transparent gif


Ej inloggad.

Göteborgs universitets publikationer

On the potential role of glutamate transport in mental fatigue.

Författare och institution:
Lars Rönnbäck (Institutionen för klinisk neurovetenskap); Elisabeth Hansson (Institutionen för klinisk neurovetenskap)
Publicerad i:
Journal of neuroinflammation, 1 ( 1 ) s. 22
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms.It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At present, this is not possible for technical reasons. Therefore, more knowledge of neuronal-glial signaling in in vitro systems and animal experiments is important.In summary, we provide a hypothetic explanation for a general neurobiological mechanism, at the cellular level, behind one of our most common symptoms during neuroinflammation and other long-term disorders of brain function. Understanding pathophysiological mechanisms of mental fatigue could result in better treatment.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Astroglia, microglia, TNF-α, IL-1β, IL-6, extracellular glutamate ([Glu]ec), glutamate transport
Postens nummer:
Posten skapad:
2009-05-18 10:23
Posten ändrad:
2011-01-20 10:00

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007