transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity

Författare och institution:
Roland Becker (-); Erik Burman (-); Peter Hansbo (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Computer Methods in Applied Mechanics and Engineering, 198 ( 41-44 ) s. 3352-3360
ISSN:
0045-7825
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2009
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
In this note we propose a finite element method for incompressible (or compressible) elasticity problems with discontinuous modulus of elasticity (or, if compressible, Poisson’s ratio). The problem is written on mixed form using P1-continuous displacements and elementwise P0 pressures, leading to the possibility of eliminating the pressure beforehand in the compressible case. In the incompressible case, the method is augmented by a stabilization term, penalizing the pressure jumps. We show a priori error estimates under certain regularity hypothesis. In particular we prove that if the exact solution is sufficiently smooth in each subdomain then the convergence order is optimal.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik
TEKNIK OCH TEKNOLOGIER ->
Maskinteknik ->
Teknisk mekanik
Nyckelord:
Nitsche’s method, Extended finite element method, Incompressible elasticity, Stokes’ problem, Discontinuous coefficients, Surface tension
Postens nummer:
97621
Posten skapad:
2009-09-08 11:18
Posten ändrad:
2016-08-15 16:09

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007