’,
‘on back of’, ‘in front of’, ‘at top of’, ‘outside of’, and
‘out of’) with the list (‘on’, ‘on’, ‘on’, ‘at’, ‘on’, ‘in’, ‘at’,
‘outside’, ‘out’) gives us a low Pearson’s correlation coef-
ficient 0.18470 which is statistically non-significant (p =
0.63096). The lack of correlation between particular compos-
ite and non-composite prepositions points to the fact that the

6Following (Garrod et al., 1999) we can see that functional
knowledge for ‘in’ and ‘on’ may introduce geometric constraints,
in this case location control.



composite prepositions do have a distinctive semantics from
their non-composite counterparts (despite the fact that our
aggregate analysis of the correlation between non-composite
and composite suggests that non-composite prepositions do
have a functional aspect to their semantics).

Generating descriptions with functional spatial
prepositions

We argue that the entropy analysis method described previ-
ously allows us to identify the degree to which a preposition
is sensitive to functional knowledge. However, we also have
to build a model of such knowledge. We assume that func-
tional knowledge is encoded implicitly in the choice of the
figure-ground arguments that a preposition takes. Therefore,
to build a (shallow) model of prepositional functional knowl-
edge one can evaluate the strength of association between the
figure and ground pair and the preposition.

Log likelihood ratio
Log likelihood ratio (Dunning, 1993; Manning & Schütze,
1999, p.172) is a well known measure used in the analysis of
collocations and collostructions. It is a log ratio of the like-
lihood of Hypothesis 1 (H1) over Hypothesis 2 (H2), where
Hypothesis 1 states that words in a particular bigram w1w2
are independent and Hypothesis 2 states that they are depen-
dent:

logλ = log
L(H1)

L(H2)

Log likelihood ratio therefore tells us how many times more
likely H2 is compared to H1. Another useful property of the
log likelihood ratio is that−2logλ approaches asymptotically
the χ2 distribution which means that its values can be tested
for statistical significance using the χ2 distribution.

Prepositional collostructions
In natural language generation we typically (but not always)
start with figure and ground objects which we want to relate
with a preposition. Translating this to the bi-gram scenario of
the log likelihood ratio this means that a particular figure-
ground pair is taken as w1 = f g and we want to evaluate
dependence of the preposition w2 = prep on it. To calcu-
late the log likelihood ratio for a particular figure-ground pair
and a preposition we need to find the occurrence count of
that f g pair C( f g), the occurrence count of that preposition
C(prep) and the occurrence count where both of them occur
together C( f g, prep). Overall, we extracted 32,462 figure-
ground types which occur with various prepositions 96,749
times in total. 17,575 figure-ground types occur only once,
26,140 less than 5 times.

Table 2 gives some examples of the calculated log likeli-
hood ratios. For example, it shows that the most likely prepo-
sition to relate the figure ‘boy’ with the ground ‘shirt’ is ‘in’,
another slightly less likely possibility is ‘with’. The third col-
umn of the table from the right gives the p value with which

H1 may be rejected and the last columns tells us how many
times a given bigram (fg, prep) is more likely under H2 than
H1. For example, it is 5,18×1052 more likely that ‘boy*shirt’
are used with ‘in’ rather than any random word.

In the second example we examine what figures and prepo-
sitions the ground ‘umbrella’ is most strongly associated
with (for the sake of brevity we exclude some examples).
The bottom half of Table 2 shows that ‘umbrella’ is most
strongly associated with the ground ‘people’ and the prepo-
sition ‘with’. ‘child*umbrella’ is more strongly associated
with ‘under’ than ‘with’ although it occurs with ‘under’ only
once and two times with ‘with’. This is because ‘over’ oc-
curs less frequently overall. However, this is not the case for
‘woman*umbrella’ which is more strongly associated with
‘with’ than ‘under’ but the difference is very small.

When generating spatial descriptions a system needs to de-
cide the order it which it will check the appropriateness of
different spatial relations. This checking can be computa-
tionally expensive, particular in a situated system where vi-
sually processing routines may need to be invoked. We ar-
gue that the log likelihood ratio between the a target figure-
ground pair and the set of candidate prepositions can provide
a useful guide in ordering the way the system evaluates the
prepositions for inclusion in the output. The functional rela-
tions between objects and prepositions captured by this cor-
pus study gives an important insight how humans view sit-
uations. However, basing generation purely on functional
knowledge is not enough for successful descriptions of visual
scenes. The functional component may interact with a geo-
metric component: for example, when do we choose ‘over’
and when ‘under’.7 It appears that geometric and functional
knowledge must be somehow integrated.

Conclusion and further work
In this paper we discuss two studies of identifying functional
relations that exist between spatial prepositions and their ar-
gument. In the first study we show that prepositions with
stronger functional component have more restricted argument
selection properties than prepositions more strongly influ-
enced by a geometric component. However, there seems to
be no clear division between the two kinds of prepositions
but different degrees of tendency. In the second study, we at-
tempted to build a model of functional knowledge between
prepositions and their arguments using techniques from col-
location/collostruction analysis and discuss how such knowl-
edge could be used in natural language generation.

The current work could be extended in many different
ways. It appears that most composite descriptions contain-
ing ‘left’ and ‘right’ did not make it to Table 1. A plausible
reason for this is that our dependency extraction rules could
not capture all the occurrences. No doubt, further tweaking of
these rules and getting to know the corpora better would give
us more examples. Another important direction is to integrate

7Interestingly, the corpus does not contain any occurrences of
‘over’ with ‘umbrella’.



−2logλ C( f g) C(prep) C( f g, prep) f g prep p p < 0.05 H2 vs. H1

242.76 282 34,887 229 boy*shirt in 9.86 ×10−55 yes 5,18 ×1052

26.98 282 30,717 51 boy*shirt with 2.06 ×10−7 yes 721,655.5
2.85 282 34 1 boy*shirt without 0.091461204 no 4.155
1.51 282 74 1 boy*shirt underneath 0.219177447 no 2.127

16.06 7 30,717 7 people*umbrella with 6.13 ×10−5 yes 3076.878
12.16 1 222 1 boy*umbrella under 0.000488543 yes 436.788

9.39 2 222 1 table*umbrella under 0.002180673 yes 109.447
8.35 3 222 1 child*umbrella under 0.003859083 yes 65.006
6.88 3 30,717 3 sculpture*umbrella with 0.008696962 yes 31.25
6.83 6 30,717 5 woman*umbrella with 0.008960309 yes 30.428
6.78 6 222 1 woman*umbrella under 0.009244184 yes 29.592
4.59 2 30,717 2 girl*umbrella with 0.032172078 yes 9.921
2.29 1 30,717 1 man*umbrella with 0.129822168 no 3.15
1.53 3 30,717 2 child*umbrella with 0.215491662 no 2.153

Table 2: Log likelihood ratios for ‘boy*shirt’ and ‘umbrella’ as ground

the model of functional knowledge in a natural language gen-
eration system, for example for describing images that are a
part of the corpora from which the sentences were extracted
and asking human evaluators to judge the appropriateness of
such descriptions. It would be interesting to examine how ac-
curately a system can generate descriptions by using purely
functional knowledge without resorting to help of geomet-
ric models. Finally, we are interested how to integrate the
model of functional knowledge with a geometric model for
spatial descriptions as outlined in (Dobnik, Cooper, & Lars-
son, 2013).
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